Skip to main content

Thoracolumbar Spinal Oncology in the Geriatric Population

  • Chapter
  • First Online:
Treatment of Spine Disease in the Elderly

Abstract

Advances in cancer-targeted therapies are allowing patients to live longer with cancer. These therapies are less effective against skeletal metastases leading to a potential rise in the incidence of spinal metastases. As the population ages, more elderly patients present with symptomatic spinal metastases. Decision-making for metastatic disease is predicated on the NOMS framework, the Neurologic, Oncologic, Mechanical stability, and Systemic disease/medical comorbidity (NOMS) framework, which principally evaluates four sentinel decision points critical in deciding radiation versus surgery, or both. NOMS synthesizes clinical data to aid in determining the need for surgery. Whereas all assessments are the same regardless of age, the elderly require a very critical analysis of medical comorbidities that impact their ability to tolerate surgery. The development of cancer-specific frailty indices and early involvement of geriatric specialists are critical components in this assessment. Additionally, minimally invasive techniques have improved the ability to tolerate surgical procedures. Incorporating better risk assessments and less invasive techniques has improved outcomes in the elderly population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laufer I, Rubin DG, Lis E, Cox BW, Stubblefield MD, Yamada Y, Bilsky MH. The NOMS framework: approach to the treatment of spinal metastatic tumors. Oncologist. 2013;18:744–51.

    PubMed  PubMed Central  Google Scholar 

  2. Patchell RA, Tibbs PA, Regine WF, Payne R, Saris S, Kryscio RJ, Mohiuddin M, Young B. Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomised trial. Lancet. 2005;366:643–8.

    PubMed  Google Scholar 

  3. Byrne TN. Spinal cord compression from epidural metastases. N Engl J Med. 1992;327:614–9.

    CAS  PubMed  Google Scholar 

  4. Greenlee RT, Murray T, Bolden S, Wingo PA. Cancer statistics, 2000. CA Cancer J Clin. 2000;50:7–33.

    CAS  PubMed  Google Scholar 

  5. Choi D, Fox Z, Albert T, et al. Prediction of quality of life and survival after surgery for symptomatic spinal metastases: a multicenter cohort study to determine suitability for surgical treatment. Neurosurgery. 2015;77:698–708; discussion 708.

    PubMed  Google Scholar 

  6. Fehlings MG, Nater A, Tetreault L, et al. Survival and clinical outcomes in surgically treated patients with metastatic epidural spinal cord compression: results of the prospective multicenter AOSpine study. J Clin Oncol. 2016;34:268–76.

    PubMed  Google Scholar 

  7. Hernandez RK, Adhia A, Wade SW, O’Connor E, Arellano J, Francis K, Alvrtsyan H, Million RP, Liede A. Prevalence of bone metastases and bone-targeting agent use among solid tumor patients in the United States. Clin Epidemiol. 2015;7:335–45.

    PubMed  PubMed Central  Google Scholar 

  8. Fehlings MG, Tetreault L, Nater A, Choma T, Harrop J, Mroz T, Santaguida C, Smith JS. The aging of the global population: the changing epidemiology of disease and spinal disorders. Neurosurgery. 2015;77(Suppl 4):S1–5.

    PubMed  Google Scholar 

  9. Wu W-C, Schifftner TL, Henderson WG, Eaton CB, Poses RM, Uttley G, Sharma SC, Vezeridis M, Khuri SF, Friedmann PD. Preoperative hematocrit levels and postoperative outcomes in older patients undergoing noncardiac surgery. JAMA. 2007;297:2481–8.

    CAS  PubMed  Google Scholar 

  10. Dunne JR, Malone D, Tracy JK, Gannon C, Napolitano LM. Perioperative anemia: an independent risk factor for infection, mortality, and resource utilization in surgery. J Surg Res. 2002;102:237–44.

    PubMed  Google Scholar 

  11. Schwab F, Dubey A, Gamez L, El Fegoun AB, Hwang K, Pagala M, Farcy JP. Adult scoliosis: prevalence, SF-36, and nutritional parameters in an elderly volunteer population. Spine. 2005;30:1082–5.

    PubMed  Google Scholar 

  12. Deyo RA, Mirza SK, Martin BI, Kreuter W, Goodman DC, Jarvik JG. Trends, major medical complications, and charges associated with surgery for lumbar spinal stenosis in older adults. JAMA. 2010;303:1259–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kobayashi K, Imagama S, Ando K, et al. Complications associated with spine surgery in patients aged 80 years or older: Japan Association of Spine Surgeons with Ambition (JASA) multicenter study. Global Spine J. 2017;7:636–41.

    PubMed  PubMed Central  Google Scholar 

  14. Watanabe T, Kanayama M, Takahata M, Oda I, Suda K, Abe Y, Okumura J, Hojo Y, Iwasaki N. Perioperative complications of spine surgery in patients 80 years of age or older: a multicenter prospective cohort study. J Neurosurg Spine. 2019:1–9.

    Google Scholar 

  15. Saleh A, Thirukumaran C, Mesfin A, Molinari RW. Complications and readmission after lumbar spine surgery in elderly patients: an analysis of 2,320 patients. Spine J. 2017;17:1106–12.

    PubMed  Google Scholar 

  16. Cloyd JM, Acosta FL, Ames CP. Complications and outcomes of lumbar spine surgery in elderly people: a review of the literature. J Am Geriatr Soc. 2008;56:1318–27.

    PubMed  Google Scholar 

  17. Rajpal S, Lee Nelson E, Villavicencio AT, Telang J, Kantha R, Beasley K, Burneikiene S. Medical complications and mortality in octogenarians undergoing elective spinal fusion surgeries. Acta Neurochir. 2018;160:171–9.

    PubMed  Google Scholar 

  18. Deyo RA, Ciol MA, Cherkin DC, Loeser JD, Bigos SJ. Lumbar spinal fusion. A cohort study of complications, reoperations, and resource use in the Medicare population. Spine. 1993;18:1463–70.

    CAS  PubMed  Google Scholar 

  19. Halaszynski T. Influences of the aging process on acute perioperative pain management in elderly and cognitively impaired patients. Ochsner J. 2013;13:228–47.

    PubMed  PubMed Central  Google Scholar 

  20. Fong HK, Sands LP, Leung JM. The role of postoperative analgesia in delirium and cognitive decline in elderly patients: a systematic review. Anesth Analg. 2006;102:1255–66.

    PubMed  Google Scholar 

  21. Aebi M. Spinal metastasis in the elderly. Eur Spine J. 2003;12(Suppl 2):S202–13.

    PubMed  PubMed Central  Google Scholar 

  22. Amelot A, Balabaud L, Choi D, et al. Surgery for metastatic spine tumors in the elderly. Advanced age is not a contraindication to surgery! Spine J. 2017;17:759–67.

    CAS  PubMed  Google Scholar 

  23. Rades D, Evers JN, Bajrovic A, Veninga T, Schild SE. Re-irradiation of spinal cord compression due to metastasis in elderly patients. Anticancer Res. 2014;34:2555–8.

    PubMed  Google Scholar 

  24. Given B, Given CW. Older adults and cancer treatment. Cancer. 2008;113:3505–11.

    PubMed  Google Scholar 

  25. Wan Kim Y. Surgical treatment for colorectal cancer in octogenarians and nonagenarians. J BUON. 2017;22:578–85.

    PubMed  Google Scholar 

  26. Weerink LBM, Gant CM, van Leeuwen BL, de Bock GH, Kouwenhoven EA, Faneyte IF. Long-term survival in octogenarians after surgical treatment for colorectal cancer: prevention of postoperative complications is key. Ann Surg Oncol. 2018;25:3874–82.

    PubMed  PubMed Central  Google Scholar 

  27. Glaser R, Marinopoulos S, Dimitrakakis C. Breast cancer treatment in women over the age of 80: a tailored approach. Maturitas. 2018;110:29–32.

    PubMed  Google Scholar 

  28. Damhuis RAM, Meurs CJC, Meijer WS. Postoperative mortality after cancer surgery in octogenarians and nonagenarians: results from a series of 5,390 patients. World J Surg Oncol. 2005;3:71.

    PubMed  PubMed Central  Google Scholar 

  29. Tanita T, Hoshikawa Y, Tabata T, Noda M, Handa M, Kubo H, Chida M, Suzuki S, Ono S, Fujimura S. Functional evaluations for pulmonary resection for lung cancer in octogenarians. Investigation from postoperative complications. Jpn J Thorac Cardiovasc Surg. 1999;47:253–61.

    CAS  PubMed  Google Scholar 

  30. Pagni S, Federico JA, Ponn RB. Pulmonary resection for lung cancer in octogenarians. Ann Thorac Surg. 1997;63:785–9.

    CAS  PubMed  Google Scholar 

  31. Dominguez-Ventura A, Allen MS, Cassivi SD, Nichols FC, Deschamps C, Pairolero PC. Lung cancer in octogenarians: factors affecting morbidity and mortality after pulmonary resection. Ann Thorac Surg. 2006;82:1175–9.

    PubMed  Google Scholar 

  32. Liguori G, Trombetta C, Pomara G, Amodeo A, Bucci S, Garaffa G, Francesca F, Belgrano E. Major invasive surgery for urologic cancer in octogenarians with comorbid medical conditions. Eur Urol. 2007;51:1600–4; discussion 1605.

    PubMed  Google Scholar 

  33. Miller C, Raza SJ, Davaro F, May A, Siddiqui S, Hamilton ZA. Trends in the treatment of clinical T1 renal cell carcinoma for octogenarians: analysis of the National Cancer Database. J Geriatr Oncol. 2018;10:285–91.

    PubMed  Google Scholar 

  34. De Groote R, Gandaglia G, Geurts N, et al. Robot-assisted radical cystectomy for bladder cancer in octogenarians. J Endourol. 2016;30:792–8.

    PubMed  Google Scholar 

  35. Barzilai O, Laufer I, Yamada Y, Higginson DS, Schmitt AM, Lis E, Bilsky MH. Integrating evidence-based medicine for treatment of spinal metastases into a decision framework: neurologic, oncologic, mechanicals stability, and systemic disease. J Clin Oncol. 2017;35:2419–27.

    CAS  PubMed  Google Scholar 

  36. Bilsky MH, Laufer I, Fourney DR, Groff M, Schmidt MH, Varga PP, Vrionis FD, Yamada Y, Gerszten PC, Kuklo TR. Reliability analysis of the epidural spinal cord compression scale. J Neurosurg Spine. 2010;13:324–8.

    PubMed  Google Scholar 

  37. Gerszten PC, Mendel E, Yamada Y. Radiotherapy and radiosurgery for metastatic spine disease: what are the options, indications, and outcomes? Spine. 2009;34:S78–92.

    PubMed  Google Scholar 

  38. Mizumoto M, Harada H, Asakura H, et al. Radiotherapy for patients with metastases to the spinal column: a review of 603 patients at Shizuoka Cancer Center Hospital. Int J Radiat Oncol Biol Phys. 2011;79:208–13.

    PubMed  Google Scholar 

  39. Maranzano E, Latini P. Effectiveness of radiation therapy without surgery in metastatic spinal cord compression: final results from a prospective trial. Int J Radiat Oncol Biol Phys. 1995;32:959–67.

    CAS  PubMed  Google Scholar 

  40. Yamada Y, Katsoulakis E, Laufer I, et al. The impact of histology and delivered dose on local control of spinal metastases treated with stereotactic radiosurgery. Neurosurg Focus. 2017;42:E6.

    PubMed  PubMed Central  Google Scholar 

  41. Lovelock DM, Zhang Z, Jackson A, Keam J, Bekelman J, Bilsky M, Lis E, Yamada Y. Correlation of local failure with measures of dose insufficiency in the high-dose single-fraction treatment of bony metastases. Int J Radiat Oncol Biol Phys. 2010;77:1282–7.

    PubMed  PubMed Central  Google Scholar 

  42. Klekamp J, Samii H. Surgical results for spinal metastases. Acta Neurochir. 1998;140:957–67.

    CAS  PubMed  Google Scholar 

  43. Laufer I, Iorgulescu JB, Chapman T, Lis E, Shi W, Zhang Z, Cox BW, Yamada Y, Bilsky MH. Local disease control for spinal metastases following “separation surgery” and adjuvant hypofractionated or high-dose single-fraction stereotactic radiosurgery: outcome analysis in 186 patients. J Neurosurg Spine. 2013;18:207–14.

    PubMed  PubMed Central  Google Scholar 

  44. Fisher CG, DiPaola CP, Ryken TC, et al. A novel classification system for spinal instability in neoplastic disease: an evidence-based approach and expert consensus from the Spine Oncology Study Group. Spine. 2010;35:E1221–9.

    PubMed  Google Scholar 

  45. Ahmed AK, Goodwin CR, Heravi A, Kim R, Abu-Bonsrah N, Sankey E, Kerekes D, De la Garza Ramos R, Schwab J, Sciubba DM. Predicting survival for metastatic spine disease: a comparison of nine scoring systems. Spine J. 2018;18:1804–14.

    PubMed  Google Scholar 

  46. Paulino Pereira NR, Mclaughlin L, Janssen SJ, van Dijk CN, Bramer JAM, Laufer I, Bilsky MH, Schwab JH. The SORG nomogram accurately predicts 3- and 12-months survival for operable spine metastatic disease: external validation. J Surg Oncol. 2017;115:1019–27.

    PubMed  Google Scholar 

  47. Tokuhashi Y, Matsuzaki H, Toriyama S, Kawano H, Ohsaka S. Scoring system for the preoperative evaluation of metastatic spine tumor prognosis. Spine. 1990;15:1110–3.

    CAS  PubMed  Google Scholar 

  48. O’Toole JE, Eichholz KM, Fessler RG. Surgical site infection rates after minimally invasive spinal surgery. J Neurosurg Spine. 2009;11:471–6.

    PubMed  Google Scholar 

  49. Than KD, Mummaneni PV, Bridges KJ, et al. Complication rates associated with open versus percutaneous pedicle screw instrumentation among patients undergoing minimally invasive interbody fusion for adult spinal deformity. Neurosurg Focus. 2017;43:E7.

    PubMed  Google Scholar 

  50. Nerland US, Jakola AS, Solheim O, et al. Minimally invasive decompression versus open laminectomy for central stenosis of the lumbar spine: pragmatic comparative effectiveness study. BMJ. 2015;350:h1603.

    PubMed  PubMed Central  Google Scholar 

  51. Imada AO, Huynh TR, Drazin D. Minimally invasive versus open laminectomy/discectomy, transforaminal lumbar, and posterior lumbar interbody fusions: a systematic review. Cureus. 2017;9:e1488.

    PubMed  PubMed Central  Google Scholar 

  52. Versteeg AL, Verlaan J-J, de Baat P, Jiya TU, Stadhouder A, Diekerhof CH, van Solinge GB, Oner FC. Complications after percutaneous pedicle screw fixation for the treatment of unstable spinal metastases. Ann Surg Oncol. 2016;23:2343–9.

    PubMed  PubMed Central  Google Scholar 

  53. Barzilai O, McLaughlin L, Amato M-K, Reiner AS, Ogilvie SQ, Lis E, Yamada Y, Bilsky MH, Laufer I. Minimal access surgery for spinal metastases: prospective evaluation of a treatment algorithm using patient-reported outcomes. World Neurosurg. 2018;120:e889–901.

    PubMed  PubMed Central  Google Scholar 

  54. Hansen-Algenstaedt N, Kwan MK, Algenstaedt P, Chiu CK, Viezens L, Chan TS, Lee CK, Wellbrock J, Chan CYW, Schaefer C. Comparison between minimally invasive surgery and conventional open surgery for patients with spinal metastasis: a prospective propensity score-matched study. Spine. 2017;42:789–97.

    PubMed  Google Scholar 

  55. Makary MA, Segev DL, Pronovost PJ, et al. Frailty as a predictor of surgical outcomes in older patients. J Am Coll Surg. 2010;210:901–8.

    PubMed  Google Scholar 

  56. Miller EK, Ailon T, Neuman BJ, et al. Assessment of a novel adult cervical deformity frailty index as a component of preoperative risk stratification. World Neurosurg. 2018;109:e800–6.

    PubMed  Google Scholar 

  57. Yagi M, Michikawa T, Hosogane N, et al. Treatment for frailty does not improve complication rates in corrective surgery for adult spinal deformity. Spine. 2019;44:723–31.

    PubMed  Google Scholar 

  58. Ali R, Schwalb JM, Nerenz DR, Antoine HJ, Rubinfeld I. Use of the modified frailty index to predict 30-day morbidity and mortality from spine surgery. J Neurosurg Spine. 2016;25:537–41.

    PubMed  Google Scholar 

  59. De la Garza Ramos R, Goodwin CR, Jain A, Abu-Bonsrah N, Fisher CG, Bettegowda C, Sciubba DM. Development of a metastatic spinal tumor frailty index (MSTFI) using a nationwide database and its association with inpatient morbidity, mortality, and length of stay after spine surgery. World Neurosurg. 2016;95:548–55.e4.

    PubMed  Google Scholar 

  60. Newman WC, Patel A, Goldberg JL, Bilsky MH. The importance of multidisciplinary care for spine metastases: initial tumor management. Neurooncol Pract. 2020;7:i25–32.

    PubMed  PubMed Central  Google Scholar 

  61. Festen S, Kok M, Hopstaken JS, van der Wal-Huisman H, van der Leest A, Reyners AKL, de Bock GH, de Graeff P, van Leeuwen BL. How to incorporate geriatric assessment in clinical decision-making for older patients with cancer. An implementation study. J Geriatr Oncol. 2019;10:951–9.

    PubMed  Google Scholar 

  62. Shahrokni A, Alexander K. The age of talking about age alone is over. Ann Surg Oncol. 2019;26:12–4.

    PubMed  Google Scholar 

  63. Adogwa O, Elsamadicy AA, Vuong VD, Moreno J, Cheng J, Karikari IO, Bagley CA. Geriatric comanagement reduces perioperative complications and shortens duration of hospital stay after lumbar spine surgery: a prospective single-institution experience. J Neurosurg Spine. 2017;27:670–5.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark H. Bilsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goldberg, J.L., Barzilai, O., Lockney, D.T., Amin, A.G., Bilsky, M.H. (2023). Thoracolumbar Spinal Oncology in the Geriatric Population. In: Fu, KM.G., Wang, M.Y., Virk, M.S., Dimar II, J.R., Mummaneni, P.V. (eds) Treatment of Spine Disease in the Elderly. Springer, Cham. https://doi.org/10.1007/978-3-031-12612-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12612-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12611-6

  • Online ISBN: 978-3-031-12612-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics