Skip to main content

Bone Health, Advances in Assessment and Treatment

  • Chapter
  • First Online:
Treatment of Spine Disease in the Elderly
  • 588 Accesses

Abstract

Spinal surgical procedures such as fusion are common in the elderly population and may be associated with high rate of complications. A successful surgery can be life-changing by correcting debilitating deformities. In elderly patients, however, it can become particularly challenging given underlying impaired bone strength due to age- and menopause-related loss of bone mass and deterioration of bone microstructure. Poor bone quality is a risk factor for postoperative complications such as delayed healing, hardware loosening/failure, and adjacent compression deformities.

Assessment of bone strength by standard of care techniques may also be affected by the spine disease itself. Bone density measurement of the spine by dual-energy X-ray absorptiometry (DXA) is often falsely elevated and therefore can be misleading due to underlying artifact by degenerative spine disease, osteophytes, and scoliosis. Newer methods of assessing bone quality preoperatively have been promising.

Efforts to improve bone quality within a reasonable time frame and reduce risk of complications include perioperative use of antiresorptive or anabolic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hall MJ, DeFrances CJ, Williams SN, Golosinskiy A, Schwartzman S. National Hospital discharge survey: 2007 summary. Natl Health Stat Rep. 2010;29:1–20, 24.

    Google Scholar 

  2. Rajaee SS, Bae HW, Kanim LE, Delamarter RB. Spinal fusion in the United States: analysis of trends from 1998 to 2008. Spine. 2012;37(1):67–76.

    PubMed  Google Scholar 

  3. Martin BI, Mirza SK, Spina N, Spiker WR, Lawrence B, Brodke DS. Trends in lumbar fusion procedure rates and associated hospital costs for degenerative spinal diseases in the United States, 2004 to 2015. Spine. 2019;44(5):369–76.

    PubMed  Google Scholar 

  4. Uribe JS, Deukmedjian AR, Mummaneni PV, Fu KM, Mundis GM Jr, Okonkwo DO, Kanter AS, Eastlack R, Wang MY, Anand N, Fessler RG, La Marca F, Park P, Lafage V, Deviren V, Bess S, Shaffrey CI, G. International Spine Study. Complications in adult spinal deformity surgery: an analysis of minimally invasive, hybrid, and open surgical techniques. Neurosurg Focus. 2014;36(5):E15.

    PubMed  Google Scholar 

  5. Dede O, Thuillier D, Pekmezci M, Ames CP, Hu SS, Berven SH, Deviren V. Revision surgery for lumbar pseudarthrosis. Spine. 2015;15(5):977–82.

    Google Scholar 

  6. Yoon ST, Boden SD. Spine fusion by gene therapy. Gene Ther. 2004;11(4):360–7.

    CAS  PubMed  Google Scholar 

  7. Bess S, BoachieAdjei O, Burton D, Cunningham M, Shaffrey C, Shelokov A, Hostin R, Schwab F, Wood K, Akbarnia B, G. International Spine Study. Pain and disability determine treatment modality for older patients with adult scoliosis, while deformity guides treatment for younger patients. Spine. 2009;34(20):2186–90.

    PubMed  Google Scholar 

  8. Pichelmann MA, Lenke LG, Bridwell KH, Good CR, O’Leary PT, Sides BA. Revision rates following primary adult spinal deformity surgery: six hundred forty-three consecutive patients followed-up to twenty-two years postoperative. Spine. 2010;35(2):219–26.

    PubMed  Google Scholar 

  9. McCoy S, Tundo F, Chidambaram S, Baaj AA. Clinical considerations for spinal surgery in the osteoporotic patient: a comprehensive review. Clin Neurol Neurosurg. 2019;180:40–7.

    CAS  PubMed  Google Scholar 

  10. Mirza F, Canalis E. Secondary osteoporosis: pathophysiology and management. Eur J Endocrinol. 2015;173:R131–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Eur. Found. Osteoporos. Bone Dis. Osteoporosis prevention, diagnosis, and therapy. Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. NIH consensus. JAMA. 2001;285:78S.

    Google Scholar 

  12. Lewiecki EM, Gordon CM, Baim S, et al. International Society for Clinical Densitometry 2007 adult and pediatric official positions. Bone. 2008;43:1115–21.

    PubMed  Google Scholar 

  13. Schmidt T, Ebert K, Rolvien T. A retrospective analysis of bone mineral status in patients requiring spinal surgery. BMC Musculoskelet Disord. 2018;19(1):53.

    PubMed  PubMed Central  Google Scholar 

  14. Chin DK, Park JY, Yoon YS, et al. Prevalence of osteoporosis in patients requiring spine surgery: incidence and significance of osteoporosis in spine disease. Osteoporos Int. 2007;18:1219–24.

    CAS  PubMed  Google Scholar 

  15. Moon HJ, Choi KH, Lee SI, Lee OJ, Shin JW, Kim TW. Changes in blood glucose and cortisol levels after epidural or shoulder intra-articular glucocorticoid injections in diabetic or nondiabetic patients. Am J Phys Med Rehabil. 2014;93(5):372–8.

    PubMed  Google Scholar 

  16. Chon JY, Moon HS. Salivary cortisol concentration changes after epidural steroid injection. Pain Physician. 2012;15(6):461–6.

    PubMed  Google Scholar 

  17. Kay J, Findling JW, Raff H. Epidural triamcinolone suppresses the pituitary-adrenal axis in human subjects. Anesth Analg. 1994;79(3):501–5.

    CAS  PubMed  Google Scholar 

  18. Kim WH, Sim WS, Shin BS, Lee CJ, Jin HS, Lee JY, Roe HJ, Kim CS, Lee SM. Effects of two different doses of epidural steroid on blood glucose levels and pain control in patients with diabetes mellitus. Pain Physician. 2013;16(6):557–68.

    PubMed  Google Scholar 

  19. Liu Y, Carrino JA, Dash AS, Chukir T, Do H, Bockman RS, Hughes AP, Press JM, Stein EM. Lower spine volumetric bone density in patients with a history of epidural steroid injections. J Clin Endocrinol Metab. 2018;103(9):3405–10. https://doi.org/10.1210/jc.2018-00558. PMID: 29982535.

    Article  PubMed  Google Scholar 

  20. Njeh CF, Fuerst T, Hans D, et al. Radiation exposure in bone mineral density assessment. Appl Radiat Isot. 1999;50(1):215–36.

    CAS  PubMed  Google Scholar 

  21. Lotz JC, Cheal EJ, Hayes WC. Fracture prediction for the proximal femur using finite element models: Part I — Linear analysis. J Biomech Eng. 1991;113:353–60.

    CAS  PubMed  Google Scholar 

  22. Stone KL, Seeley DG, Lui LY, Cauley JA, Ensrud K, Browner WS, Nevitt MC, Cummings SR, G. Osteoporotic Fractures Research. BMD at multiple sites and risk of fracture of multiple types: long-term results from the study of osteoporotic fractures. J Bone Miner Res. 2003;18(11):1947–54.

    PubMed  Google Scholar 

  23. Johnell O, Kanis JA, Oden A, et al. Predictive value of BMD for hip and other fractures. J Bone Miner Res. 2005;20:1185–94.

    PubMed  Google Scholar 

  24. Schousboe JT, Vokes T, Broy SB, et al. Vertebral fracture assessment: the 2007 ISCD official positions. J Clin Densitom. 2008;11:92–108.

    PubMed  Google Scholar 

  25. Balci A, Kalemci O, Kaya FG, Akyoldas G, Yucesoy K, Ozaksoy D. Early and long-term changes in adjacent vertebral body bone mineral density determined by quantitative computed tomography after posterolateral fusion with transpedicular screw fixation. Clin Neurol Neurosurg. 2016;145:84–8.

    PubMed  Google Scholar 

  26. Wang H, Ma L, Yang D, Wang T, Yang S, Wang Y, Wang Q, Zhang F, Ding W. Incidence and risk factors for the progression of proximal junctional kyphosis in degenerative lumbar scoliosis following long instrumented posterior spinal fusion. Medicine. 2016;95(32):e4443.

    PubMed  PubMed Central  Google Scholar 

  27. Liu FY, Wang T, Yang SD, Wang H, Yang DL, Ding WY. Incidence and risk factors for proximal junctional kyphosis: a meta-analysis. Eur Spine J. 2016;25(8):2376–83.

    PubMed  Google Scholar 

  28. Bjerke BT, Zarrabian M, Aleem IS, Fogelson JL, Currier BL, Freedman BA, Bydon M, Nassr A. Incidence of osteoporosis-related complications following posterior lumbar fusion. Glob Spine J. 2018;8(6):563–9.

    Google Scholar 

  29. Formby PM, Kang DG, Helgeson MD, Wagner SC. Clinical and radiographic outcomes of transforaminal lumbar interbody fusion in patients with osteoporosis. Glob Spine J. 2016;6(7):660–4.

    Google Scholar 

  30. Bredow J, Boese CK, Werner CM, Siewe J, Lohrer L, Zarghooni K, Eysel P, Scheyerer MJ. Predictive validity of preoperative CT scans and the risk of pedicle screw loosening in spinal surgery. Arch Orthop Trauma Surg. 2016;136(8):1063–7.

    PubMed  Google Scholar 

  31. Schwaiger BJ, Gersing AS, Baum T, Noel PB, Zimmer C, Bauer JS. Bone mineral density values derived from routine lumbar spine multidetector row CT predict osteoporotic vertebral fractures and screw loosening. AJNR Am J Neuroradiol. 2014;35(8):1628–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tempel ZJ, Gandhoke GS, Okonkwo DO, Kanter AS. Impaired bone mineral density as a predictor of graft subsidence following minimally invasive transpsoas lateral lumbar interbody fusion. Eur Spine J. 2015;24(Suppl. 3):414–9.

    PubMed  Google Scholar 

  33. Halvorson TL, Kelley LA, Thomas KA, Whitecloud TS III, Cook SD. Effects of bone mineral density on pedicle screw fixation. Spine. 1994;19(21):2415–20. Epub 1994/11/01. PMID:7846594.

    CAS  PubMed  Google Scholar 

  34. Schuit SC, van der Klift M, Weel AE, de Laet CE, Burger H, Seeman E, Hofman A, Uitterlinden AG, van Leeuwen JP, Pols HA. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam study. Bone. 2004;34(1):195–202.

    CAS  PubMed  Google Scholar 

  35. Blake GM, Fogelman I. The role of DXA bone density scans in the diagnosis and treatment of osteoporosis. Postgrad Med J. 2007;83(982):509–17.

    PubMed  PubMed Central  Google Scholar 

  36. Pappou IP, Girardi FP, Sandhu HS, Parvataneni HK, Cammisa FP Jr, Schneider R, Frelinghuysen P, Lane JM. Discordantly high spinal bone mineral density values in patients with adult lumbar scoliosis. Spine. 2006;31(14):1614–20.

    PubMed  Google Scholar 

  37. Sarioglu O, Gezer S, Sarioglu FC, Koremezli N, Kara T, Akcali O, Ozaksoy D, Balci A. Evaluation of vertebral bone mineral density in scoliosis by using quantitative computed tomography. Pol J Radiol. 2019;84:e131–5.

    PubMed  PubMed Central  Google Scholar 

  38. Cheng JC, Guo X, Sher AH. Persistent osteopenia in adolescent idiopathic scoliosis. A longitudinal follow up study. Spine. 1999;24(12):1218–22.

    CAS  PubMed  Google Scholar 

  39. Cheng JC, Hung VW, Lee WT, Yeung HY, Lam TP, Ng BK, Guo X, Qin L. Persistent osteopenia in adolescent idiopathic scoliosis—longitudinal monitoring of bone mineral density until skeletal maturity. Stud Health Technol Inform. 2006;123:47–51.

    CAS  PubMed  Google Scholar 

  40. Blake GM, Chinn DJ, Steel SA, et al. A list of device-specific thresholds for the clinical interpretation of peripheral x-ray absorptiometry examinations. Osteoporos Int. 2005;16:2149–56.

    CAS  PubMed  Google Scholar 

  41. Pickhardt PJ, Lee LJ, del Rio AM, Lauder T, Bruce RJ, Summers RM, Pooler BD, Binkley N. Simultaneous screening for osteoporosis at CT colonography: bone mineral density assessment using MDCT attenuation techniques compared with the DXA reference standard. J Bone Miner Res. 2011;26(9):2194–203.

    PubMed  Google Scholar 

  42. Smith JA, Vento JA, Spencer RP, Tendler BE. Aortic calcification contributing to bone densitometry measurement. J Clin Densitom. 1999;2:181–3.

    CAS  PubMed  Google Scholar 

  43. Yu EW, Thomas BJ, Brown JK, Finkelstein JS. Simulated increases in body fat and errors in bone mineral density measurements by DXA and QCT. J Bone Miner Res. 2012;27:119–24.

    PubMed  Google Scholar 

  44. Farhat GN, Cauley JA, Matthews KA, Newman AB, Johnston J, Mackey R, Edmundowicz D, Sutton-Tyrrell K. Volumetric BMD and vascular calcification in middle-aged women: the study of women’s health across the nation. J Bone Miner Res. 2006;21(12):1839–46.

    PubMed  Google Scholar 

  45. Rehman Q, Lang T, Modin G, Lane NE. Quantitative computed tomography of the lumbar spine, not dual x-ray absorptiometry, is an independent predictor of prevalent vertebral fractures in postmenopausal women with osteopenia receiving long-term glucocorticoid and hormone-replacement therapy. Arthritis Rheum. 2002;46(5):1292–7.

    CAS  PubMed  Google Scholar 

  46. Burch S, Feldstein M, Hoffmann PF, Keaveny TM. Prevalence of poor bone quality in women undergoing spinal fusion using biomechanical-CT analysis. Spine. 2016;41(3):246–52.

    PubMed  Google Scholar 

  47. Liu Y, Dash A, Krez A, Kim HJ, Cunningham M, Schwab F, Hughes A, Carlson B, Samuel A, Marty E, Moore H, McMahon DJ, Carrino JA, Bockman RS, Stein EM. Low volumetric bone density is a risk factor for early complications after spine fusion surgery. Osteoporos Int. 2020;31:647–54. https://doi.org/10.1007/s00198-019-05245-7.

    Article  CAS  PubMed  Google Scholar 

  48. Schreiber JJ, Hughes AP, Taher F, Girardi FP. An association can be found between hounsfield units and success of lumbar spine fusion. HSS J. 2014;10(1):25–9.

    PubMed  Google Scholar 

  49. Hendrickson NR, Pickhardt PJ, Del Rio AM. Bone mineral density T-scores derived from CT attenuation numbers (Hounsfield units): clinical utility and correlation with dual-energy X-ray absorptiometry. Iowa Orthop J. 2018;38:25–31.

    PubMed  PubMed Central  Google Scholar 

  50. Kim KJ, Kim DH, Lee JI. Hounsfield units on lumbar computed tomography for predicting regional bone mineral density. Open Med. 2019;14:545–51.

    CAS  Google Scholar 

  51. Schreiber JJ, Anderson PA, Hsu WK. Use of computed tomography for assessing bone mineral density. Neurosurg Focus. 2014;37(1):E4.

    PubMed  Google Scholar 

  52. Anderson PA, Polly DW, Binkley NC, Pickhardt PJ. Clinical use of opportunistic computed tomography screening for osteoporosis. J Bone Joint Surg Am. 2018;100(23):2073–81.

    PubMed  Google Scholar 

  53. Zaidi Q, Danisa OA, Cheng W. Measurement techniques and utility of Hounsfield unit values for assessment of bone quality prior to spinal instrumentation: a review of current literature. Spine. 2019;44(4):E239–44.

    PubMed  Google Scholar 

  54. Pickhardt PJ, Pooler BD, Lauder T. Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications. Ann Intern Med. 2013;158(8):588–95.

    PubMed  PubMed Central  Google Scholar 

  55. Jang S, Graffy PM, Ziemlewicz TJ. Opportunistic osteoporosis screening at routine abdominal and thoracic CT: normative L1 trabecular attenuation values in more than 20 000 adults. Radiology. 2019;291(2):360–7.

    PubMed  Google Scholar 

  56. Hans D, Barthe N, Boutroy S, et al. Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J Clin Densitom. 2011;14:302–12.

    PubMed  Google Scholar 

  57. Silva BC, Walker MD, Abraham A, et al. Trabecular bone score is associated with volumetric bone density and microarchitecture as assessed by central QCT and HRpQCT in Chinese American and white women. J Clin Densitom. 2013;16:554–61.

    PubMed  Google Scholar 

  58. Silva BC, Leslie WD, Resch H, Lamy O, Lesnyak O, Binkley N, McCloskey EV, Kanis JA, Bilezikian JP. Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res. 2014;29(3):518–30.

    PubMed  Google Scholar 

  59. Hans D, Goertzen AL, Krieg MA, Leslie WD. Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study. J Bone Miner Res. 2011;26:2762–9.

    PubMed  Google Scholar 

  60. Cormier C, Lamy O, Poriau S. TBS in routine medical practice: proposals of use. Plan-les-Ouates.: Medimaps Group; 2012. http://www.medimapsgroup.com/upload/MEDIMAPS-UK-WEB.pdf.

    Google Scholar 

  61. Boutroy S, Bouxsein ML, Munoz F, Delmas PD. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab. 2005;90:6508–15.

    CAS  PubMed  Google Scholar 

  62. Sornay-Rendu E, Cabrera-Bravo JL, Boutroy S, Munoz F, Delmas PD. Severity of vertebral fractures is associated with alterations of cortical architecture in postmenopausal women. J Bone Miner Res. 2009;24(4):737–43.

    PubMed  Google Scholar 

  63. Stein EM, Liu XS, Nickolas TL, Cohen A, McMahon DJ, Zhou B, Zhang C, Kamanda-Kosseh M, Cosman F, Nieves J, Guo XE, Shane E. Microarchitectural abnormalities are more severe in postmenopausal women with vertebral compared to nonvertebral fractures. J Clin Endocrinol Metab. 2012;97(10):E1918–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Roux JP, Wegrzyn J, Arlot ME, Guyen O, Delmas PD, Chapurlat R, Bouxsein ML. Contribution of trabecular and cortical components to biomechanical behavior of human vertebrae: an ex vivo study. J Bone Miner Res. 2010;25(2):356–61.

    PubMed  Google Scholar 

  65. Seeman E, Delmas PD. Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354(21):2250–61.

    CAS  PubMed  Google Scholar 

  66. Kim HJ, Dash A, Cunningham M, Schwab F, Dowdell J, Harrison J, Zaworski C, Krez A, Lafage V, Agarwal S, Carlson B, McMahon DJ, Stein EM. Patients with abnormal microarchitecture have an increased risk of early complications after spinal fusion surgery. Bone. 2021;143:115731. https://doi.org/10.1016/j.bone.2020.115731. Epub 2020 Nov 4. PMID: 33157283.

    Article  PubMed  Google Scholar 

  67. Bischoff-Ferrari HA, Willett WC, Wong JB, Giovannucci E, Dietrich T, Dawson-Hughes B. Fracture prevention with vitamin D supplementation: a meta-analysis of randomized controlled trials. JAMA. 2005;293(18):2257–64. https://doi.org/10.1001/jama.293.18.2257. PMID: 15886381.

    Article  CAS  PubMed  Google Scholar 

  68. Chapuy MC, Arlot ME, Duboeuf F, Brun J, Crouzet B, Arnaud S, Delmas PD, Meunier PJ. Vitamin D3 and calcium to prevent hip fractures in elderly women. N Engl J Med. 1992;327(23):1637–42. https://doi.org/10.1056/NEJM199212033272305. PMID: 1331788.

    Article  CAS  PubMed  Google Scholar 

  69. Boden SD, Schimandle JH, Hutton WC. An experimental lumbar intertransverse process spinal fusion model. Radiographic, histologic, and biomechanical healing characteristics. Spine. 1995;20:412–20.

    CAS  PubMed  Google Scholar 

  70. Lawrence JP, Ennis F, White AP, et al. Effect of daily parathyroid hormone (1-34) on lumbar fusion in a rat model. Spine J. 2006;6:385–90.

    PubMed  Google Scholar 

  71. O’Loughlin PF, Cunningham ME, Bukata SV, et al. Parathyroid hormone (1-34) augments spinal fusion, fusion mass volume, and fusion mass quality in a rabbit spinal fusion model. Spine. 2009;34:121–30.

    PubMed  Google Scholar 

  72. Kaiser MG, Groff MW, Watters WC III, et al. Guideline update for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 16: bone graft extenders and substitutes as an adjunct for lumbar fusion. J Neurosurg Spine. 2014;21:106–32.

    PubMed  Google Scholar 

  73. Okamoto S, Ikeda T, Sawamura K, et al. Positive effect on bone fusion by the combination of platelet-rich plasma and a gelatin beta-tricalcium phosphate sponge: a study using a posterolateral fusion model of lumbar vertebrae in rats. Tissue Eng Part A. 2012;18:157–66.

    CAS  PubMed  Google Scholar 

  74. Reid JJ, Johnson JS, Wang JC. Challenges to bone formation in spinal fusion. J Biomech. 2011;44:213–20.

    PubMed  Google Scholar 

  75. Hirsch BP, Unnanuntana A, Cunningham ME, Lane JM. The effect of therapies for osteoporosis on spine fusion: a systematic review. Spine J. 2013;13:190–9.

    PubMed  Google Scholar 

  76. Jain N, Labaran L, Phillips FM, Khan SN, Jain A, Kebaish KM, Hassanzadeh H. Prevalence of osteoporosis treatment and its effect on post-operative complications, revision surgery and costs after multi-level spinal fusion. Glob Spine J. 2022;12:1119. https://doi.org/10.1177/2192568220976560. PMID: 33334188.

    Article  Google Scholar 

  77. Rodan GA, Fleisch HA. Bisphosphonates: mechanisms of action. J Clin Invest. 1996;97:2692–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Nagahama K, Kanayama M, Togawa D, Hashimoto T, Minami A. Does alendronate disturb the healing process of posterior lumbar interbody fusion? A prospective randomized trial. J Neurosurg Spine. 2011;14:500–7.

    PubMed  Google Scholar 

  79. Kim SM, Rhee W, Ha S, Lim JH, Jang IT. Influence of alendronate and endplate degeneration to single level posterior lumbar spinal interbody fusion. Korean J Spine. 2014;11:221–6.

    PubMed  PubMed Central  Google Scholar 

  80. Park YS, Kim HS, Baek SW, Kong DY, Ryu JA. The effect of zoledronic acid on the volume of the fusion-mass in lumbar spinal fusion. Clin Orthop Surg. 2013;5:292–7.

    PubMed  PubMed Central  Google Scholar 

  81. Tu CW, Huang KF, Hsu HT, Li HY, Yang SSD, Chen YC. Zoledronic acid infusion for lumbar interbody fusion in osteoporosis. J Surg Res. 2014;192:112–6.

    CAS  PubMed  Google Scholar 

  82. Chen F, Dai Z, Kang Y, Lv G, Keller ET, Jiang Y. Effects of zoledronic acid on bone fusion in osteoporotic patients after lumbar fusion. Osteoporos Int. 2016;27:1469–76.

    CAS  PubMed  Google Scholar 

  83. Ding Q, Chen J, Fan J, Li Q, Yin G, Yu L. Effect of zoledronic acid on lumbar spinal fusion in osteoporotic patients. Eur Spine J. 2017;26:2969–77.

    PubMed  Google Scholar 

  84. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, et al. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344(19):1434–41. Epub 2001/05/11. PMID:11346808.

    CAS  PubMed  Google Scholar 

  85. Rosen CJ, Bilezikian JP. Clinical review 123: anabolic therapy for osteoporosis. J Clin Endocrinol Metab. 2001;86:957–64.

    CAS  PubMed  Google Scholar 

  86. Ohtori S, Inoue G, Orita S, Yamauchi K, Eguchi Y, Ochiai N, Kishida S, Kuniyoshi K, Aoki Y, Nakamura J, Ishikawa T, Miyagi M, Kamoda H, Suzuki M, Kubota G, Sakuma Y, Oikawa Y, Inage K, Sainoh T, Takaso M, Ozawa T, Takahashi K, Toyone T. Teriparatide accelerates lumbar posterolateral fusion in women with postmenopausal osteoporosis: prospective study. Spine. 2012;37(23):E1464–8.

    PubMed  Google Scholar 

  87. Inoue G, Ueno M, Nakazawa T, Imura T, Saito W, Uchida K, Ohtori S, Toyone T, Takahira N, Takaso M. Teriparatide increases the insertional torque of pedicle screws during fusion surgery in patients with postmenopausal osteoporosis. J Neurosurg Spine. 2014;21(3):425–31.

    PubMed  Google Scholar 

  88. Ohtori S, Inoue G, Orita S, Yamauchi K, Eguchi Y, Ochiai N, Kishida S, Kuniyoshi K, Aoki Y, Nakamura J, Ishikawa T, Miyagi M, Kamoda H, Suzuki M, Kubota G, Sakuma Y, Oikawa Y, Inage K, Sainoh T, Takaso M, Toyone T, Takahashi K. Comparison of teriparatide and bisphosphonate treatment to reduce pedicle screw loosening after lumbar spinal fusion surgery in postmenopausal women with osteoporosis from a bone quality perspective. Spine. 2013;38(8):E487–92.

    PubMed  Google Scholar 

  89. Kim JW, Park SW, Kim YB, Ko MJ. The effect of postoperative use of Teriparatide reducing screw loosening in osteoporotic patients. J Korean Neurosurg Soc. 2018;61(4):494–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Ohtori S, Orita S, Yamauchi K, Eguchi Y, Ochiai N, Kuniyoshi K, Aoki Y, Nakamura J, Miyagi M, Suzuki M, Kubota G, Inage K, Sainoh T, Sato J, Shiga Y, Abe K, Fujimoto K, Kanamoto H, Inoue G, Takahashi K. More than 6 months of teriparatide treatment was more effective for bone union than shorter treatment following lumbar posterolateral fusion surgery. Asian Spine J. 2015;9(4):573–80.

    PubMed  PubMed Central  Google Scholar 

  91. Yagi M, Ohne H, Konomi T, Fujiyoshi K, Kaneko S, Komiyama T, Takemitsu M, Yato Y, Machida M, Asazuma T. Teriparatide improves volumetric bone mineral density and fine bone structure in the UIV+1 vertebra, and reduces bone failure type PJK after surgery for adult spinal deformity. Osteoporos Int. 2016;27(12):3495–502.

    CAS  PubMed  Google Scholar 

  92. Ebata S, Takahashi J, Hasegawa T, Mukaiyama K, Isogai Y, Ohba T, Shibata Y, Ojima T, Yamagata Z, Matsuyama Y, Haro H. Role of weekly teriparatide administration in osseous union enhancement within six months after posterior or transforaminal lumbar interbody fusion for osteoporosis-associated lumbar degenerative disorders: a multicenter, prospective randomized study. J Bone Joint Surg Am. 2017;99(5):365–72.

    PubMed  Google Scholar 

  93. Cho PG, Ji GY, Shin DA, Ha Y, Yoon DH, Kim KN. An effect comparison of teriparatide and bisphosphonate on posterior lumbar interbody fusion in patients with osteoporosis: a prospective cohort study and preliminary data. Eur Spine J. 2017;26:691–7.

    PubMed  Google Scholar 

  94. Kawabata A, Yoshii T, Hirai T, et al. Effect of bisphosphonates or teriparatide on mechanical complications after posterior instrumented fusion for osteoporotic vertebral fracture: a multi-center retrospective study. BMC Musculoskelet Disord. 2020;21:420.

    PubMed  PubMed Central  Google Scholar 

  95. Jespersen AB, Andresen ADK, Jacobsen MK, Andersen MO, Carreon LY. Does systemic administration of parathyroid hormone after noninstrumented spinal fusion surgery improve fusion rates and fusion mass in elderly patients compared to placebo in patients with degenerative lumbar spondylolisthesis? Spine. 2019;44(3):157–62.

    PubMed  Google Scholar 

  96. Miller PD, Hattersley G, Riis BJ, et al. Effect of abaloparatide vs placebo on new vertebral fractures in postmenopausal women with osteoporosis: a randomized clinical trial. JAMA. 2016;316:722–33.

    CAS  PubMed  Google Scholar 

  97. Arlt H, Besschetnova T, Ominsky MS, Fredericks DC, Lanske B. Effects of systemically administered abaloparatide, an osteoanabolic PTHrP analog, as an adjuvant therapy for spinal fusion in rats. JOR Spine. 2020;4(1):e1132. https://doi.org/10.1002/jsp2.1132. eCollection 2021 Mar. PMID: 33778406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Parikh S, Lubitz SE, Sharma A. Novel use of abaloparatide to augment spinal fusion in patient undergoing cervicothoracic revision surgery. J Endocrine Soc. 2020;4(Suppl 1):MON-365.

    Google Scholar 

  99. Leder BZ, Tsai JN, Uihlein AV, Burnett-Bowie SA, Zhu Y, Foley K, et al. Two years of Denosumab and teriparatide administration in postmenopausal women with osteoporosis (The DATA Extension Study): a randomized controlled trial. J Clin Endocrinol Metab. 2014;99(5):1694–700. Epub 2014/02/13. PMID:24517156; PubMed Central PMCID: PMC4010689.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Ide M, Yamada K, Kaneko K, et al. Combined teriparatide and denosumab therapy accelerates spinal fusion following posterior lumbar interbody fusion. Orthop Traumatol Surg Res. 2018;104:1043–8.

    PubMed  Google Scholar 

  101. Tsutsumimoto T, Shimogata M, Yoshimura Y, Misawa H. Union versus nonunion after posterolateral lumbar fusion: a comparison of long-term surgical outcomes in patients with degenerative lumbar spondylolisthesis. Eur Spine J. 2008;17(8):1107–12. Epub 2008/06/10. PMID:18536941; PubMed Central PMCID: PMC2518764.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiota Andreopoulou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Andreopoulou, P. (2023). Bone Health, Advances in Assessment and Treatment. In: Fu, KM.G., Wang, M.Y., Virk, M.S., Dimar II, J.R., Mummaneni, P.V. (eds) Treatment of Spine Disease in the Elderly. Springer, Cham. https://doi.org/10.1007/978-3-031-12612-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12612-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12611-6

  • Online ISBN: 978-3-031-12612-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics