Skip to main content

Accelerating Brain Simulations with the Fast Multipole Method

  • Conference paper
  • First Online:
Euro-Par 2022: Parallel Processing (Euro-Par 2022)

Abstract

The brain is probably the most complex organ in the human body. To understand processes such as learning or healing after brain lesions, we need suitable tools for brain simulations. The Model of Structural Plasticity offers a solution to that problem. It provides a way to model the brain bottom-up by specifying the behavior of the neurons and using structural plasticity to form the synapses. However, its original formulation involves a pairwise evaluation of attraction kernels, which drastically limits scalability. While this complexity has recently been decreased to \(O(n \cdot \log ^2 n)\) after reformulating the task as a variant of an n-body problem and solving it using an adapted version of the Barnes–Hut approximation, we propose an even faster approximation based on the fast multipole method (FMM). The fast multipole method was initially introduced to solve pairwise interactions in linear time. Our adaptation achieves this time complexity, and it is also faster in practice than the previous approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambrosiano, J., Greengard, L., Rokhlin, V.: The fast multipole method for gridless particle simulation. Comput. Phys. Commun. 48(1), 117–125 (1988). https://doi.org/10.1016/0010-4655(88)90029-X

    Article  Google Scholar 

  2. Ananthanarayanan, R., Esser, S.K., Simon, H.D., Modha, D.S.: The cat is out of the bag: cortical simulations with 109 neurons, 1013 synapses. In: SC 2009. Association for Computing Machinery, New York (2009). https://doi.org/10.1145/1654059.1654124

  3. Barnes, J., Hut, P.: A hierarchical o (n log n) force-calculation algorithm. Nature 324(6096), 446–449 (1986). https://doi.org/10.1038/324446a0

  4. Beatson, R., Greengard, L.: A short course on fast multipole methods. Technical report, Department of Mathematics and Statistics, University of Canterbury and Courant Institute of Mathematical Sciences, New York University (1997)

    Google Scholar 

  5. Beaujoin, J., et al.: Post-mortem inference of the human hippocampal connectivity and microstructure using ultra-high field diffusion MRI at 11.7 T. Brain Struct. Funct. 223(5), 2157–2179 (2018). https://doi.org/10.1007/s00429-018-1617-1

    Article  Google Scholar 

  6. Berlin, C.U.: Brain simulation section (2019). https://www.brainpreservation.org/content-2/connectome/. Accessed June 2021

  7. Butz, M., van Ooyen, A.: A simple rule for dendritic spine and axonal bouton formation can account for cortical reorganization after focal retinal lesions. PLOS Comput. Biol. 9(10), 1–21 (2013). https://doi.org/10.1371/journal.pcbi.1003259

  8. Butz, M., Wörgötter, F., Ooyen, A.: Activity-dependent structural plasticity. Brain Res. Rev. 60, 287–305 (2009). https://doi.org/10.1016/j.brainresrev.2008.12.023

  9. Chen, X., Wang, Y., Kopetzky, S.J., Butz-Ostendorf, M., Kaiser, M.: Connectivity within regions characterizes epilepsy duration and treatment outcome. Hum. Brain Mapp. 42(12), 3777–3791 (2021). https://doi.org/10.1002/hbm.25464

    Article  Google Scholar 

  10. Dammasch, I.E., Wagner, G.P., Wolff, J.R.: Self-stabilization of neuronal networks. Biol. Cybern. 54(4), 211–222 (1986). https://doi.org/10.1007/BF00318417

  11. Dehnen, W.: A fast multipole method for stellar dynamics. Comput. Astrophys. Cosmol. 1(1), 1–23 (2014). https://doi.org/10.1186/s40668-014-0001-7

    Article  Google Scholar 

  12. Diaz-Pier, S., Naveau, M., Butz-Ostendorf, M., Morrison, A.: Automatic generation of connectivity for large-scale neuronal network models through structural plasticity. Front. Neuroanat. 10, 57 (2016). https://doi.org/10.3389/fnana.2016.00057

    Article  Google Scholar 

  13. Dodt, H.U., et al.: Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat. Methods 4(4), 331–336 (2007). https://doi.org/10.1038/nmeth1036

    Article  Google Scholar 

  14. Eylert, B.: Praktische Mathematik für Informatiker. Telematiker und Ingenieure, Wildau (2014)

    Google Scholar 

  15. Friedrich, H., Pietschmann, F.: Numerische Methoden: ein Lehr- und Übungsbuch, 2. auflage edn. De Gruyter Studium, Berlin (2020)

    Google Scholar 

  16. Gewaltig, M.O., Diesmann, M.: Nest (neural simulation tool). Scholarpedia 2(4), 1430 (2007)

    Article  Google Scholar 

  17. Greengard, L., Strain, J.: The fast gauss transform. SIAM J. Sci. Stat. Comput. 12(1), 79–94 (1991). https://doi.org/10.1137/0912004

    Article  MathSciNet  MATH  Google Scholar 

  18. Gumerov, N.A., Duraiswami, R.: Fast multipole methods on graphics processors. J. Comput. Phys. 227(18), 8290–8313 (2008). https://doi.org/10.1016/j.jcp.2008.05.023

    Article  MathSciNet  MATH  Google Scholar 

  19. Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory. Psychology Press, London (2005)

    Google Scholar 

  20. Holtmaat, A., Svoboda, K.: Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci. 10(9), 647–658 (2009). https://doi.org/10.1038/nrn2699

  21. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569–1572 (2003). https://doi.org/10.1109/TNN.2003.820440

    Article  MathSciNet  Google Scholar 

  22. Izhikevich, E.M., FitzHugh, R.: Fitzhugh-Nagumo model. Scholarpedia 1(9), 1349 (2006)

    Article  Google Scholar 

  23. Keck, T., Mrsic-Flogel, T.D., Vaz Afonso, M., Eysel, U.T., Bonhoeffer, T., Hübener, M.: Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex. Nat. Neurosci. 11(10), 1162–1167 (2008). https://doi.org/10.1038/nn.2181

  24. Kleim, J.A., et al.: Synapse formation is associated with memory storage in the cerebellum. Proc. Natl. Acad. Sci. 99(20), 13228–13231 (2002). https://doi.org/10.1073/pnas.202483399

  25. Kleim, J.A., Hogg, T.M., VandenBerg, P.M., Cooper, N.R., Bruneau, R., Remple, M.: Cortical synaptogenesis and motor map reorganization occur during late, but not early, phase of motor skill learning. J. Neurosci. 24(3), 628–633 (2004). https://doi.org/10.1523/JNEUROSCI.3440-03.2004

    Article  Google Scholar 

  26. Lashuk, I., et al.: A massively parallel adaptive fast-multipole method on heterogeneous architectures. In: Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, pp. 1–12 (2009). https://doi.org/10.1145/1654059.1654118

  27. Rinke, S., Butz-Ostendorf, M., Hermanns, M.A., Naveau, M., Wolf, F.: A scalable algorithm for simulating the structural plasticity of the brain. J. Parallel Distrib. Comput. 120, 251–266 (2018). https://doi.org/10.1016/j.jpdc.2017.11.019

    Article  Google Scholar 

  28. Rokhlin, V.: Rapid solution of integral equations of classical potential theory. J. Comput. Phys. 60(2), 187–207 (1985). https://doi.org/10.1016/0021-9991(85)90002-6

    Article  MathSciNet  MATH  Google Scholar 

  29. Sanz Leon, P., et al.: The virtual brain: a simulator of primate brain network dynamics. Front. Neuroinform. 7 (2013). https://doi.org/10.3389/fninf.2013.00010

  30. van Ooyen, A., van Pelt, J.: Activity-dependent neurite outgrowth and neural network development. In: Van Pelt, J., Corner, M., Uylings, H., Lopes Da Silva, F. (eds.) The Self-Organizing Brain: From Growth Cones to Functional Networks, Progress in Brain Research, vol. 102, pp. 245–259. Elsevier (1994). https://doi.org/10.1016/S0079-6123(08)60544-0

  31. Van Ooyen, A., Butz-Ostendorf, M.: The Rewiring Brain: A Computational Approach to Structural Plasticity in the Adult Brain. Academic Press, London (2017)

    Google Scholar 

  32. Yokota, R., Barba, L., Narumi, T., Yasuoka, K.: Petascale turbulence simulation using a highly parallel fast multipole method on GPUs. Comput. Phys. Commun. 184(3), 445–455 (2013). https://doi.org/10.1016/j.cpc.2012.09.011

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of the European Commission and the German Federal Ministry of Education and Research (BMBF) under the EuroHPC Programme DEEP-SEA (955606, BMBF Funding No. 16HPC015). The EuroHPC Joint Undertaking (JU) receives support from the European Union’s Horizon 2020 research and innovation programme and GER, FRA, ESP, GRC, BEL, SWE, UK, CHE. This research was also supported by the EBRAINS research infrastructure, funded by the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific GA No. 945539 (Human Brain Project SGA3), and is partly funded by the Federal Ministry of Education and Research (BMBF) and the state of Hesse as part of the NHR Program. The authors gratefully acknowledge having conducted a part of this study on the Lichtenberg high-performance computer of TU Darmstadt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Czappa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nöttgen, H., Czappa, F., Wolf, F. (2022). Accelerating Brain Simulations with the Fast Multipole Method. In: Cano, J., Trinder, P. (eds) Euro-Par 2022: Parallel Processing. Euro-Par 2022. Lecture Notes in Computer Science, vol 13440. Springer, Cham. https://doi.org/10.1007/978-3-031-12597-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12597-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12596-6

  • Online ISBN: 978-3-031-12597-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics