Skip to main content

Approaches to the Cerebellopontine Angle

  • Chapter
  • First Online:
Surgery of the Cerebellopontine Angle

Abstract

The cerebellopontine angle (CPA) is formed by the petrosal cerebellar surface, middle cerebellar peduncle, lateral pons, petrosal surface of the petrous bone, and clival portion of the occipital bone. While only accounting for 10–15% of intracranial tumors, CPA tumors are the most common tumors of the posterior fossa. Vestibular schwannomas (VS) account for 85% of masses in this region, while meningiomas, epidermoids (primary cholesteatomas), and trigeminal, facial, and lower cranial nerve schwannomas constitute the majority of non-VS CPA tumors [1]. The three primary approaches to the CPA are the retrosigmoid, translabyrinthine, and middle fossa approaches. The optimal approach for a given patient depends on the tumor’s growth pattern (e.g., the middle fossa approach is suboptimal for tumors with extensive growth in the CPA), the patient’s hearing status, the surgeon’s expertise in a given approach, and the goals of the operation. Furthermore, the density of crucial structures in this region makes careful preoperative assessment and planning essential in complication avoidance [2]. The retrosigmoid approach allows for hearing preservation and resection of lesions with significant extension into the CPA, though it requires cerebellar retraction and offers limited access to the fundus of the internal auditory canal (IAC). In contrast, the translabyrinthine approach requires very little brain retraction and has no limitation on tumor size or IAC exposure but does require sacrificing hearing. The middle fossa approach, while maintaining hearing preservation, is limited by the extension of the mass lesion into the CPA (~10 mm). In this chapter, we elaborate on these approaches and their variations. We emphasize that these approaches are a continuum of trajectories progressing from an exposure of the face of the petrous bone (retrosigmoid approach) to an anterior view of the brainstem (middle fossa approach; Fig. 5.1). Exposure and comparison of the three main approaches in the context of a VS are summarized in Tables 5.1 and 5.2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gal TJ, Shinn J, Huang B. Current epidemiology and management trends in acoustic neuroma. Otolaryngol Head Neck Surg. 2010;142:677–81.

    Article  Google Scholar 

  2. Rahimpour S, Friedman AH, Fukushima T, Zomorodi AR. Microsurgical resection of vestibular schwannomas: complication avoidance. J Neuro-Oncol. 2016;130:367–75.

    Article  CAS  Google Scholar 

  3. Post KD, Eisenberg MB, Catalano PJ. Hearing preservation in vestibular schwannoma surgery: what factors influence outcome? J Neurosurg. 1995;83:191–6.

    Article  CAS  Google Scholar 

  4. Catalano PJ, Jacobowitz O, Post KD. Prevention of headache after retrosigmoid removal of acoustic tumors. Am J Otol. 1996;17:904–8.

    CAS  Google Scholar 

  5. Naffziger HC. Brain surgery with special reference to exposure of the brain stem and posterior fossa: the principle of intracranial decompression, and relief of impactions in the posterior fossa. Surg Gynecol Obstet. 1928;46:241–8.

    Google Scholar 

  6. House WF. Transtemporal bone microsurgical removal of acoustic neuromas. Report of cases. Arch Otolaryngol. 1964;80:617–67.

    CAS  Google Scholar 

  7. Jenkins HA, Fisch U. The transotic approach to resection of difficult acoustic tumors of the cerebellopontine angle. Am J Otol. 1980;2:70–6.

    CAS  Google Scholar 

  8. Hitselberger WE, Pulec JL. Trigeminal nerve (posterior root) retrolabyrinthine selective section: operative procedure for intractable pain. Arch Otolaryngol. 1972;96:412–5.

    Article  CAS  Google Scholar 

  9. Russell SM, Roland JT, Golfinos JG. Retrolabyrinthine craniectomy: the unsung hero of skull base surgery. Skull Base. 2004;14:63–71.

    Article  Google Scholar 

  10. Spetzler RF, Daspit CP, Pappas CTE. The combined supra- and infratentorial approach for lesions of the petrous and clival regions; experience with 46 cases. J Neurosurg. 1992;76:588–99.

    Article  CAS  Google Scholar 

  11. Aslan A, Falcioni M, Russo A, De Donato G, Balyan FR, Taibah A, et al. Anatomical considerations of high jugular bulb in lateral skull base surgery. J Laryngol Otol. 1997;111:333–6.

    Article  CAS  Google Scholar 

  12. Tubbs RS, Griessenauer C, Loukas M, Ansari SF, Fritsch MH, Gadol AAC. Trautmann’s triangle anatomy with application to posterior transpetrosal and other related skull base procedures. Clin Anat. 2014;27:994–8.

    Article  Google Scholar 

  13. McElveen JT, Wilkins RH, Erwin AC, Wolford RD. Modifying the translabyrinthine approach to preserve hearing during acoustic tumour surgery. J Laryngol Otol. 1991;105:34–7.

    Article  Google Scholar 

  14. Horgan MA, Delashaw JB, Schwartz MS, Kellogg JX, Spektor S, McMenomey SO. Transcrusal approach to the petroclival region with hearing preservation. J Neurosurg. 2001;94:660–6.

    Article  CAS  Google Scholar 

  15. Monfared A, Mudry A, Jackler R. The history of middle cranial fossa approach to the cerebellopontine angle. Otol Neurotol. 2010;31:691.

    Article  Google Scholar 

  16. Nonaka Y, Fukushima T, Watanabe K, Friedman AH, McElveen JT, Cunningham CD, et al. Less invasive transjugular approach with Fallopian bridge technique for facial nerve protection and hearing preservation in surgery of glomus jugulare tumors. Neurosurg Rev. 2013;36:579–86.

    Article  Google Scholar 

  17. Parry RH. A case of tinnitus and vertigo treated by division of the auditory nerve. J Laryngol Otol. 1994;19:402–6.

    Article  Google Scholar 

  18. Goddard JC, Schwartz MS, Friedman RA. Fundal fluid as a predictor of hearing preservation in the middle cranial fossa approach for vestibular schwannoma. Otol Neurotol. 2010;31:1128–34.

    Article  Google Scholar 

  19. Martin RG, Grant JL, Peace D, Theiss C, Rhoton ALJ. Microsurgical relationships of the anterior inferior cerebellar artery and the facial-vestibulocochlear nerve complex. Neurosurgery. 1980;6:483.

    Article  CAS  Google Scholar 

  20. Schroeder HWS, Oertel J, Gaab MR. Endoscope-assisted microsurgical resection of epidermoid tumors of the cerebellopontine angle. J Neurosurg. 2004;101:227–32.

    Article  Google Scholar 

  21. Tatagiba M, Matthies C, Samii M. Microendoscopy of the internal auditory canal in vestibular schwannoma surgery. Neurosurgery. 1996;38:737–40.

    Article  CAS  Google Scholar 

  22. Tatagiba M, Rigante L, Mesquita Filho P, Ebner FH, Roser F. Endoscopic-assisted posterior intradural petrous apicectomy in petroclival meningiomas: a clinical series and assessment of perioperative morbidity. World Neurosurg. 2015;84:1708–18.

    Article  Google Scholar 

  23. Teo C, Nakaji P, Mobbs RJ. Endoscope-assisted microvascular decompression for trigeminal neuralgia: technical case report. Oper Neurosurg. 2006;59:489–90.

    Article  Google Scholar 

  24. Charalampaki P, Kafadar AM, Grunert P, Ayyad A, Perneczky A. Vascular decompression of trigeminal and facial nerves in the posterior fossa under endoscope-assisted keyhole conditions. Skull Base. 2007;18:117–28.

    Article  Google Scholar 

  25. Kumon Y, Kohno S, Ohue S, Watanabe H, Inoue A, et al. Usefulness of endoscope-assisted microsurgery for removal of vestibular schwannomas. J Neurol Surg B. 2012;73:42–7.

    Article  Google Scholar 

  26. Setty P, D’Andrea KP, Stucken EZ, Babu S, LaRouere MJ, Pieper DR. Endoscopic resection of vestibular schwannomas. J Neurol Surg B. 2015;76:230–8.

    Article  Google Scholar 

  27. Shahinian HK, Eby JB, Ocon M. Fully endoscopic excision of vestibular schwannomas. Minim Invasive Neurosurg. 2005;47:329–32.

    Article  Google Scholar 

  28. Takemura Y, Inoue T, Morishita T, Rhoton AL Jr. Comparison of microscopic and endoscopic approaches to the cerebellopontine angle. World Neurosurg. 2014;82:427–41.

    Article  Google Scholar 

  29. Abolfotoh M, Bi WL, Hong C-K, Almefty KK, Boskovitz A, Dunn IF, et al. The combined microscopic-endoscopic technique for radical resection of cerebellopontine angle tumors. J Neurosurg. 2015;123:1301–11.

    Article  Google Scholar 

  30. Ebner FH, Koerbel A, Roser F, Hirt B, Tatagiba M. Microsurgical and endoscopic anatomy of the retrosigmoid intradural suprameatal approach to lesions extending from the posterior fossa to the central skull base. Skull Base. 2006;19:319–23.

    Article  Google Scholar 

  31. Grayeli AB, Guindi S, Kalamarides M, Garem HE, Smail M, Rey A, et al. Four-channel electromyography of the facial nerve in vestibular schwannoma surgery: sensitivity and prognostic value for short-term facial function outcome. Otol Neurotol. 2005;26:114.

    Article  Google Scholar 

  32. Legatt AD. Mechanisms of intraoperative brainstem auditory evoked potential changes. J Clin Neurophysiol. 2002;19:396.

    Article  Google Scholar 

  33. Morawski K, et al. Preventing internal auditory artery vasospasm using topical papaverine: an animal study. Otol Neurotol. 2003;24:918–26.

    Article  Google Scholar 

  34. Strauss C, et al. Vasoactive treatment for hearing preservation in acoustic neuroma surgery. J Neurosurg. 2001;95:771–7.

    Article  CAS  Google Scholar 

  35. Singh R, Husain AM. Neurophysiologic intraoperative monitoring of the glossopharyngeal and vagus nerves. J Clin Neurophysiol. 2011;28:582–6.

    Article  Google Scholar 

  36. Schlake HP, Goldbrunner RH, Milewski C, Krauss J, Trautner H, Behr R, et al. Intra-operative electromyographic monitoring of the lower cranial motor nerves (LCN IX-XII) in skull base surgery. Clin Neurol Neurosurg. 2001;103:72–82.

    Article  CAS  Google Scholar 

  37. Topsakal C, Al-Mefty O, Bulsara KR, Williford VS. Intraoperative monitoring of lower cranial nerves in skull base surgery: technical report and review of 123 monitored cases. Neurosurg Rev. 2008;31:45–53.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shervin Rahimpour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rahimpour, S., Zomorodi, A.R., Codd, P.J., Krucoff, M.O., Friedman, A.H., Gonzalez, L.F. (2022). Approaches to the Cerebellopontine Angle. In: Bambakidis, N.C., Megerian, C.A., Spetzler, R.F. (eds) Surgery of the Cerebellopontine Angle. Springer, Cham. https://doi.org/10.1007/978-3-031-12507-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12507-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12506-5

  • Online ISBN: 978-3-031-12507-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics