Skip to main content

Accurately Predicting User Registration in Highly Unbalanced Real-World Datasets from Online News Portals

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2022)

Abstract

Getting visitors to register is a crucial factor in marketing for online news portals. Current approaches are rule-based by awarding points for specific actions [3]. Finding efficient rules can be challenging and depends on the specific task. Registration is generally rare compared to regular visitors, leading to highly imbalanced data.

We analyze different supervised learning classification algorithms under consideration of the data imbalance. As case study, we use anonymized real-world data from an Austrian newspaper outlet containing the visitor’s session behavior with around 0.1% registrations over all visits.

We identify an ensemble approach combining the Balanced Random Forest Classifier and the RUSBoost Classifier correctly identifying 76% of registrations over five independent data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alshehri, M., Alamri, A., Cristea, A.I., Stewart, C.D.: Towards designing profitable courses: predicting student purchasing behaviour in MOOCs. Int. J. Artif. Intell. Educ. 31, 215–233 (2021)

    Article  Google Scholar 

  2. Artun, O., Levin, D.: Predictive Marketing: Easy Ways Every Marketer Can Use Customer Analytics and Big Data. Wiley Online Library (2015)

    Google Scholar 

  3. Benhaddou, Y., Leray, P.: Customer relationship management and small data - application of Bayesian network elicitation techniques for building a lead scoring model. In: 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), pp. 251–255 (2017). https://doi.org/10.1109/AICCSA.2017.51

  4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  5. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  6. Chen, C., Liaw, A., Breiman, L., et al.: Using random forest to learn imbalanced data. Univ. Calif. Berkeley 110(1–12), 24 (2004)

    Google Scholar 

  7. Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., et al.: XGBoost: extreme gradient boosting. R Package Version 0.4-2 1(4), 1–4 (2015)

    Google Scholar 

  8. Duncan, B.A., Elkan, C.P.: Probabilistic modeling of a sales funnel to prioritize leads. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1751–1758 (2015)

    Google Scholar 

  9. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4), 367–378 (2002)

    Article  MathSciNet  Google Scholar 

  10. Guo, X., Yin, Y., Dong, C., Yang, G., Zhou, G.: On the class imbalance problem. In: 2008 Fourth International Conference on Natural Computation, vol. 4, pp. 192–201. IEEE (2008)

    Google Scholar 

  11. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  12. Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Intell. Syst. Appl. 13(4), 18–28 (1998)

    Article  Google Scholar 

  13. Kietzmann, J., Paschen, J., Treen, E.: Artificial intelligence in advertising: how marketers can leverage artificial intelligence along the consumer journey. J. Advert. Res. 58(3), 263–267 (2018)

    Article  Google Scholar 

  14. Kleinbaum, D.G., Klein, M.: Logistic Regression. SBH, Springer, New York (2010). https://doi.org/10.1007/978-1-4419-1742-3

    Book  MATH  Google Scholar 

  15. Kotsiantis, S., Kanellopoulos, D., Pintelas, P., et al.: Handling imbalanced datasets: a review. GESTS Int. Trans. Comput. Sci. Eng. 30(1), 25–36 (2006)

    Google Scholar 

  16. Lemaître, G., Nogueira, F., Aridas, C.K.: Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res. 18(1), 559–563 (2017)

    Google Scholar 

  17. Liaw, A., Wiener, M., et al.: Classification and regression by RandomForest. R News 2(3), 18–22 (2002)

    Google Scholar 

  18. López, V., Fernández, A., García, S., Palade, V., Herrera, F.: An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics. Inf. Sci. 250, 113–141 (2013)

    Article  Google Scholar 

  19. More, A., Rana, D.P.: Review of random forest classification techniques to resolve data imbalance. In: 2017 1st International Conference on Intelligent Systems and Information Management (ICISIM), pp. 72–78. IEEE (2017)

    Google Scholar 

  20. Nygård, R., Mezei, J.: Automating lead scoring with machine learning: an experimental study. In: Proceedings of the 53rd Hawaii International Conference on System Sciences (2020)

    Google Scholar 

  21. Patel, D., Zhou, N., Shrivastava, S., Kalagnanam, J.: Doctor for machines: a failure pattern analysis solution for industry 4.0. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 1614–1623 (2020). https://doi.org/10.1109/BigData50022.2020.9378369

  22. Polikar, R.: Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 6(3), 21–45 (2006)

    Article  Google Scholar 

  23. Rokach, L.: Ensemble-based classifiers. Artif. Intell. Rev. 33(1), 1–39 (2010)

    Article  MathSciNet  Google Scholar 

  24. Rokach, L., Maimon, O.: Decision trees. In: Liu, L., Özsu, M.T. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 165–192. Springer, Cham (2005). https://doi.org/10.1007/978-0-387-39940-9_2445

  25. Schapire, R.E.: Explaining AdaBoost. In: Schölkopf, B., Luo, Z., Vovk, V. (eds.) Empirical Inference, pp. 37–52. Springer, Cham (2013). https://doi.org/10.1007/978-3-642-41136-6_5

  26. Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J., Napolitano, A.: RusBoost: a hybrid approach to alleviating class imbalance. IEEE Trans. Syst. Man. Cybern. Part A Syst. Humans 40(1), 185–197 (2009)

    Article  Google Scholar 

  27. Stehman, S.V.: Selecting and interpreting measures of thematic classification accuracy. Remote Sens. Environ. 62(1), 77–89 (1997)

    Article  Google Scholar 

  28. Tharwat, A.: Classification assessment methods. In: Applied Computing and Informatics (2020)

    Google Scholar 

  29. Urban, T., Tatang, D., Degeling, M., Holz, T., Pohlmann, N.: Measuring the impact of the GDPR on data sharing in ad networks. In: Proceedings of the 15th ACM Asia Conference on Computer and Communications Security, pp. 222–235, ASIA CCS 2020. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3320269.3372194

  30. Wilson, D.L.: Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans. Syst. Man Cybern. 3, 408–421 (1972)

    Article  MathSciNet  Google Scholar 

  31. Xie, Y., Li, X., Ngai, E., Ying, W.: Customer churn prediction using improved balanced random forests. Expert Syst. Appl. 36(3), 5445–5449 (2009)

    Article  Google Scholar 

  32. Yegnanarayana, B.: Artificial Neural Networks. PHI Learning Pvt, Ltd., New Delhi (2009)

    Google Scholar 

  33. Ying, W.Y., Qin, Z., Zhao, Y., Li, B., Li, X.: Support vector machine and its application in customer churn prediction. Syst. Eng. Theory Pract. 7 (2007)

    Google Scholar 

  34. Zhang, Y.P., Zhang, L.N., Wang, Y.C.: Cluster-based majority under-sampling approaches for class imbalance learning. In: 2010 2nd IEEE International Conference on Information and Financial Engineering, pp. 400–404. IEEE (2010). https://doi.org/10.1109/ICIFE.2010.5609385

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Krauss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Spitzer, EM., Krauss, O., Stöckl, A. (2022). Accurately Predicting User Registration in Highly Unbalanced Real-World Datasets from Online News Portals. In: Strauss, C., Cuzzocrea, A., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2022. Lecture Notes in Computer Science, vol 13426. Springer, Cham. https://doi.org/10.1007/978-3-031-12423-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12423-5_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12422-8

  • Online ISBN: 978-3-031-12423-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics