Skip to main content

Functional Defense Mechanisms of the Nasal Respiratory Epithelium

  • Chapter
  • First Online:
Nasal Physiology and Pathophysiology of Nasal Disorders

Abstract

The sinonasal mucosa is exposed to large quantities of particulates, antigens, and potential pathogens. To address these possible threats, the human sinonasal epithelium has developed a range of protective functions that effectively clear foreign material with minimal collateral tissue damage. This barrier to the outside world is both physical and immunological in nature. The physical barrier consists of respiratory mucus and mucociliary flow as well as the intact epithelial cell layer. When these structural or clearance mechanisms fail, the epithelium plays an important role in activating a subsequent immune response. The immunologic barrier encompasses the recognition of foreign material via pattern-recognition receptors, which then facilitate the innate and adaptive responses. In chronic rhinosinusitis (CRS), the barrier is breached and a self-perpetuating chronic inflammatory reaction develops. The type of inflammation that results is the basis of the current endotype classification of CRS. Understanding these defense mechanisms provides insight into the pathophysiology of inflammatory disorders such as chronic rhinosinusitis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fokkens W, Desrosiers M, Harvey R, Hopkins C, Mullol J, Philpott C, et al. EPOS2020: development strategy and goals for the latest European position paper on rhinosinusitis. Rhinology. 2019;57(3):162–8.

    Article  CAS  PubMed  Google Scholar 

  2. Yee KK, Pribitkin EA, Cowart BJ, Vainius AA, Klock CT, Rosen D, et al. Neuropathology of the olfactory mucosa in chronic rhinosinusitis. Am J Rhinol Allergy. 2010;24(2):110–20.

    Article  PubMed  Google Scholar 

  3. Wagenmann M, Naclerio R. Anatomic and physiologic considerations in sinusitis. J Allergy Clin Immunol. 1992;90(3):419–23.

    Article  CAS  PubMed  Google Scholar 

  4. Busse W, Holgate ST. Asthma and rhinitis. 2nd Ed. Oxford: Blackwell Science Ltd; 2000.

    Google Scholar 

  5. Shami SG, Martinez LA, Evans MJ. The role of migrating inflammatory cells in proliferation of lung interstitium and epithelium. Chest. 1986;89(3):170S–3S.

    Article  Google Scholar 

  6. Sleigh MA, Blake JR, Liron N. The propulsion of mucus by cilia. Am Rev Respir Dis. 1988;137(3):726–41.

    Article  CAS  PubMed  Google Scholar 

  7. Antunes MB, Gudis DA, Cohen NA. Epithelium, cilia, and mucus: their importance in chronic rhinosinusitis. Immunol Allergy Clin N Am. 2009;29(4):631–43.

    Article  Google Scholar 

  8. Houdret N, Ramphal R, Scharfman A, Perini J-M, Filliat M, Lamblin G, et al. Evidence for the in vivo degradation of human respiratory mucins during Pseudomonas aeruginosa infection. Biochim Biophys Acta Gen Subj. 1989;992(1):96–105.

    Article  CAS  Google Scholar 

  9. Satir P, Sleigh MA. The physiology of cilia and mucociliary interactions. Annu Rev Physiol. 1990;52(1):137–55.

    Article  CAS  PubMed  Google Scholar 

  10. Gheber L, Priel Z. Synchronization between beating cilia. Biophys J. 1989;55(1):183–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Braiman A, Priel Z. Efficient mucociliary transport relies on efficient regulation of ciliary beating. Respir Physiol Neurobiol. 2008;163(1–3):202–7.

    Article  PubMed  Google Scholar 

  12. Messerklinger W. On the drainage of the human paranasal sinuses under normal and pathological conditions. 1. Monatsschr Ohrenheilkd Laryngorhinol. 1966;100(1–2):56–68.

    CAS  PubMed  Google Scholar 

  13. Stucker FJ. Rhinology and facial plastic surgery. Berlin: Springer; 2009. p. xxix, 946 pp.

    Book  Google Scholar 

  14. Gutman M, Houser S. Iatrogenic maxillary sinus recirculation and beyond. Ear Nose Throat J. 2003;82(1):61–3.

    Article  PubMed  Google Scholar 

  15. Cohen NA. Sinonasal mucociliary clearance in health and disease. Ann Otol Rhinol Laryngol Suppl. 2006;115(9_suppl):20–6.

    Article  Google Scholar 

  16. Noone PG, Leigh MW, Sannuti A, Minnix SL, Carson JL, Hazucha M, et al. Primary ciliary dyskinesia. Am J Respir Crit Care Med. 2004;169(4):459–67.

    Article  PubMed  Google Scholar 

  17. Wine JJ. The genesis of cystic fibrosis lung disease. J Clin Investig. 1999;103(3):309–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hadfield PJ, Rowe-Jones JM, Mackay IS. The prevalence of nasal polyps in adults with cystic fibrosis. Clin Otolaryngol. 2000;25(1):19–22.

    Article  CAS  PubMed  Google Scholar 

  19. Cimmino M, Cavaliere M, Nardone M, Plantulli A, Orefice A, Esposito V, et al. Clinical characteristics and genotype analysis of patients with cystic fibrosis and nasal polyposis. Clin Otolaryngol Allied Sci. 2003;28(2):125–32.

    Article  CAS  PubMed  Google Scholar 

  20. Houtmeyers E, Gosselink R, Gayan-Ramirez G, Decramer M. Regulation of mucociliary clearance in health and disease. Eur Respir J. 1999;13(5):1177.

    Article  CAS  PubMed  Google Scholar 

  21. Baumgarten CR, Togias AG, Naclerio RM, Lichtenstein LM, Norman PS, Proud D. Influx of kininogens into nasal secretions after antigen challenge of allergic individuals. J Clin Investig. 1985;76(1):191–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stammberger H, Posawetz W. Functional endoscopic sinus surgery. Eur Arch Otorhinolaryngol. 1990;247(2):63–76.

    Article  CAS  PubMed  Google Scholar 

  23. Lane AP, Pine HS, Pillsbury HC. Allergy testing and immunotherapy in an academic otolaryngology practice: a 20-year review. Otolaryngol Head Neck Surg. 2001;124(1):9–15.

    Article  CAS  PubMed  Google Scholar 

  24. Cohen NA, Zhang S, Sharp DB, Tamashiro E, Chen B, Sorscher EJ, et al. Cigarette smoke condensate inhibits transepithelial chloride transport and ciliary beat frequency. Laryngoscope. 2009;119(11):2269–74.

    Article  CAS  PubMed  Google Scholar 

  25. Dye JA, Adler KB. Effects of cigarette smoke on epithelial cells of the respiratory tract. Thorax. 1994;49(8):825–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Karaman M, Tek A. Deleterious effect of smoking and nasal septal deviation on mucociliary clearance and improvement after septoplasty. Am J Rhinol Allergy. 2009;23(1):2–7.

    Article  PubMed  Google Scholar 

  27. Goldstein-Daruech N, Cope EK, Zhao K-Q, Vukovic K, Kofonow JM, Doghramji L, et al. Tobacco smoke mediated induction of sinonasal microbial biofilms. PLoS One. 2011;6(1):e15700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. García-Rodríguez JF, Corominas M, Fernández-Viladrich P, Monfort JL, Dicenta M. Rhinosinusitis and atopy in patients infected with HIV. Laryngoscope. 1999;109(6):939–44.

    Article  PubMed  Google Scholar 

  29. Tomassen P, Newson RB, Hoffmans R, Lötvall J, Cardell LO, Gunnbjörnsdóttir M, et al. Reliability of EP3OS symptom criteria and nasal endoscopy in the assessment of chronic rhinosinusitis - a GA2LEN study. Allergy. 2010;66(4):556–61.

    Article  PubMed  Google Scholar 

  30. Chen B, Shaari J, Claire SE, Palmer JN, Chiu AG, Kennedy DW, et al. Altered sinonasal ciliary dynamics in chronic rhinosinusitis. Am J Rhinol. 2006;20(3):325–9.

    Article  PubMed  Google Scholar 

  31. Al-Rawi MM, Edelstein DR, Erlandson RA. Changes in nasal epithelium in patients with severe chronic sinusitis: a clinicopathologic and electron microscopic study. Laryngoscope. 1998;108(12):1816–23.

    Article  CAS  PubMed  Google Scholar 

  32. Chen B, Antunes MB, Claire SE, Palmer JN, Chiu AG, Kennedy DW, et al. Reversal of chronic rhinosinusitis-associated sinonasal ciliary dysfunction. Am J Rhinol. 2007;21(3):346–53.

    Article  PubMed  Google Scholar 

  33. Yeh T-h, Su M-c, Hsu C-j, Chen Y-h, Lee S-y. Epithelial cells of nasal mucosa express functional gap junctions of Connexin 43. Acta Otolaryngol. 2003;123(2):314–20.

    Article  CAS  PubMed  Google Scholar 

  34. Vermeer PD, Einwalter LA, Moninger TO, Rokhlina T, Kern JA, Zabner J, et al. Segregation of receptor and ligand regulates activation of epithelial growth factor receptor. Nature. 2003;422(6929):322–6.

    Article  CAS  PubMed  Google Scholar 

  35. Takano K-i, Kojima T, Go M, Murata M, Ichimiya S, Himi T, et al. HLA-DR- and CD11c-positive dendritic cells penetrate beyond well-developed epithelial tight junctions in human nasal mucosa of allergic rhinitis. J Histochem Cytochem. 2005;53(5):611–9.

    Article  CAS  PubMed  Google Scholar 

  36. Yeo N-K, Jang YJ. Rhinovirus infection-induced alteration of tight junction and adherens junction components in human nasal epithelial cells. Laryngoscope. 2009;120(2):346–52.

    Article  Google Scholar 

  37. Pedersen M, Sakakura Y, Winther B, Brofeldt S, Mygind N. Nasal mucociliary transport, number of ciliated cells, and beating pattern in naturally acquired common colds. Eur J Respir Dis Suppl. 1983;128(Pt 1):355–65.

    PubMed  Google Scholar 

  38. Glorieux S, Bachert C, Favoreel HW, Vandekerckhove AP, Steukers L, Rekecki A, et al. Herpes simplex virus type 1 penetrates the basement membrane in human nasal respiratory mucosa. PLoS One. 2011;6(7):e22160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rossmann MG. Viral cell recognition and entry. Protein Sci. 1994;3(10):1712–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zulianello L, Canard C, Köhler T, De C, Lacroix J-S, Meda P. Rhamnolipids are virulence factors that promote early infiltration of primary human airway epithelia by Pseudomonas aeruginosa. Infect Immun. 2006;74(6):3134–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tieu DD, Kern RC, Schleimer RP. Alterations in epithelial barrier function and host defense responses in chronic rhinosinusitis. J Allergy Clin Immunol. 2009;124(1):37–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jeffery PK, Haahtela T. Allergic rhinitis and asthma: inflammation in a one-airway condition. BMC Pulm Med. 2006;6(S1):S5.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Xiao C, Puddicombe SM, Field S, Haywood J, Broughton-Head V, Puxeddu I, et al. Defective epithelial barrier function in asthma. J Allergy Clin Immunol. 2011;128(3):549–56.e12.

    Article  CAS  PubMed  Google Scholar 

  44. Zuckerman JD, Lee WY, DelGaudio JM, Moore CE, Nava P, Nusrat A, et al. Pathophysiology of nasal polyposis: the role of Desmosomal junctions. Am J Rhinol. 2008;22(6):589–97.

    Article  PubMed  Google Scholar 

  45. Liu S, Yang W, Shen L, Turner JR, Coyne CB, Wang T. Tight junction proteins Claudin-1 and Occludin control hepatitis C virus entry and are downregulated during infection to prevent superinfection. J Virol. 2008;83(4):2011–4.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rogers GA, Beste KD, Parkos CA, Nusrat A, DelGaudio JM, Wise SK. Epithelial tight junction alterations in nasal polyposis. Int Forum Allergy Rhinol. 2011;1(1):50–4.

    Article  PubMed  Google Scholar 

  47. Dejima K, Randell SH, Stutts MJ, Senior BA, Boucher RC. Potential role of abnormal ion transport in the pathogenesis of chronic sinusitis. Arch Otolaryngol Head Neck Surg. 2006;132(12):1352.

    Article  PubMed  Google Scholar 

  48. Ordovas-Montanes J, Dwyer DF, Nyquist SK, Buchheit KM, Vukovic M, Deb C, et al. Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature. 2018;560(7720):649–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lehmann AE, Scangas GA, Bergmark RW, El Rassi E, Stankovic KM, Metson R. Periostin and inflammatory disease: implications for chronic rhinosinusitis. Otolaryngol Head Neck Surg. 2019;160(6):965–73.

    Article  PubMed  Google Scholar 

  50. Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197–216.

    Article  CAS  PubMed  Google Scholar 

  51. Lane AP, Saatian B, Yu X-Y, Spannhake EW. mRNA for genes associated with antigen presentation are expressed by human middle meatal epithelial cells in culture. Laryngoscope. 2004;114(10):1827–32.

    Article  CAS  PubMed  Google Scholar 

  52. Claeys S, de Belder T, Holtappels G, Gevaert P, Verhasselt B, van Cauwenberge P, et al. Human beta-defensins and toll-like receptors in the upper airway. Allergy. 2003;58(8):748–53.

    Article  CAS  PubMed  Google Scholar 

  53. Bianchi ME, Manfredi AA. IMMUNOLOGY: dangers in and out. Science. 2009;323(5922):1683–4.

    Article  CAS  PubMed  Google Scholar 

  54. Meylan E, Tschopp J, Karin M. Intracellular pattern recognition receptors in the host response. Nature. 2006;442(7098):39–44.

    Article  CAS  PubMed  Google Scholar 

  55. Fraser IP, Koziel H, Ezekowitz RAB. The serum mannose-binding protein and the macrophage mannose receptor are pattern recognition molecules that link innate and adaptive immunity. Semin Immunol. 1998;10(5):363–72.

    Article  CAS  PubMed  Google Scholar 

  56. Cole AM, Liao H-I, Stuchlik O, Tilan J, Pohl J, Ganz T. Cationic polypeptides are required for antibacterial activity of human airway fluid. J Immunol. 2002;169(12):6985–91.

    Article  CAS  PubMed  Google Scholar 

  57. Ooi EH, Psaltis AJ, Witterick IJ, Wormald P-J. Innate immunity. Otolaryngol Clin N Am. 2010;43(3):473–87.

    Article  Google Scholar 

  58. Medzhitov R, Janeway C. Innate immunity. N Engl J Med. 2000;343(5):338–44.

    Article  CAS  PubMed  Google Scholar 

  59. Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol. 2004;5(10):987–95.

    Article  CAS  PubMed  Google Scholar 

  60. Vroling AB, Fokkens WJ, van Drunen CM. How epithelial cells detect danger: aiding the immune response. Allergy. 2008;63(9):1110–23.

    Article  CAS  PubMed  Google Scholar 

  61. Bnd F, Philpott DJ. Recognition of Staphylococcus aureus by the innate immune system. Clin Microbiol Rev. 2005;18(3):521–40.

    Article  Google Scholar 

  62. Månsson A, Bogefors J, Cervin A, Uddman R, Cardell LO. NOD-like receptors in the human upper airways: a potential role in nasal polyposis. Allergy. 2011;66(5):621–8.

    Article  PubMed  Google Scholar 

  63. Schröder M, Bowie AG. An arms race: innate antiviral responses and counteracting viral strategies. Biochem Soc Trans. 2007;35(6):1512–4.

    Article  PubMed  Google Scholar 

  64. Freund JR, Mansfield CJ, Doghramji LJ, Adappa ND, Palmer JN, Kennedy DW, et al. Activation of airway epithelial bitter taste receptors by Pseudomonas aeruginosa quinolones modulates calcium, cyclic-AMP, and nitric oxide signaling. J Biol Chem. 2018;293(25):9824–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee RJ, Cohen NA. Bitter and sweet taste receptors in the respiratory epithelium in health and disease. J Mol Med (Berl). 2014;92(12):1235–44.

    Article  PubMed  Google Scholar 

  66. Cohen NA. The genetics of the bitter taste receptor T2R38 in upper airway innate immunity and implications for chronic rhinosinusitis. Laryngoscope. 2017;127(1):44–51.

    Article  CAS  PubMed  Google Scholar 

  67. Hershenson MB. Proteases and protease-activated receptors signalling: at the crossroads of acquired and innate immunity. Clin Exp Allergy. 2007;37(7):963–6.

    Article  CAS  PubMed  Google Scholar 

  68. Rudack C, Steinhoff M, Mooren F, Buddenkotte J, Becker K, von Eiff C, et al. PAR-2 activation regulates IL-8 and GRO-? synthesis by NF-?B, but not RANTES, IL-6, eotaxin or TARC expression in nasal epithelium. Clin Exp Allergy. 2007;37(7):1009–22.

    Article  CAS  PubMed  Google Scholar 

  69. Shin S-H, Lee Y-H, Jeon C-H. Protease-dependent activation of nasal polyp epithelial cells by airborne fungi leads to migration of eosinophils and neutrophils. Acta Otolaryngol. 2006;126(12):1286–94.

    Article  CAS  PubMed  Google Scholar 

  70. Briot A, Deraison C, Lacroix M, Bonnart C, Robin A, Besson C, et al. Kallikrein 5 induces atopic dermatitis–like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. J Exp Med. 2009;206(5):1135–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. van Wetering S, Tjabringa GS, Hiemstra PS. Interactions between neutrophil-derived antimicrobial peptides and airway epithelial cells. J Leukoc Biol. 2004;77(4):444–50.

    Article  PubMed  Google Scholar 

  72. Turner J, Cho Y, Dinh N-N, Waring AJ, Lehrer RI. Activities of LL-37, a Cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother. 1998;42(9):2206–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang D, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J, et al. Ll-37, the neutrophil granule–and epithelial cell–derived cathelicidin, utilizes formyl peptide receptor–like 1 (Fprl1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med. 2000;192(7):1069–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Crouch E, Hartshorn K, Ofek I. Collectins and pulmonary innate immunity. Immunol Rev. 2000;173(1):52–65.

    Article  CAS  PubMed  Google Scholar 

  75. Postle AD, Mander A, Reid KBM, Wang J-Y, Wright SM, Moustaki M, et al. Deficient hydrophilic lung surfactant proteins A and D with normal surfactant phospholipid molecular species in cystic fibrosis. Am J Respir Cell Mol Biol. 1999;20(1):90–8.

    Article  CAS  PubMed  Google Scholar 

  76. Ooi EH, Wormald P-J, Carney AS, James CL, Tan LW. Surfactant protein D expression in chronic rhinosinusitis patients and immune responses in vitro to Aspergillus and Alternaria in a nasal explant model. Laryngoscope. 2007;117(1):51–7.

    Article  CAS  PubMed  Google Scholar 

  77. Sims MW, Tal-Singer RM, Kierstein S, Musani AI, Beers MF, Panettieri RA, et al. Chronic obstructive pulmonary disease and inhaled steroids alter surfactant protein D (SP-D) levels: a cross-sectional study. Respir Res. 2008;9(1):13.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kern RC, Conley DB, Walsh W, Chandra R, Kato A, Tripathi-Peters A, et al. Perspectives on the etiology of chronic rhinosinusitis: an immune barrier hypothesis. Am J Rhinol. 2008;22(6):549–59.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ramanathan M, Lee W-K, Spannhake EW, Lane AP. Th2 cytokines associated with chronic rhinosinusitis with polyps Down-regulate the antimicrobial immune function of human sinonasal epithelial cells. Am J Rhinol. 2008;22(2):115–21.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Wolk K, Witte E, Wallace E, Döcke W-D, Kunz S, Asadullah K, et al. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur J Immunol. 2006;36(5):1309–23.

    Article  CAS  PubMed  Google Scholar 

  81. Aujla SJ, Chan YR, Zheng M, Fei M, Askew DJ, Pociask DA, et al. IL-22 mediates mucosal host defense against gram-negative bacterial pneumonia. Nat Med. 2008;14(3):275–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pickert G, Neufert C, Leppkes M, Zheng Y, Wittkopf N, Warntjen M, et al. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J Exp Med. 2009;206(7):1465–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Peters AT, Kato A, Zhang N, Conley DB, Suh L, Tancowny B, et al. Evidence for altered activity of the IL-6 pathway in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2010;125(2):397–403.e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bachert C, Wagenmann M, Rudack C, Höpken K, Hiltebrandt M, Wang D, et al. The role of cytokines in infectious sinusitis and nasal polyposis. Allergy. 1998;53(1):2–13.

    Article  CAS  PubMed  Google Scholar 

  85. Kowalski ML, Lewandowska-Polak A, Wozniak J, Ptasinska A, Jankowski A, Wagrowska-Danilewicz M, et al. Association of stem cell factor expression in nasal polyp epithelial cells with aspirin sensitivity and asthma. Allergy. 2005;60(5):631–7.

    Article  CAS  PubMed  Google Scholar 

  86. Lu X, Zhang XH, Wang H, Long XB, You XJ, Gao QX, et al. Expression of osteopontin in chronic rhinosinusitis with and without nasal polyps. Allergy. 2009;64(1):104–11.

    Article  CAS  PubMed  Google Scholar 

  87. Nishi Y. Glucocorticoids suppress NF-kB activation induced by LPS and PGN in paranasal sinus epithelial cells. Rhinology. 2009;47(4):413–8.

    PubMed  Google Scholar 

  88. Hammad H, Lambrecht BN. Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nat Rev Immunol. 2008;8(3):193–204.

    Article  CAS  PubMed  Google Scholar 

  89. Kato A, Peters A, Suh L, Carter R, Harris KE, Chandra R, et al. Evidence of a role for B cell–activating factor of the TNF family in the pathogenesis of chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2008;121(6):1385–92.e2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schleimer RP. Glucocorticoids suppress inflammation but spare innate immune responses in airway epithelium. Proc Am Thorac Soc. 2004;1(3):222–30.

    Article  CAS  PubMed  Google Scholar 

  91. Bobic S, van Drunen CM, Callebaut I, Hox V, Jorissen M, Fokkens WJ, et al. Dexamethasone-induced apoptosis of freshly isolated human nasal epithelial cells concomitant with abrogation of IL-8 production. Rhinology. 2010;48(4):401–7.

    Article  CAS  PubMed  Google Scholar 

  92. Kurosawa S, Myers AC, Chen L, Wang S, Ni J, Plitt JR, et al. Expression of the costimulatory molecule B7-H2 (inducible costimulator ligand) by human airway epithelial cells. Am J Respir Cell Mol Biol. 2003;28(5):563–73.

    Article  CAS  PubMed  Google Scholar 

  93. Kim J, Myers AC, Chen L, Pardoll DM, Truong-Tran Q-A, Lane AP, et al. Constitutive and inducible expression of B7 family of ligands by human airway epithelial cells. Am J Respir Cell Mol Biol. 2005;33(3):280–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Heinecke L, Proud D, Sanders S, Schleimer RP, Kim J. Induction of B7-H1 and B7-DC expression on airway epithelial cells by the toll-like receptor 3 agonist double-stranded RNA and human rhinovirus infection: in vivo and in vitro studies. J Allergy Clin Immunol. 2008;121(5):1155–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Avila PC, Schleimer RP. Airway epithelium. Allergy and allergic diseases. Hoboken: Wiley-Blackwell; 2009. p. 366–97.

    Google Scholar 

  96. Lundberg JON, Farkas-Szallasi T, Weitzberg E, Rinder J, Lidholm J, Änggåard A, et al. High nitric oxide production in human paranasal sinuses. Nat Med. 1995;1(4):370–3.

    Article  CAS  PubMed  Google Scholar 

  97. Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. 2009;27(1):451–83.

    Article  CAS  PubMed  Google Scholar 

  98. Claeys S, Van Hoecke H, Holtappels G, Gevaert P, De Belder T, Verhasselt B, et al. Nasal polyps in patients with and without cystic fibrosis: a differentiation by innate markers and inflammatory mediators. Clin Exp Allergy. 2005;35(4):467–72.

    Article  CAS  PubMed  Google Scholar 

  99. Krysko O, Holtappels G, Zhang N, Kubica M, Deswarte K, Derycke L, et al. Alternatively activated macrophages and impaired phagocytosis of S. aureus in chronic rhinosinusitis. Allergy. 2010;66(3):396–403.

    Article  PubMed  Google Scholar 

  100. Marseglia GL, Pagella F, Klersy C, Barberi S, Licari A, Ciprandi G. The 10-day mark is a good way to diagnose not only acute rhinosinusitis but also adenoiditis, as confirmed by endoscopy. Int J Pediatr Otorhinolaryngol. 2007;71(4):581–3.

    Article  PubMed  Google Scholar 

  101. Polzehl D, Moeller P, Riechelmann H, Perner S. Distinct features of chronic rhinosinusitis with and without nasal polyps. Allergy. 2006;61(11):1275–9.

    Article  CAS  PubMed  Google Scholar 

  102. Lee JJ, Jacobsen EA, McGarry MP, Schleimer RP, Lee NA. Eosinophils in health and disease: the LIAR hypothesis. Clin Exp Allergy. 2010;40(4):563–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Harlin S, Ansel D, Lane S, Myers J, Kephart G, Gleich G. A clinical and pathologic study of chronic sinusitis: the role of the eosinophil. J Allergy Clin Immunol. 1988;81(5):867–75.

    Article  CAS  PubMed  Google Scholar 

  104. Bhattacharyya N, Vyas DK, Fechner FP, Gliklich RE, Metson R. Tissue eosinophilia in chronic sinusitis. Arch Otolaryngol Head Neck Surg. 2001;127(9):1102.

    Article  CAS  PubMed  Google Scholar 

  105. Szucs E, Ravandi S, Goossens A, Beel M, Clement PAR. Eosinophilia in the ethmoid mucosa and its relationship to the severity of inflammation in chronic rhinosinusitis. Am J Rhinol. 2002;16(3):131–4.

    Article  PubMed  Google Scholar 

  106. Jankowski R, Bene MC, Moneret-Vautrin AD, Haas F, Faure G, Simon C, et al. Immunohistological characteristics of nasal polyps. A comparison with healthy mucosa and chronic sinusitis. Rhinol Suppl. 1989;8:51–8.

    CAS  PubMed  Google Scholar 

  107. Jahnsen FL, Haye R, Gran E, Brandtzaeg P, Johansen FE. Glucocorticosteroids inhibit mRNA expression for eotaxin, eotaxin-2, and monocyte-chemotactic protein-4 in human airway inflammation with eosinophilia. J Immunol. 1999;163(3):1545–51.

    Article  CAS  PubMed  Google Scholar 

  108. Meyer JE, Bartels J, Görögh T, Sticherling M, Rudack C, Ross DA, et al. The role of RANTES in nasal polyposis. Am J Rhinol. 2005;19(1):15–20.

    Article  PubMed  Google Scholar 

  109. Mullol J, Roca-Ferrer J, Alobid I, Pujols L, Valero A, Xaubet A, et al. Effect of desloratadine on epithelial cell granulocyte-macrophage colony-stimulating factor secretion and eosinophil survival. Clin Exp Allergy. 2006;36(1):52–8.

    Article  CAS  PubMed  Google Scholar 

  110. Matsukura S, Stellato C, Plitt JR, Bickel C, Miura K, Georas SN, et al. Activation of eotaxin gene transcription by NF-kappa B and STAT6 in human airway epithelial cells. J Immunol. 1999;163(12):6876–83.

    Article  CAS  PubMed  Google Scholar 

  111. Kuperman D, Schleimer R. Interleukin-4, Interleukin-13, signal transducer and activator of transcription factor 6, and allergic asthma. Curr Mol Med. 2008;8(5):384–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Pérez-Novo CA, Claeys C, Van Zele T, Holtapples G, Van Cauwenberge P, Bachert C. Eicosanoid metabolism and eosinophilic inflammation in nasal polyp patients with immune response to Staphylococcus aureus enterotoxins. Am J Rhinol. 2006;20(4):456–60.

    Article  PubMed  Google Scholar 

  113. Van Zele T, Coppieters F, Gevaert P, Holtappels G, Van Cauwenberge P, Bachert C. Local complement activation in nasal polyposis. Laryngoscope. 2009;119(9):1753–8.

    Article  PubMed  Google Scholar 

  114. Buysschaert ID, Grulois V, Eloy P, Jorissen M, Rombaux P, Bertrand B, et al. Genetic evidence for a role of IL33 in nasal polyposis. Allergy. 2010;65(5):616–22.

    Article  CAS  PubMed  Google Scholar 

  115. Foreman A, Holtappels G, Psaltis AJ, Jervis-Bardy J, Field J, Wormald PJ, et al. Adaptive immune responses in Staphylococcus aureus biofilm-associated chronic rhinosinusitis. Allergy. 2011;66(11):1449–56.

    Article  CAS  PubMed  Google Scholar 

  116. Stone KD, Prussin C, Metcalfe DD. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol. 2010;125(2):S73–80.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Pawankar R, Lee KH, Nonaka M, Takizawa R. Role of mast cells and basophils in chronic rhinosinusitis. Chronic Rhinosinusitis. CRC Press; 2007. p. 109–18.

    Google Scholar 

  118. Balzar S, Strand M, Rhodes D, Wenzel SE. IgE expression pattern in lung: relation to systemic IgE and asthma phenotypes. J Allergy Clin Immunol. 2007;119(4):855–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Pérez Novo CA, Jedrzejczak-Czechowicz M, Lewandowska-Polak A, Claeys C, Holtappels G, Van Cauwenberge P, et al. T cell inflammatory response, Foxp3 and TNFRS18-L regulation of peripheral blood mononuclear cells from patients with nasal polyps-asthma after staphylococcal superantigen stimulation. Clin Exp Allergy. 2010;40(9):1323–32.

    Article  PubMed  Google Scholar 

  120. Hammad H, Lambrecht BN. Dendritic cells and airway epithelial cells at the interface between innate and adaptive immune responses. Allergy. 2011;66(5):579–87.

    Article  CAS  PubMed  Google Scholar 

  121. Cerutti A, Chen K, Chorny A. Immunoglobulin responses at the mucosal interface. Annu Rev Immunol. 2011;29(1):273–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chen K, Cerutti A. New insights into the enigma of immunoglobulin D. Immunol Rev. 2010;237(1):160–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Pleass RJ, Lang ML, Kerr MA, Woof JM. IgA is a more potent inducer of NADPH oxidase activation and degranulation in blood eosinophils than IgE. Mol Immunol. 2007;44(6):1401–8.

    Article  CAS  PubMed  Google Scholar 

  124. Pant H, Beroukas D, Kette FE, Smith WB, Wormald PJ, Macardle PJ. Nasal polyp cell populations and fungal-specific peripheral blood lymphocyte proliferation in allergic fungal sinusitis. Am J Rhinol Allergy. 2009;23(5):453–60.

    Article  PubMed  Google Scholar 

  125. Chen K, Xu W, Wilson M, He B, Miller NW, Bengtén E, et al. Immunoglobulin D enhances immune surveillance by activating antimicrobial, proinflammatory and B cell–stimulating programs in basophils. Nat Immunol. 2009;10(8):889–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Smurthwaite L, Durham SR. Local ige synthesis in allergic rhinitis and asthma. Curr Allergy Asthma Rep. 2002;2(3):231–8.

    Article  PubMed  Google Scholar 

  127. Gevaert P, Holtappels G, Johansson SGO, Cuvelier C, Cauwenberge P, Bachert C. Organization of secondary lymphoid tissue and local IgE formation to Staphylococcus aureus enterotoxins in nasal polyp tissue. Allergy. 2005;60(1):71–9.

    Article  CAS  PubMed  Google Scholar 

  128. Bachert C, Claeys SEM, Tomassen P, van Zele T, Zhang N. Rhinosinusitis and asthma: a link for asthma severity. Curr Allergy Asthma Rep. 2010;10(3):194–201.

    Article  CAS  PubMed  Google Scholar 

  129. Delves PJ, Roitt IM. The immune system. N Engl J Med. 2000;343(1):37–49.

    Article  CAS  PubMed  Google Scholar 

  130. Jones SA. Directing transition from innate to acquired immunity: defining a role for IL-6. J Immunol. 2005;175(6):3463–8.

    Article  CAS  PubMed  Google Scholar 

  131. Schleimer RP, Kato A, Peters A, Conley D, Kim J, Liu MC, et al. Epithelium, inflammation, and immunity in the upper airways of humans: studies in chronic rhinosinusitis. Proc Am Thorac Soc. 2009;6(3):288–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Miller LS, Cho JS. Immunity against Staphylococcus aureus cutaneous infections. Nat Rev Immunol. 2011;11(8):505–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tato CM, O'Shea JJ. What does it mean to be just 17? Nature. 2006;441(7090):166–7.

    Article  CAS  PubMed  Google Scholar 

  134. Fokkens WJ, Lund VJ, Mullol J, Bachert C, Alobid I, Baroody F, et al. EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists. Rhinology. 2012;50(1):1–12.

    Article  PubMed  Google Scholar 

  135. Miller SA, Weinmann AS. Common themes emerge in the transcriptional control of T helper and developmental cell fate decisions regulated by the T-box, GATA and ROR families. Immunology. 2009;126(3):306–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. Annu Rev Immunol. 2010;28(1):445–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Spits H, Di Santo JP. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat Immunol. 2010;12(1):21–7.

    Article  PubMed  Google Scholar 

  138. Allakhverdi Z, Comeau MR, Smith DE, Toy D, Endam LM, Desrosiers M, et al. CD34+ hemopoietic progenitor cells are potent effectors of allergic inflammation. J Allergy Clin Immunol. 2009;123(2):472–8.e1.

    Article  CAS  PubMed  Google Scholar 

  139. Mjösberg JM, Trifari S, Crellin NK, Peters CP, van Drunen CM, Piet B, et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol. 2011;12(11):1055–62.

    Article  PubMed  Google Scholar 

  140. Sanchez-Segura A, Brieva JA, Rodriguez C. T lymphocytes that infiltrate nasal polyps have a specialized phenotype and produce a mixed TH1/TH2 pattern of cytokines. J Allergy Clin Immunol. 1998;102(6 Pt 1):953–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Kern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kern, R.C., Decker, J.R. (2023). Functional Defense Mechanisms of the Nasal Respiratory Epithelium. In: Celebi, Ö.Ö., Önerci, T.M. (eds) Nasal Physiology and Pathophysiology of Nasal Disorders. Springer, Cham. https://doi.org/10.1007/978-3-031-12386-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12386-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12385-6

  • Online ISBN: 978-3-031-12386-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics