Skip to main content

Intranasal Trigeminal Perception

  • Chapter
  • First Online:
Nasal Physiology and Pathophysiology of Nasal Disorders

Abstract

The intranasal trigeminal system interacts with the olfactory system to provide a complete chemosensory perception of the odorant stimuli. The perception of nasal patency and nasal airflow is also mediated by trigeminal afferents. The trigeminal system is therefore mandatory for both the chemosensory and the somatosensory perception and nasal mucosa with trigeminal nerve endings needs to be preserved in order to assume these two functions.

Psychophysical testing of intranasal trigeminal function has not yet been established in clinical routine. However, in some specialized centers for research purposes, electrophysiological recordings (negative mucosal potential and trigeminal event-related potentials) and functional imaging may be obtained.

Finally, the intranasal trigeminal system is also capable of inducing neurogenic inflammation mainly through an axon reflex located in the subepithelial level of the nasal mucosa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Doty RL. Intranasal trigeminal chemoreception. In: Doty RL, editor. Handbook of olfaction and gustation. New York: Marcel Dekker; 1995. p. 821–33.

    Google Scholar 

  2. Cain WS, Murphy CL. Interaction between chemoreceptive modalities of odour and irritation. Nature. 1980;284(5753):255–7.

    Article  CAS  PubMed  Google Scholar 

  3. Finger TE, et al. Ultrastructure of substance P-and CGRP-immunoreactive nerve fibers in the nasal epithelium of rodents. J Comp Neurol. 1990;294:293–305.

    Article  CAS  PubMed  Google Scholar 

  4. Bessac BF, Jordt SE. Breathtaking TRP channels: TRPA1 and TRPV1 in airway chemosensation and reflex control. Physiology. 2008;23:360–70.

    Article  CAS  PubMed  Google Scholar 

  5. Brand G. Olfactory lateralization in humans: a review. Neurophysiol Clin. 1999;29:495–506.

    Article  CAS  PubMed  Google Scholar 

  6. Hari R, Portin K, Kettenmann B, Jousmäki V, Kobal G. Right-hemisphere preponderance of responses to painful CO2 stimulation of the human nasal mucosa. Pain. 1997;72:145–51.

    Article  CAS  PubMed  Google Scholar 

  7. Rombaux P, Mouraux A, Keller T, Hummel T. Trigeminal event related potentials in patients with olfactory dysfunction. Rhinology. 2008a;46(3):170–4.

    PubMed  Google Scholar 

  8. Rombaux P, Guerit JM, Mouraux A. Lateralisation of intranasal trigeminal chemosensory event-related potentials. Neurophysiol Clin. 2008b;38(1):23–30.

    Article  CAS  PubMed  Google Scholar 

  9. Anton F, Peppel P. Central projections of trigeminal primary afferents innervating the nasal mucosa: a horseradish peroxidase study in the rat. Neuroscience. 1991;41:617–28.

    Article  CAS  PubMed  Google Scholar 

  10. Kaliner M. The physiology and pathophysiology of the parasympathetic nervous system in nasal disease: an overview. J Allergy Clin Immunol. 1992;90:1044–5.

    Article  CAS  PubMed  Google Scholar 

  11. Baraniuk JN. Sensory, parasympathetic, and sympathetic neural influences in the nasal mucosa. J Allergy Clin Immunol. 1992;90:1045–50.

    Article  CAS  PubMed  Google Scholar 

  12. Baraniuk JN, Lundgren J, Okayama M, Goff J, Mullol J, Merida M, et al. Vasoactive intestinal peptide in human nasl mucosa. Am J Respir Cell Mol Biol. 1991;4:228–36.

    Article  CAS  PubMed  Google Scholar 

  13. Frasnelli J, Heilmann S, Hummel T. Responsiveness of human nasal mucosa to trigeminal stimuli depends on the site of stimulation. Neurosci Lett. 2004;362:322–8.

    Article  Google Scholar 

  14. Melzner J, Bitter T, Guntinas-Lichius O, Gottschall R, Walther M, Gudziol H. Comparison of the orthonasal and retronasal detection thresholds for carbon dioxide in humans. Chem Senses. 2011;36(5):435–41.

    Article  CAS  PubMed  Google Scholar 

  15. Scheibe M, Zahnert T, Hummel T. Topographical differences in the trigeminal sensitivity of the human nasal mucosa. Neuroreport. 2006;17:1417–20.

    Article  PubMed  Google Scholar 

  16. Baraniuk JN, Kim D. Nasonasal reflexes, the nasal cycle and sneeze. Curr Allergy Asthma Rep. 2007;7(2):105–11.

    Article  PubMed  Google Scholar 

  17. Koskela H, Tukiainen H. Facial cooling, but not nasal breathing of cold air, induces bronchoconstriction: a study in asthmatic and healthy subjects. Eur Respir J. 1995;8:2088–93.

    Article  CAS  PubMed  Google Scholar 

  18. Lötsch J, Ahne G, Kunder J, Kobal G, Hummel T. Factors affecting pain intensity in a pain model based upon tonic intranasal stimulation in humans. Inflamm Res. 1998;47:446–50.

    Article  PubMed  Google Scholar 

  19. Fontanari P, Burnet H, Zattara-Hartman M, Jammes Y. Changes in airway resistance induced by nasal inhalation of cold dry, or moist air in normal individuals. J Appl Physiol. 1996;81:1739–43.

    Article  CAS  PubMed  Google Scholar 

  20. Bernstein J. The role of autonomic nervous system and inflammatory mediators in nasal hyperreactivity: a review. Otolaryngol Head Neck Surg. 1991;105:596–607.

    Article  CAS  PubMed  Google Scholar 

  21. Blom H, Severijnen A, Van Rijswijk J, Mulder P, Van Rijk R, Fokkens W. The long-effect of capsaicin aqueous spray on the nasal mucosa. Clin Exp Allergy. 1998;28:1351–8.

    Article  CAS  PubMed  Google Scholar 

  22. Lacroix J, Buvelot J, Polla B, Lundberg J. Improvement of symptoms of non-allergic chronic rhinitis by local treatment with capsaicin. Clin Exp Allergy. 1991;21:595–700.

    Article  CAS  PubMed  Google Scholar 

  23. Marabini S, Ciabatti P, Polli G, Fusco B, Geppetti P. Beneficial effects of intranasal application of capsaicin in patients with vasomotor rhinitis. Eur Arch Otorhinolaryngol. 1991;248:191–4.

    CAS  PubMed  Google Scholar 

  24. Stjarne P, Lundblad L, Anggard A, Lundberg J. Local capsaicin treatment of the nasal mucosa reduces symptoms in patients with non allergic nasal hyperreactivity. Am J Rhinol. 1991;5:145–51.

    Article  Google Scholar 

  25. Taylor-Clark TE, et al. Nasal sensory nerve populations responding to histamine and capsaicin. J Allergy Clin Immunol. 2005a;116:1282–8.

    Article  CAS  PubMed  Google Scholar 

  26. Taylor-Clark T, Kollarik M, MacGlashan D, Undem B. Nasal sensory nerve populations responding to histamine and capsaicin. J Allergy Clin Immunol. 2005b;116:1282–8.

    Article  CAS  PubMed  Google Scholar 

  27. Van Rijswijk J, Boeke E, Keyzer J, Mulder P, Blom H, Fokkens W. Intranasal capsaicin reduces nasal hyperreactivity in idiopathic rhinitis: a double-blind randomized application regimen study. Allergy. 2003;58:754–61.

    Article  PubMed  Google Scholar 

  28. Lacroix J, Landis B. Neurogenic inflammation of the upper airway mucosa. Rhinology. 2008;46(3):163–5.

    CAS  PubMed  Google Scholar 

  29. Shusterman D, Murphy MA, Balmes J. Differences in nasal irritant sensitivity by age, gender, and allergic rhinitis status. Int Arch Occup Environ Health. 2003;76:577–83.

    Article  PubMed  Google Scholar 

  30. Sarin S, Undem B, Sanico A, Togias A. The role of the nervous system in rhinitis. J Allergy Clin Immunol. 2006;118:999–1014.

    Article  PubMed  Google Scholar 

  31. Frasnelli J, Hummel T. Intranasal trigeminal thresholds in healthy subjects. Environ Toxicol Pharmacol. 2005;19(3):575–80.

    Article  CAS  PubMed  Google Scholar 

  32. Hummel T. Assessment of intranasal trigeminal function. Int J Psychophysiol. 2000;36:147–55.

    Article  CAS  PubMed  Google Scholar 

  33. Wysocki CJ, Cowart BJ. Nasal trigeminal chemosensitivity across the life span. Percept Psychophys. 2003;65:115–22.

    Article  PubMed  Google Scholar 

  34. Cain WS, de Wijk R, Cain WS, Pilla-Caminha G. Human psychophysical and neurophysiological measurements on ethanol. Chem Senses. 1998;23:586–9.

    Google Scholar 

  35. Cornetto-Muniz JE, Hernandez SM. Odorous and pungent attributes of mixed and unmixed odorants. Percept Psychophys. 1990;47:391–9.

    Article  Google Scholar 

  36. Laska M, Distel H, Hudson R. Trigeminal perception of odorant quality in congenitally anosmic subjects. Chem Senses. 1997;22:456–77.

    Article  Google Scholar 

  37. Laska M. Perception of trigeminal chemosensory qualities in the elderly. Chem Senses. 2001;26:681–9.

    Article  CAS  PubMed  Google Scholar 

  38. Brand G, Jacquot L. Sensitization and desensitization to allyl isothiocyanate (mustard oil) in the nasal cavity. Chem Senses. 2002;27:593–8.

    Article  CAS  PubMed  Google Scholar 

  39. Hummel T, Gruber M, Pauli E, Kobal G. Event-related potentials in response to repetitive painful stimulation. Electroencephalogr Clin Neurophysiol. 1994;92:426–32.

    Article  CAS  PubMed  Google Scholar 

  40. Jacquot L, et al. Trigeminal sensitization and desensitization in the nasal cavity: a study of cross interactions. Rhinology. 2005;43:93–8.

    PubMed  Google Scholar 

  41. Kobal G, Hummel T. Brain responses to chemical stimulation of trigeminal nerve in man. Chem Senses. 1990;2:593–8.

    Google Scholar 

  42. Hummel T, Futschik T, Frasnelli J, Hüttenbrink KB. Effects of olfactory function, age and gender on trigeminally mediated sensations: a study based on the lateralization of chemosensory stimuli. Toxicol Lett. 2003;140:273–80.

    Article  PubMed  Google Scholar 

  43. Eccles R, Jawad MS, Morris S. Olfactory and trigeminal thresholds and nasal resistance to airflow. Acta Otolaryngol. 1989;108(3–4):268–73.

    Article  CAS  PubMed  Google Scholar 

  44. Cornetto-Muniz JE, Cain WS. Trigeminal and olfactory sensitivity: comparison of modalities and methods of measurement. Int Arch Occup Environ Health. 1998;7:105–10.

    Google Scholar 

  45. Frasnelli J, Hummel T. Age-related decline of intranasal trigeminal sensitivity: is it a peripheral event? Brain Res. 2003;987:201–6.

    Article  CAS  PubMed  Google Scholar 

  46. Thürauf N, et al. The mucosal potential elicited by noxious chemical stimuli with CO2 in rats: is it a peripheral nociceptive event? Neurosci Lett. 1991;128:297–300.

    Article  PubMed  Google Scholar 

  47. Hummel T, et al. Peripheral electrophysiological responses decrease in response to repetitive painful stimulation of the human nasal mucosa. Neurosci Lett. 1996a;212:37–40.

    Article  CAS  PubMed  Google Scholar 

  48. Kobal G. Pain-related electrical potentials of the human nasal mucosa elicited by chemical stimulation. Pain. 1985;22:151–63.

    Article  PubMed  Google Scholar 

  49. Meusel T, Negoias S, Scheibe M, Hummel T. Topographical differences in distribution and responsiveness of trigeminal sensitivity within the human nasal mucosa. Pain. 2010;151(2):516–21.

    Article  PubMed  Google Scholar 

  50. Hummel T, Livermore A, Hummel C, Kobal G. Chemosensory event-related potentials: relation to olfactory and painful sensations elicited by nicotine. Electroencephalogr Clin Neurophysiol. 1992;84:192–5.

    Article  CAS  PubMed  Google Scholar 

  51. Lötsch J, March CR, Kobal G. The influence of stimulus duration on the reliability of pain rating after nociceptive stimulation of the nasal mucosa with CO2. Eur J Pain. 1997;1:207–13.

    Article  PubMed  Google Scholar 

  52. Rombaux P, Mouraux A, Bertrand B, Guerit JM, Hummel T. Assessment of olfactory and trigeminal function using chemosensory event-related potentials. Neurophysiol Clin. 2006;36(2):53–62.

    Article  CAS  PubMed  Google Scholar 

  53. Lundström JN, Frasnelli J, Larsson M, Hummel T. Sex differentiated responses to intranasal trigeminal stimuli. Int J Psychophysiol. 2005;57:181–6.

    Article  PubMed  Google Scholar 

  54. Hummel T, Ochme L, Vandenhoff J, Gerber J, Heinke M, Boyle JA, Benthien-Baumann B. PER-based investigation of cerebral activation following intranasal trigeminal stimulation. Hum Brain Mapp. 2009;30(4):1100–4.

    Article  PubMed  Google Scholar 

  55. Boyle JA, Heinke M, Gerber J, Frasnelli J, Hummel T. Cerebral activation to intranasal chemosensory trigeminal stimulation. Chem Senses. 2007;32(4):343–53.

    Article  PubMed  Google Scholar 

  56. Iannilli E, DelGratta C, Gerber JC, Romani GL, Hummel T. Trigeminal activation using chemical, electrical and mechanical stimuli. Pain. 2007b;139(2):376–88.

    Article  Google Scholar 

  57. Bouvet JF, Delaleu JC, Holley A. Olfactory receptor cell function is affected by trigeminal nerve activity. Neurosci Lett. 1987;77:181–6.

    Article  CAS  PubMed  Google Scholar 

  58. Finger TE, et al. Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proc Natl Acad Sci U S A. 2003;100:8981–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lin W, et al. TRPM5-expressing solitary chemosensory cells respond to odorous irritants. J Neurophysiol. 2008;99:1451–60.

    Article  CAS  PubMed  Google Scholar 

  60. Hummel T, Livermore A. Intranasal chemosensory function of the trigeminal nerve and aspects of its relation to olfaction. Int Arch Occup Environ Health. 2002;75:305–13.

    Article  PubMed  Google Scholar 

  61. Schaefer ML, Böttger B, Silver WN, Finger T. Trigeminal collaterals in the nasal epithelium and olfactory bulb: a potential route for direct modulation of olfactory information by trigeminal stimuli. J Comp Neurol. 2002;444:221–6.

    Article  PubMed  Google Scholar 

  62. Livermore A, Hummel T, Kobal G. Chemosensory evoked potentials in the investigations of interactions between the olfactory and the somatosensory (trigeminal) systems. Electroencephalogr Clin Neurophysiol. 1992;83:201–10.

    Article  CAS  PubMed  Google Scholar 

  63. Iannilli E, Gerber J, Frasnelli J, Hummel T. Intranasal trigeminal function in subjects with and without an intact sense of smell. Brain Res. 2007a;1139:235–44.

    Article  CAS  PubMed  Google Scholar 

  64. Hummel T, Barz S, Lötsch S, Kettenmann B, Kobal G. Loss olfactory function leads to a decrease of trigeminal sensitivity. Chem Senses. 1996b;21:75–9.

    Article  CAS  PubMed  Google Scholar 

  65. Frasnelli J, Schuster B, Hummel T. Interactions between olfaction and trigeminal system: what can be learned from olfactory loss. Cereb Cortex. 2007;17(10):2268–75.

    Article  PubMed  Google Scholar 

  66. Frasnelli J, Schuster B, Zahnert T, Hummel T. Chemosensory specific reduction of trigeminal sensitivity in subjects with olfactory dysfunction. Neuroscience. 2006;142(2):541–6.

    Article  CAS  PubMed  Google Scholar 

  67. Huart C, Eloy P, Collet S, Rombaux P. Chemosensory function assessed with psychophysical testing and event-related potentials in patients with atrophic rhinitis. Eur Arch Otorhinolaryngol. 2012;269(1):135–41.

    Article  CAS  PubMed  Google Scholar 

  68. Husner A, Frasnelli J, Welge-Lussen A, Reiss G, Zahnert T, Hummel T. Loss of trigeminal sensitivity reduces olfactory function. Laryngoscope. 2006;116:1520–2.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Rombaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rombaux, P., Huart, C., Landis, B., Hummel, T. (2023). Intranasal Trigeminal Perception. In: Celebi, Ö.Ö., Önerci, T.M. (eds) Nasal Physiology and Pathophysiology of Nasal Disorders. Springer, Cham. https://doi.org/10.1007/978-3-031-12386-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12386-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12385-6

  • Online ISBN: 978-3-031-12386-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics