Skip to main content

Mucus, Goblet Cell, Submucosal Gland

  • Chapter
  • First Online:
Nasal Physiology and Pathophysiology of Nasal Disorders
  • 567 Accesses

Abstract

Airway mucus plays an important role in the host defense system as a physicochemical barrier by trapping foreign and endogenous substances, facilitating clearance by mucociliary activity. Mucus also has antioxidant, antiprotease, and antimicrobial functions. The major components of mucus are glycoproteins called mucins, which are secreted by epithelial goblet cells and submucosal gland cells. Hypersecretion of mucus is a common characteristic of sinonasal inflammation in association with hypertrophic and metaplastic changes of goblet cells and gland cells. Pathological mucus hypersecretion impairs mucociliary function and becomes part of the pathogenic process, causing symptoms such as rhinorrhea and nasal obstruction. Appropriate therapy to inhibit mucus hypersecretion restores mucociliary clearance and improves symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AP-1:

Activated protein-1

AR:

Allergic rhinitis

AZM:

Azithromycin

CAM:

Clarithromycin

CF:

Cystic fibrosis

CREB:

cAMP response element-binding protein

CRS:

Chronic rhinosinusitis

cysLTs:

Cysteinyl leukotrienes

EGFR:

Epidermal growth factor receptor

EM:

Erythromycin

Foxa2:

Forkhead box a2

IL:

Interleukin

NF-κB:

Nuclear factor κ-B

RA:

Retinoic acid

STAT6:

Signal transducer and activator of transcription 6

TGF :

Transforming growth factor

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor

References

  1. Terran R, Button B, Boucher RC. Regulation of normal and cystic fibrosis airway surface liquid volume by phasic shear stress. Annu Rev Physiol. 2006;68:543–61.

    Article  Google Scholar 

  2. Sadé J, Eliezer N, Silberberg A, et al. The role of mucus in transport by cilia. Am Rev Respir Dis. 1970;102:48–52.

    PubMed  Google Scholar 

  3. Perez-Vilar J. Mucin granule intraluminal organization. Am J Respir Cell Mol Biol. 2007;36:183–90.

    Article  CAS  PubMed  Google Scholar 

  4. Sheehan JK, Kirkham S, Howard M, et al. Identification of molecular intermediates in the assembly pathway of the MUC5AC mucin. J Biol Chem. 2004;279:15698–705.

    Article  CAS  PubMed  Google Scholar 

  5. Thornton DJ, Rousseau K, McGucken MA. Structure and function of the polymeric mucins in airway mucus. Annu Rev Physiol. 2008;70:459–86.

    Article  CAS  PubMed  Google Scholar 

  6. Curran DR, Cohn L. Advances in mucous cell metaplasia; a plug for mucus as a therapeutic focus in chronic airway disease. Am J Respir Cell Mol Biol. 2010;42:268–75.

    Article  CAS  PubMed  Google Scholar 

  7. Williams OW, Sharafkhaneh A, Kim V, et al. Airway mucus; from production to secretion. Am J Respir Cell Mol Biol. 2006;34:527–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Moniaux N, Escande F, Batra SK, et al. Alternative splicing generates a family of putative secreted and membrane-associated MUC4 mucins. Eur J Biochem. 2000;267:4536–44.

    Article  CAS  PubMed  Google Scholar 

  9. Rose MC, Voynow JA. Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol Rev. 2006;86:245–78.

    Article  CAS  PubMed  Google Scholar 

  10. Linden SK, Sutton P, Karlsson NG, et al. Mucins in the mucosal barrier to infection. Immunology. 2008;1:183–97.

    CAS  Google Scholar 

  11. Krivan HC, Ginsburg V, Roberts DD. Pseudomonas aeruginosa and Pseudomonas cepacia isolated from cystic fibrosis patients bind specifically to gangliotetraosylceramide (asialoGM1) and gangliotriaosylceramide (asialoGM2). Arch Biochem Biophys. 1988;260:493–6.

    Article  CAS  PubMed  Google Scholar 

  12. Ramphal R, Carnoy C, Fievre S, et al. Pseudomonas aeruginosa recognizes carbohydrate chains containing type 1 (Gal beta 1-3GlcNAc) or type 2 (Gal beta 1-4GlcNAc) disaccharide units. Infect Immun. 1991;59:700–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Roberts DD, Olson LD, Barile MF, et al. Sialic acid-dependent adhesion of Mycoplasma pneumonia to purified glycoproteins. J Biol Chem. 1989;264:9289–93.

    Article  CAS  PubMed  Google Scholar 

  14. Suzuki Y, Nagao Y, Kato H, et al. Human influenza A virus hemagglutinin distinguishes sialyloligosaccharides in membrane-associated gangliosides as its receptor which mediates the adsorption and fusion processes of virus infection. J Biol Chem. 1986;261:17057–61.

    Article  CAS  PubMed  Google Scholar 

  15. Evans CM, Koo JS. Airway mucus: the good, the bad, the sticky. Pharmacol Ther. 2009;121:332–48.

    Article  CAS  PubMed  Google Scholar 

  16. Nadziejko C, Finkelstein I. Inhibition of neutrophil elastase by mucus glycoprotein. Am J Respir Cell Mol Biol. 1994;11:103–7.

    Article  CAS  PubMed  Google Scholar 

  17. Van-Seuningen I, Aubert JP, Davril M. Strong ionic interactions between mucins and two basic proteins, mucus proteinase inhibitor and lysozyme, in human bronchial secretions. Int J Biochem. 1992;24:303–11.

    Article  CAS  PubMed  Google Scholar 

  18. Ali MS, Pearson JP. Upper airway mucin gene expression: a review. Laryngoscope. 2007;117:932–8.

    Article  CAS  PubMed  Google Scholar 

  19. Martinez-Antón A, Debolos C, Garrido M, et al. Mucin genes have different expression patterns in healthy and diseased upper airway mucosa. Clin Exp Allergy. 2006a;36:448–57.

    Article  PubMed  Google Scholar 

  20. Singh PK, Hollingsworth MA. Cell surface-associated mucins in signal transduction. Trends Cell Biol. 2006;16:467–76.

    Article  CAS  PubMed  Google Scholar 

  21. Lillehoj EP, Kim BT, Kim KC. Identification of Pseudomonas aeruginosa flagellin as an adhesion for Muc1 mucin. Am J Physiol Lung Cell Mol Physiol. 2002;282:L751–6.

    Article  CAS  PubMed  Google Scholar 

  22. Lu W, Hisamatsu A, Koga T, et al. Cutting edge: enhanced pulmonary clearance of Pseudomonas aeruginosa by Muc1 knockout mice. J Immunol. 2006;176:3890–4.

    Article  CAS  PubMed  Google Scholar 

  23. Song JS, Hyun SW, Lillehoj E. Mucin secretion in the rat tracheal epithelial cells by epidermal growth factor and Pseudomonas aeruginosa extract. Korean J Intern Med. 2001;16:167–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hattrup CL, Gendler SJ. Structure and function of the cell surface (tethered) mucins. Annu Rev Physiol. 2008;70:431–57.

    Article  CAS  PubMed  Google Scholar 

  25. Hollingsworth MA, Swanson BJ. Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer. 2004;4:45–60.

    Article  CAS  PubMed  Google Scholar 

  26. Kim KC, Lillehoj EP. MUC1 mucin: a peacemaker in the lung. Am J Respir Cell Mol Biol. 2008;39:644–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ali MS, Wilson JA, Bennett M, et al. Mucin gene expression in nasal polyp. Acta Otolaryngol. 2005;125:618–24.

    Article  CAS  PubMed  Google Scholar 

  28. Martinez-Antón A, Roca-Ferrer J, Mullol J. Mucin gene expression in rhinitis syndrome. Curr Allergy Asthma Rep. 2006b;6:189–97.

    Article  PubMed  Google Scholar 

  29. Voynow JA, Rubin BK. Mucins, mucus, and sputum. Chest. 2009;135:505–12.

    Article  CAS  PubMed  Google Scholar 

  30. Zudhi Alimam M, Piazza FM, Selby DM, et al. Muc-5/5ac mucin messenger RNA and protein expression is a marker of goblet cell metaplasia in murine airways. Am J Respir Cell Mol Biol. 2000;22:253–60.

    Article  Google Scholar 

  31. Wine JJ, Joo NS. Submucosal glands and airway defense. Proc Am Thorac Soc. 2004;1:47–53.

    Article  CAS  PubMed  Google Scholar 

  32. Fung DCK, Rogers DF. Airway submucosal glands: physiology and pharmacology. In: Rogers DF, Lethem MI, editors. Airway mucus: basic mechanisms and clinical perspectives. Basel: Birkhauser; 1997.

    Google Scholar 

  33. Wine JJ. Parasympathetic control of airway submucosal glands: central reflexes and the airway intrinsic nervous system. Auton Neurosci. 2007;133:35–54.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Majima Y, Masuda S, Sakakura Y. Quantitative study of nasal secretory cells in normal subjects and patients with chronic sinusitis. Laryngoscope. 1997;107:1515–8.

    Article  CAS  PubMed  Google Scholar 

  35. Thai P, Loukoianow A, Wachi S, et al. Regulation of airway mucin gene expression. Annu Rev Physiol. 2008;70:405–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Barbier D, Garcia-Verdugo I, Pothlichet J, et al. Influenza A induces the major secreted airway mucin MUC5AC in protease-EGFR-ERK-SP1 dependent pathway. Am J Respir Cell Mol Biol. 2012;47:149. https://doi.org/10.1165/rcmb.2011-0405OC.

    Article  CAS  PubMed  Google Scholar 

  37. Hashimoto K, Graham BS, Ho SB, et al. Respiratory syncytial virus in allergic lung inflammation increases Muc5ac and gob-5. Am J Respir Crit Care Med. 2004;170:306–12.

    Article  PubMed  Google Scholar 

  38. Hewson CA, Haas JJ, Bartlett NW, et al. Rhinovirus induces MUC5AC in human infection model and in vitro via NF-kB and EGFR pathways. Eur Respir J. 2010;36:1425–35.

    Article  CAS  PubMed  Google Scholar 

  39. Deshmukh HS, Shaver C, Case LM. Acrolein-activated matrix metalloproteinase 9 contributes to persistent mucin production. Am J Respir Cell Mol Biol. 2008;38:446–54.

    Article  CAS  PubMed  Google Scholar 

  40. Kim HJ, Ryu JH, Kim CH, et al. The role of Nox4 in oxidative stress-induced MUC5AC overexpression in human airway epithelial cells. Am J Respir Cell Mol Biol. 2008;39:598–609.

    Article  CAS  PubMed  Google Scholar 

  41. Li R, Meng Z. Effects of SO2 derivatives on expressions of MUC5AC and IL-13 in human bronchial epithelial cells. Arch Toxicol. 2007;81:867–74.

    Article  CAS  PubMed  Google Scholar 

  42. Shao MX, Nakanaga T, Nadel JA. Cigarette smoke induces MUC5AC mucin overproduction via tumor necrosis factor-alpha-converting enzyme in human airway epithelial (NCI-H292) cells. Am J Physiol Lung Cell Mol Physiol. 2004;287:L420–7.

    Article  CAS  PubMed  Google Scholar 

  43. Chokki M, Yamamura S, Eguchi H, et al. Human airway trypsin-like protease increases mucin gene expression in airway epithelial cells. Am J Respir Cell Mol Biol. 2004;30:470–8.

    Article  CAS  PubMed  Google Scholar 

  44. Deshmukh HS, Case LM, Wesselkamper SC, et al. Metalloproteinases mediate mucin 5AC expression by epidermal growth factor receptor activation. Am J Respir Crit Care Med. 2005;171:305–11.

    Article  PubMed  Google Scholar 

  45. Shao MX, Nadel JA. Neutrophil elastase induces MUC5AC mucin production in human airway epithelial cells via a cascade involving protein kinase C, reactive oxygen species, and TNF-α-converting enzyme. J Immunol. 2005;175:4009–16.

    Article  CAS  PubMed  Google Scholar 

  46. Shimizu S, Shimizu T, Morser J, et al. Role of the coagulation system in allergic inflammation in the upper airways. Clin Immunol. 2008;129:365–71.

    Article  CAS  PubMed  Google Scholar 

  47. Voynow JA, Young LR, Wang Y, et al. Neutrophil elastase increases MUC5AC mRNA and protein expression in respiratory epithelial cells. Am J Phys. 1999;276:L835–43.

    CAS  Google Scholar 

  48. Cohn L, Homer RJ, Marinov A, et al. Th2-induced airway mucus production is dependent on IL-4R-alpha, but not on eosinophils. J Immunol. 1999;162:6178–83.

    Article  CAS  PubMed  Google Scholar 

  49. Song K, Lee WJ, Chung KC, et al. Interleukin-1 beta and tumor necrosis factor-alpha induce MUC5AC overexpression through a mechanism involving ERK/p38 mitogen-activated protein kinases-MSK1-CREB activation in human airway epithelial cells. J Biol Chem. 2003;278:23243–50.

    Article  CAS  PubMed  Google Scholar 

  50. Kouzaki H, Iijima K, Kobayashi T, et al. The danger signal, extracellular ATP, is a sensor for an airborne allergen and triggers IL-33 release and innate Th2-type responses. J Immunol. 2011;186:4375–87.

    Article  CAS  PubMed  Google Scholar 

  51. Whittaker L, Niu N, Temann UA, et al. Interleukin-13 mediates a fundamental pathway for airway epithelial mucus induced by CD4 T cells and interleukin-9. Am J Respir Cell Mol Biol. 2002;27:593–602.

    Article  CAS  PubMed  Google Scholar 

  52. Kuperman DA, Huang X, Koth LL, et al. Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nat Med. 2002;8:885–9.

    Article  CAS  PubMed  Google Scholar 

  53. Zhen G, Park SW, Nguyenvu LT, et al. IL-13 and epidermal growth factor receptor have critical but distinct roles in epithelial cell mucin production. Am J Respir Cell Mol Biol. 2007;36:244–53.

    Article  CAS  PubMed  Google Scholar 

  54. Wan H, Kaestner KH, Ang SL, et al. Foxa2 regulates alveolarization and goblet cell hyperplasia. Development. 2004;131:953–64.

    Article  CAS  PubMed  Google Scholar 

  55. Usui S, Shimizu T, Kishioka C, et al. Secretory cell differentiation and mucus secretion in cultures of human nasal epithelial cells: use of a monoclonal antibody to study human nasal mucin. Ann Otol Rhinol Laryngol. 2000;109:271–7.

    Article  CAS  PubMed  Google Scholar 

  56. Yoon JH, Gray T, Guzman K, Koo JS, Nettesheim P. Regulation of the secretory phenotype of human airway epithelium by retinoic acid, triiodothyronine, and extracellular matrix. Am J Respir Cell Mol Biol. 1997;16:724–31.

    Article  CAS  PubMed  Google Scholar 

  57. Koo JS, Yoon JH, Gray T, Norford D, Jetten AM, Nettesheim P. Restoration of the mucous phenotype by retinoic acid in retinoid-deficient human bronchial cell cultures: changes in mucin gene expression. Am J Respir Cell Mol Biol. 1999;20:43–52.

    Article  CAS  PubMed  Google Scholar 

  58. Takeyama K, Dabbagh K, Lee HM, et al. Epidermal growth factor system regulates mucin production in airways. Proc Natl Acad Sci U S A. 1999;96:3081–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Burgel PR, Lazarus SC, Tam DC, et al. Human eosinophils induce mucin production in airway epithelial cells via epidermal growth factor activation. J Immunol. 2001;167:5948–54.

    Article  CAS  PubMed  Google Scholar 

  60. Shim JJ, Dabbagh K, Ueki IF, et al. IL-13 induces mucin production by stimulating epidermal growth factor receptors and by activating neutrophils. Am J Physiol Lung Cell Mol Physiol. 2001;280:L134–40.

    Article  CAS  PubMed  Google Scholar 

  61. Takeyama K, Jung B, Shim JJ, et al. Activation of epidermal growth factor receptors is responsible for mucin synthesis induced by cigarette smoke. Am J Physiol Lung Cell Mol Physiol. 2001;280:L165–72.

    Article  CAS  PubMed  Google Scholar 

  62. Davis CW. Goblet cells: physiology and pharmacology. In: Rogers DF, Lethem MI, editors. Airway mucus: basic mechanisms and clinical perspectives. Basel: Birkhauser; 1997.

    Google Scholar 

  63. Davis CW, Dickey BF. Regulated airway goblet cell mucin secretion. Annu Rev Physiol. 2008;70:487–512.

    Article  CAS  PubMed  Google Scholar 

  64. Li Y, Martin LD, Spizz G, et al. MARCKS protein is a key molecule regulating mucin secretion by human airway epithelial cells in vitro. J Biol Chem. 2001;276:40982–90.

    Article  CAS  PubMed  Google Scholar 

  65. Singer M, Martin LD, Vargaftig BB, et al. A MARCKS-related peptide blocks mucus hypersecretion in a mouse model of asthma. Nat Med. 2004;10:193–6.

    Article  CAS  PubMed  Google Scholar 

  66. Beum PV, Basma H, Bastola DR, et al. Mucin biosynthesis upregulation of core 2 beta 1.6 N-acetylglucosaminyltransferase by retinoic acid and Th2 cytokines in a human airway epithelial cell line. Am J Physiol Lung Cell Mol Physiol. 2005;288:L116–24.

    Article  CAS  PubMed  Google Scholar 

  67. Delmotte P, Degroote S, Lafitte JJ. Tumor necrosis factor alpha increases the expression of glycosyltransferases and sulfotransferases responsible for the biosynthesis of sialylated and/or sulfated Lewis X epitopes in the human bronchial mucosa. J Biol Chem. 2002;277:424–31.

    Article  CAS  PubMed  Google Scholar 

  68. Lamblin G, Lhermitte M, Klein A, et al. The carbohydrate diversity of human respiratory mucins: a protection of the underlying mucosa? Am Rev Respir Dis. 1991;144:S19–24.

    Article  CAS  PubMed  Google Scholar 

  69. Ramphal R, Houdret N, Koo L, et al. Differences in adhesion of Pseudomonas aeruginosa to mucin glycopeptides from sputa of patients with cystic fibrosis and chronic bronchitis. Infect Immun. 1989;57:3066–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shimizu T, Hirano H, Shimizu S, et al. Differential properties of mucous glycoproteins in rat nasal epithelium: a comparison between allergic inflammation and lipopolysaccharides stimulation. Am J Respir Crit Care Med. 2001;164:1077–82.

    Article  CAS  PubMed  Google Scholar 

  71. Carnoy C, Ramphal R, Scharfman A, et al. Altered carbohydrate composition of salivary mucins from patients with cystic fibrosis and the adhesion of Pseudomonas aeruginosa. Am J Respir Cell Mol Biol. 1991;9:323–34.

    Article  Google Scholar 

  72. Schulz BL, Sloane AJ, Robinson LJ, et al. Glycosylation of sputum mucins is altered in cystic fibrosis patients. Glycobiology. 2007;17:698–712.

    Article  CAS  PubMed  Google Scholar 

  73. Shimizu T, Takahashi Y, Kawaguchi S, et al. Hypertrophic and metaplastic changes of goblet cells in rat nasal epithelium induced by endotoxin. Am J Respir Crit Care Med. 1996;153:1412–8.

    Article  CAS  PubMed  Google Scholar 

  74. Rogers DF. Airway mucus hypersecretion in asthma: an undervalued pathology? Curr Opin Pharmacol. 2004;4:241–50.

    Article  CAS  PubMed  Google Scholar 

  75. Ali MS. Nasosinus mucin expression in normal and inflammatory conditions. Curr Opin Allergy Clin Immunol. 2009;9:10–5.

    Article  CAS  PubMed  Google Scholar 

  76. Voynow JA, Selby DN, Rose MC. Mucin gene expression (MUC1, MUC2, and MUC5/5AC) in nasal epithelial cells of cystic fibrosis, allergic rhinitis, and normal individuals. Lung. 1998;176:345–54.

    Article  CAS  PubMed  Google Scholar 

  77. Shimizu T, Hirano T, Majima Y, et al. A mechanism of antigen-induced mucus production in nasal epithelium of sensitized rats: a comparison with lipopolysaccharides-induced mucus secretion. Am J Respir Crit Care Med. 2000;161:1648–54.

    Article  CAS  PubMed  Google Scholar 

  78. Shimizu S, Hattori R, Majima Y, et al. Th2 cytokine inhibitor suplatast tosilate inhibits antigen-induced mucus hypersecretion in the nasal epithelium of sensitized rats. Ann Otol Rhinol Laryngol. 2009;118:67–72.

    Article  PubMed  Google Scholar 

  79. Shimizu T, Shimizu S, Hattori R, et al. A mechanism of antigen-induced goblet cell degranulation in the nasal epithelium of sensitized rats. J Allergy Clin Immunol. 2003b;112:119–25.

    Article  CAS  PubMed  Google Scholar 

  80. Suh JD, Kennedy DW. Treatment options for chronic rhinosinusitis. Proc Am Thorac Soc. 2011;8:132–40.

    Article  CAS  PubMed  Google Scholar 

  81. Sakakura Y, Majima Y, Saida S, et al. Reversibility of reduced mucociliary clearance in chronic sinusitis. Clin Otolaryngol Allied Sci. 1985;10:79–83.

    Article  CAS  PubMed  Google Scholar 

  82. Ikeda K, Oshima T, Furukawa M, et al. Restoration of the mucociliary clearance of the maxillary sinus after endoscopic sinus surgery. J Allergy Clin Immunol. 1997;99:48–52.

    CAS  PubMed  Google Scholar 

  83. Min YG, Yun YS, Song BH, et al. Recovery of nasal physiology after functional endoscopic sinus surgery: olfaction and mucociliary transport. ORL J Otorhinolaryngol Relat Spec. 1995;57:264–8.

    Article  CAS  PubMed  Google Scholar 

  84. Majima Y, Hirata K, Takeuchi K, et al. Effects of orally administered drugs on dynamic viscoelasticity of human nasal mucus. Am Rev Respir Dis. 1990;141:79–83.

    Article  CAS  PubMed  Google Scholar 

  85. Yuta A, Baraniuk JN. Therapeutic approaches to airway mucous hypersecretion. In: Rogers DF, Lethem MI, editors. Airway mucus: basic mechanisms and clinical perspectives. Basel: Birkhauser; 1997.

    Google Scholar 

  86. Mainz JG, Schiller I, Ritschel C, et al. Sinonasal inhalation of dornase alfa in CF: a double-blinded placebo-controlled cross-over pilot trial. Auris Nasus Larynx. 2011;38:220–7.

    Article  PubMed  Google Scholar 

  87. Majima Y, Kurono Y, Hirakawa K, et al. Efficacy of combined treatment with S-carboxymethylcysteine (carbocisteine) and clarithromycin in chronic rhinosinusitis patients without nasal polyp or with small nasal polyp. Auris Nasus Larynx. 2012;39:38–47.

    Article  PubMed  Google Scholar 

  88. Wawrose SF, Tami TA, Amoils CP. The role of guaifenesin in the treatment of sinonasal disease in patients infected with the human immunodeficiency virus (HIV). Laryngoscope. 1992;102:1225–8.

    Article  CAS  PubMed  Google Scholar 

  89. Fuchs HJ, Borowitz DS, Christiansen DH, et al. Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. The pulmozyme study group. N Engl J Med. 1994;331:637–42.

    Article  CAS  PubMed  Google Scholar 

  90. Donaldson SH, Bennett WD, Zeman KL, et al. Mucus clearance and lung function in cystic fibrosis with hypertonic saline. N Engl J Med. 2006;19:241–50.

    Article  Google Scholar 

  91. Rabago D, Pasic T, Zgierska A, et al. The efficacy of hypertonic saline nasal irrigation for chronic sinonasal symptoms. Otolaryngol Head Neck Surg. 2005;133:3–8.

    Article  PubMed  Google Scholar 

  92. Albert RK, Connett J, Bailey WC, et al. Azithromycin for prevention of exacerbations of COPD. N Engl J Med. 2011;365:689–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jaffe A, Francis J, Rosenthal M, et al. Long term-azithromycin may improve lung function in children with cystic fibrosis. Lancet. 1998;351:420.

    Article  CAS  PubMed  Google Scholar 

  94. Kudoh S, Azuma A, Yamamoto M, et al. Improvement of survival in patients with diffuse panbronchiolitis treated with low-dose erythromycin. Am J Respir Crit Care Med. 1998;157:1829–32.

    Article  CAS  PubMed  Google Scholar 

  95. Shirai T, Sato A, Chiba K. Effect of 14-membered ring macrolide therapy on chronic respiratory tract infections and polymorphonuclear leukocyte activity. Intern Med. 1995;34:469–74.

    Article  CAS  PubMed  Google Scholar 

  96. Wallwork B, Coman W, Mackay-Sim A, et al. A double-blind, randomized, placebo-controlled trial of macrolide in the treatment of chronic rhinosinusitis. Laryngoscope. 2006;116:189–93.

    Article  CAS  PubMed  Google Scholar 

  97. Shimizu T, Shimizu S. Azithromycin inhibits mucus hypersecretion from airway epithelial cells. Mediat Inflamm. 2012;2012:265714. https://doi.org/10.1155/2012/265714.

    Article  CAS  Google Scholar 

  98. Shimizu T, Shimizu S, Hattori R, et al. In vivo and in vitro effects of macrolide antibiotics on mucus secretion in airway epithelial cells. Am J Respir Crit Care Med. 2003a;168:581–7.

    Article  PubMed  Google Scholar 

  99. Cervin A, Wallwork B. Macrolide therapy of chronic rhinosinusitis. Rhinology. 2007;45:259–67.

    PubMed  Google Scholar 

  100. Shimizu T, Suzaki H. Past, present and future of macrolide therapy for chronic rhinosinusitis in Japan. Auris Nasus Larynx. 2016;43:131–6.

    Article  PubMed  Google Scholar 

  101. Haruna S, Shimada C, Ozawa M, et al. A study of poor responders for long-term, low-dose macrolide administration for chronic sinusitis. Rhinology. 2009;47:66–71.

    PubMed  Google Scholar 

  102. Suzuki H, Ikeda K, Honma R, et al. Prognostic factors of chronic rhinosinusitis under long-term low-dose macrolide therapy. ORL J Otorhinolaryngol Relat Spec. 2000;62:121–7.

    Article  CAS  PubMed  Google Scholar 

  103. Videler WJ, Badia L, Harvey RJ, et al. Lack of efficacy of long-term, low-dose azithromycin in chronic rhinosinusitis: a randomized controlled trial. Allergy. 2011;66:1457–68.

    Article  CAS  PubMed  Google Scholar 

  104. Rudmik L, Schlosser RJ, Smith TL, et al. Impact of topical nasal steroid therapy on symptoms of nasal polyposis: a meta-analysis. Laryngoscope. 2012;122:1431. https://doi.org/10.1002/lary.23259.

    Article  CAS  PubMed  Google Scholar 

  105. Weiner JM, Abramson MJ, Puy RM. Intranasal corticosteroids versus oral H1 receptor antagonists in allergic rhinitis: systematic review of randomized controlled trials. BMJ. 1998;317:1624–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Greiner AN, Meltzer EO. Pharmacologic rationale for treating allergic and nonallergic rhinitis. J Allergy Clin Immunol. 2006;118:985–98.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Shimizu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shimizu, T. (2023). Mucus, Goblet Cell, Submucosal Gland. In: Celebi, Ö.Ö., Önerci, T.M. (eds) Nasal Physiology and Pathophysiology of Nasal Disorders. Springer, Cham. https://doi.org/10.1007/978-3-031-12386-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12386-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12385-6

  • Online ISBN: 978-3-031-12386-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics