Skip to main content

Modeling and Analysis of Chronic Disease Processes Under Intermittent Observation

  • Chapter
  • First Online:
Emerging Topics in Modeling Interval-Censored Survival Data

Part of the book series: ICSA Book Series in Statistics ((ICSABSS))

  • 373 Accesses

Abstract

A wealth of information is available from clinic-based registries of individuals with chronic diseases but modeling and analysis of disease processes can be challenging because of the ways individuals are enrolled in the registry and because they are only seen at intermittent clinic visits post-enrolment. Such features are common in observational cohort studies in general, but even in randomized trials, intermittent observation of individuals is common, resulting in incomplete information about transitions among disease states and about time-dependent covariates. In this chapter we describe independence conditions needed for valid likelihood-based inference about multistate disease processes under intermittent observation schemes. In addition, we describe how joint models for disease and observation processes can be used to address disease-related clinic visits. We also describe how joint models can be used to deal with internal time-dependent markers when marker values are observed only at clinic visits, and investigate the limiting values of regression coefficients of marker effects when the common approach of carrying forward the most recently recorded value is used. In addition to failure time processes, we consider more general multistate disease processes, and partially specified models for state occupancy probabilities. An application to a study of cancer metastatic to bone is considered, involving a serum marker of bone activity and its association with risk of skeletal complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aalen, O., Borgan, O., Gjessing, H. (2008). Survival and event history analysis: A process point of view. Springer Science & Business Media, LLC.

    Book  MATH  Google Scholar 

  • Al-Kateb H., Boright, A., Mirea, L., Xie, X., Sutradhar, R., Mowjoodi, A., Bharaj, B., Liu, M., Bucksa, J., Arends, V., Steffes, M., Cleary, P., Sun, W., Lachin, J., Thorner, P., Ho, M., McKnight, A., Maxwell, A., Savage, D., Kidd, K., Kidd, J., Speed, W., Orchard, T., Miller, R., Sun, L., Bull, S., Paterson, A., the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group (2008). Multiple superoxide dismutase 1/splicing factor serine alanine 15 variants are associated with the development and progression of diabetic nephropathy: The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Genetics study. Diabetes, 57(1), 218–228.

    Article  Google Scholar 

  • Andersen, P., Klein, J. (2007). Regression analysis for multistate models based on a pseudo-value approach, with applications to bone marrow transplantation studies. Scandinavian Journal of Statistics, 34(1), 3–16.

    Article  MathSciNet  MATH  Google Scholar 

  • Andersen, P., Liestøl, K. (2003). Attenuation caused by infrequently updated covariates in survival analysis. Biostatistics, 4(4), 633–649.

    Article  MATH  Google Scholar 

  • Andersen, P., Borgan Ø, Gill, R., Keiding, N. (1993). Statistical models based on counting processes. Springer-Verlag.

    Google Scholar 

  • Cai, N., Lu, W., Zhang, H. (2012). Time-varying latent effect model for longitudinal data with informative observation time. Biometrics, 68(4), 1093–1102

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng, S., Wei, L., Ying, Z. (1995). Analysis of transformation models with censored data. Biometrika, 82(4), 835–845.

    Article  MathSciNet  MATH  Google Scholar 

  • Cook, R., Lawless, J. (2018). Multistate models for the analysis of life history data. CRC Press.

    Book  MATH  Google Scholar 

  • Cook, R., Lawless, J. (2021). Independence conditions and the analysis of life history studies with intermittent observation. Biostatistics, 22(3), 455–481.

    Article  MathSciNet  Google Scholar 

  • Cook, R., Lawless, J., Xie, B. (2022). Marker-dependent observation and carry-forward of internal covariates in Cox regression. Lifetime Data Analysis (under revision) pp. 1–26.

    Google Scholar 

  • Cox, D., Miller, H. (1965). The theory of stochastic processes. CRC Press.

    MATH  Google Scholar 

  • Dantan, E., Joly, P., Dartigues, J., Jacqmin-Gadda, H. (2011). Joint model with latent state for longitudinal and multistate data. Biostatistics, 12(4), 723–736.

    Article  MATH  Google Scholar 

  • De Bruijne, M., le Cessie, S., Kluin-Nelemans, H., van Houwelingen, H. (2001). On the use of Cox regression in the presence of an irregularly observed time-dependent covariate. Statistics in Medicine, 20(24), 3817–3829.

    Article  Google Scholar 

  • Dempster, A., Laird, N., Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1), 1–38.

    MathSciNet  MATH  Google Scholar 

  • Efron, B., Tibshirani, R. (1994). An introduction to the bootstrap. Chapman & Hall/CRC.

    Google Scholar 

  • Elashoff, R., Li, G., Li, N. (2008). A joint model for longitudinal measurements and survival data in the presence of multiple failure types. Biometrics, 64(3), 762–771.

    Article  MathSciNet  MATH  Google Scholar 

  • Ferrer, L., Rondeau, V., Dignam, J., Pickles, T., Jacqmin-Gadda, H., Proust-Lima, C. (2016). Joint modelling of longitudinal and multi-state processes: Application to clinical progressions in prostate cancer. Statistics in Medicine, 35(22), 3933–3948.

    Article  MathSciNet  Google Scholar 

  • Fine, J. (1999). Analysing competing risks data with transformation models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(4), 817–830.

    Article  MathSciNet  MATH  Google Scholar 

  • Grüger, J., Kay, R., Schumacher, M. (1991). The validity of inferences based on incomplete observations in disease state models. Biometrics, 47(2), 595–605.

    Article  Google Scholar 

  • Haerian, K., Varn, D., Vaidya, S., Ena, L., Chase, H., Friedman, C. (2012). Detection of pharmacovigilance-related adverse events using electronic health records and automated methods. Clinical Pharmacology & Therapeutics, 92(2), 228–234.

    Article  Google Scholar 

  • Han, S., Andrei, A., Tsui, K. (2014). A semiparametric regression method for interval-censored data. Communications in Statistics: Simulation and Computation, 43(1), 18–30.

    Article  MathSciNet  MATH  Google Scholar 

  • Haroon, M., Gallaghar, P., Ahmad, M., FitzGerald, O. (2020). Elevated CRP even at the first visit to a rheumatologist is associated with long-term poor outcomes in patients with psoriatic arthritis. Clinical Rheumatology, 39, 2951–2961.

    Article  Google Scholar 

  • Jackson, C. (2011). Multi-state models for panel data: The msm package for R. Journal of Statistical Software, 38(8), 1–29.

    Article  Google Scholar 

  • Jensen, P., Jensen, L., Brunak, S. (2012). Mining electronic health records: Towards better research applications and clinical care. Nature Reviews Genetics, 13(6), 395–405.

    Article  Google Scholar 

  • Jewell, N., Kalbfleisch, J. (1996). Marker processes in survival analysis. Lifetime Data Analysis, 2(1), 15–29.

    Article  MATH  Google Scholar 

  • Kalbfleisch, J., Lawless, J. (1985). The analysis of panel data under a Markov assumption. Journal of the American Statistical Association, 80(392), 863–871.

    Article  MathSciNet  MATH  Google Scholar 

  • Kalbfleisch, J., Prentice, R. (2011). The statistical analysis of failure time data. John Wiley & Sons

    MATH  Google Scholar 

  • Keiding, N., Moeschberger, M. (1992). Independent delayed entry. In J. Klein, P. Goel (Eds.), Survival analysis: State of the art (pp. 309–326). Kluwer Academic Publishers.

    Google Scholar 

  • Lange, J., Hubbard, R., Inoue, L., Minin, V. (2015). A joint model for multistate disease processes and random informative observation times, with applications to electronic medical records data. Biometrics, 71(1), 90–101.

    Article  MathSciNet  MATH  Google Scholar 

  • Lawless, J. (2011). Statistical models and methods for lifetime data. John Wiley & Sons.

    MATH  Google Scholar 

  • Lawless, J. (2013). Armitage Lecture 2011: The design and analysis of life history studies. Statistics in Medicine, 32(13), 2155–2172.

    Article  MathSciNet  Google Scholar 

  • Lawless, J., Cook, R. (2019). A new perspective on loss to follow-up in failure time and life history studies. Statistics in Medicine, 38(23), 4583–4610.

    Article  MathSciNet  Google Scholar 

  • Lesko, C., Edwards, J., Cole, S., Moore, R., Lau, B. (2018). When to censor? American Journal of Epidemiology, 187(3), 623–632.

    Article  Google Scholar 

  • Liang, Y., Lu, W., Ying, Z. (2009). Joint modeling and analysis of longitudinal data with informative observation times. Biometrics, 65(2), 377–384.

    Article  MathSciNet  MATH  Google Scholar 

  • Lin, D., Wei, L. (1989). The robust inference for the Cox proportional hazards model. Journal of the American Statistical Association, 84(408), 1074–1078.

    Article  MathSciNet  MATH  Google Scholar 

  • Lin, H., Scharfstein, D., Rosenheck, R. (2004). Analysis of longitudinal data with irregular, outcome-dependent follow-up. Journal of the Royal Statistical Society (Series B), 66(3), 791–813.

    Article  MathSciNet  MATH  Google Scholar 

  • McEvoy, J., Chen, Y., Rawlings, A., Hoogeveen, R., Ballantyne, C., Blumenthal, R., Coresh, J., Selvin, E. (2016). Diastolic blood pressure, subclinical myocardial damage, and cardiac events: Implications for blood pressure control. Journal of the American College of Cardiology, 68(16), 1713–1722.

    Article  Google Scholar 

  • Moon, N., Zeng, L., Cook, R. (2018). Tracing studies in cohorts with attrition: Selection models for efficient sampling. Statistics in Medicine, 37(15), 2354–2366.

    Article  MathSciNet  Google Scholar 

  • Pullenayegum, E., Lim, L. (2016). Longitudinal data subject to irregular observation: A review of methods with a focus on visit processes, assumptions, and study design. Statistical Methods in Medical Research, 25(6), 2992–3014.

    Article  MathSciNet  Google Scholar 

  • Raboud, J., Reid, N., Coates, R., Farewell, V. (1993). Estimating risks of progressing to AIDS when covariates are measured with error. Journal of the Royal Statistical Society: Series A (Statistics in Society), 156(3), 393–406.

    Article  Google Scholar 

  • Raina, P., Wolfson, C., Kirkland, S., Griffith, L., Oremus, M., Patterson, C., Tuokko, H., Penning, M., Balion, C., Hogan, D., Wister, A., Payette, H., Shannon, H., Brazil, K. (2009). The Canadian longitudinal study on aging (clsa). Canadian Journal on Aging/La Revue canadienne du vieillissement, 28(3), 221–229.

    Article  Google Scholar 

  • Rassen, J., Bartels, D., Schneeweiss, S., Patrick, A., Murk, W. (2019). Measuring prevalence and incidence of chronic conditions in claims and electronic health record databases. Clinical Epidemiology, 11, 1–15.

    Article  Google Scholar 

  • Rizopoulos, D. (2012). Joint models for longitudinal and time-to-event data: With applications in R. CRC Press.

    Book  MATH  Google Scholar 

  • Rizopoulos, D., Verbeke, G., Molenberghs, G. (2008). Shared parameter models under random effects misspecification. Biometrika, 95(1), 63–74.

    Article  MathSciNet  MATH  Google Scholar 

  • Saad, F., Gleason, D., Murray, R., Tchekmedyian, S., Venner, P., Lacombe, L., Chin, J. L., Vinholes, J., Goas, J., Zheng, M. (2004). Long-term efficacy of zoledronic acid for the prevention of skeletal complications in patients with metastatic hormone-refractory prostate cancer. Journal of the National Cancer Institute, 96(11), 879–882.

    Article  Google Scholar 

  • Sabathe, C., Andersen, P., Helmer, C., Gerds, T., Jacqmin-Gadda, H., Joly, P. (2020). Regression analysis in an illness-death model with interval-censored data: A pseudo-value approach. Statistical Methods in Medical Research, 29(3), 752–764.

    Article  MathSciNet  Google Scholar 

  • Scheike, T., Zhang, M. (2007). Direct modelling of regression effects for transition probabilities in multistate models. Scandinavian Journal of Statistics, 34(1), 17–32.

    Article  MathSciNet  Google Scholar 

  • Scheike, T., Zhang, M., Gerds, T. (2008). Predicting cumulative incidence probability by direct binomial regression. Biometrika, 95(1), 205–220.

    Article  MathSciNet  MATH  Google Scholar 

  • Shepherd, B., Blevins, M., Vaz, L., Moon, T., Kipp, A., José E, Ferreira, F., Vermund, S. (2011). Impact of definitions of loss to follow-up on estimates of retention, disease progression, and mortality: Application to an HIV program in Mozambique. American Journal of Epidemiology, 178(5), 356–367.

    Google Scholar 

  • Struthers, C., Kalbfleisch, J. (1986). Misspecified proportional hazard models. Biometrika, 73(2), 363–369.

    Article  MathSciNet  MATH  Google Scholar 

  • Sun, J. (2006) The statistical analysis of interval-censored failure time data. Springer Science + Business Media.

    Google Scholar 

  • Tsiatis, A., Degruttola, V., Wulfsohn, M. (1995). Modeling the relationship of survival to longitudinal data measured with error. Applications to survival and CD4 counts in patients with AIDS. Journal of the American Statistical Association, 90(429), 27–37.

    Article  MATH  Google Scholar 

  • van den Hout, A. (2016). Multi-state survival models for interval-censored data. Chapman and Hall/CRC.

    Book  Google Scholar 

Download references

Acknowledgements

Funding was provided by the Natural Sciences and Engineering Research Council of Canada (RGPIN-2017-04207 for RJC and RGPIN-2017-04055 for JFL). Richard Cook is a Mathematics Faculty Research Chair. The authors thank Novartis for permission to use the data from the cancer clinical trial for illustration and Ker-Ai Lee for help in the scientific computing and data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Cook .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cook, R.J., Lawless, J.F. (2022). Modeling and Analysis of Chronic Disease Processes Under Intermittent Observation. In: Sun, J., Chen, DG. (eds) Emerging Topics in Modeling Interval-Censored Survival Data. ICSA Book Series in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-031-12366-5_10

Download citation

Publish with us

Policies and ethics