Skip to main content

Understanding New Foods: Development of Next Generation of Food Processing, Packaging, and Ingredients Technologies for Clean Label Foods

  • Chapter
  • First Online:
Sustainable Food Innovation

Abstract

Modern consumers demand foods that are processed without synthetic additives and preservatives. The term “clean label” has been adopted to describe such food products. The global market for clean label products reached $180 billion in 2020. Reasons for this increased demand for clean label food products include health, environmental, and societal concerns. Consumers seem to be particularly skeptical of food ingredients used in processed foods that they do not know or ingredients they know as belonging to refined foods. Therefore, various technologies have been developed over the past decade, enabling the food processors to manufacture clean label food products. This includes high pressure-based food manufacturing technologies, active packaging, and natural antimicrobials, pigments, and other functional ingredients derived from plant and animal sources. Functionality as well as safety have been investigated to guarantee the technologies’ applicability to the food industry. Sensory profile (appearance, aroma, taste, and texture) and shelf life both contribute to food quality. While some of natural ingredients have been demonstrated to be safe and efficient, others might be less effective. Opportunities for healthy, sustainable processing are viable, yet challenges do occur and should be addressed by current and future food scientists and engineers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anonymous. (2018). Questions and answers: High pressure processing with Universal Pure’s Mark Fleck. Food Manufacturing. August 15, 2018.

    Google Scholar 

  • Aschemann-Witzel, J., Varela, P., & Peschel, A. O. (2019). Consumers’ categorization of food ingredients: Do consumers perceive them as ‘clean label’ producers expect? An exploration with projective mapping. Food Quality and Preference, 71, 117–128.

    Article  Google Scholar 

  • Balasubramaniam, V. M. (2021). Process development of high pressure-based technologies for food: Research advances and future perspectives. Current Opinion in Food Science, 42, 270–277C. https://doi.org/10.1016/j.cofs.2021.10.001

    Article  CAS  Google Scholar 

  • Balasubramaniam, V. M., Barbosa-Cánovas, G. V., & Lelieveld, H. (2016). In High pressure processing of food: Principles, technology and applications (food engineering series) (1st ed.). Springer. https://doi.org/10.1007/978-1-4939-3234-4

  • Belmiro, R. H., Oliveira, L. D. C., Tribst, A. A. L., & Cristianini, M. (2022). Techno-functional properties of coffee by-products are modified by dynamic high pressure: A case study of clean label ingredient in cookies. LWT, 154(15), 112601.

    Article  CAS  Google Scholar 

  • Bolumar, T., Orlien, V., Sikes, A., Aganovic, K., Bak, K. H., Guyon, C., Stübler, A.-S., de Lamballerie, M., Hertel, C., & Brüggemann, D. A. (2021). High-pressure processing of meat: Molecular impacts and industrial applications. Comprehensive Reviews in Food Science and Food Safety, 20, 332–336. https://doi.org/10.1111/1541-4337.12670

    Article  PubMed  Google Scholar 

  • Brewster E (2021) The changing face of clean label. Food Technology. September 2021.

    Google Scholar 

  • Burdock, G. A. (2007). Safety assessment of hydroxypropyl methylcellulose as a food ingredient. Food and Chemical Toxicology, 45(12), 2341–2351.

    Article  CAS  PubMed  Google Scholar 

  • Cani, P. D. (2015). Metabolism: Dietary emulsifiers – sweepers of the gut lining? Nature Reviews. Endocrinology, 11(6), 319–320.

    Article  CAS  PubMed  Google Scholar 

  • Carocho, M., Barreiro, M. F., Morales, P., & Ferreira, I. C. F. R. (2014). Adding molecules to food, pros and cons: A review on synthetic and natural food additives. Comprehensive Reviews in Food Science and Food Safety, 13, 377–399. https://doi.org/10.1111/1541-4337.12065

    Article  PubMed  Google Scholar 

  • Chassaing, B., Compher, C., Bonhomme, B., Liu, Q., Tian, Y., Walters, W., Nessel, L., Delaroque, C., Hao, F., Gershuni, V., Chau, L., Ni, J., Bewtra, M., Albenberg, L., Bretin, A., McKeever, L., Ley, R. E., Patterson, A. D., Wu, G. D., Gewirtz, A. T., & Lewis, J. D. (2022). Randomized controlled-feeding study of dietary emulsifier Carboxymethylcellulose reveals detrimental impacts on the gut microbiota and metabolome. Gastroenterology, 162(3), 743–754. https://doi.org/10.1053/j.gastro.2021.11.006

    Article  CAS  PubMed  Google Scholar 

  • Chuang, S., & Sheen, S. (2022). High pressure processing of raw meat with essential oils-microbial survival, meat quality, and models: A review. Food Control, 132, 108529. https://doi.org/10.1016/j.foodcont.2021.108529

    Article  CAS  Google Scholar 

  • Clark, M. A., Springmann, M., Hill, J., & Tilman, D. (2019). Multiple health and environmental impacts of foods. Proceedings of the National Academy of Sciences of the United States of America, 116(46), 23357–23362. https://doi.org/10.1073/pnas.1906908116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daryaei, H., Balasubramaniam, V. M., Yousef, A. E., Legan, J. D., & Tay, A. (2016). Lethality enhancement of pressure-assisted thermal processing against bacillus amyloliquefaciens spores in low-acid media using antimicrobial compounds. Food Control, 59, 234–242. https://doi.org/10.1016/j.foodcont.2015.05.029

    Article  CAS  Google Scholar 

  • Dourado, F., Leal, M., Martins, D., Fontão, A., Rodrigues, A. C., & Gama, M. (2016). Celluloses as food ingredients/additives: Is there a room for BNC? In Bacterial nanocellulose (pp. 123–133). Elsevier.

    Chapter  Google Scholar 

  • Encina-Zelada, C. R., Cadavez, V., Teixeira, J. A., & Gonzales-Barron, U. (2019). Optimization of quality properties of gluten-free bread by a mixture design of xanthan, guar, and hydroxypropyl methyl cellulose gums. Food, 8(5), 156.

    Article  CAS  Google Scholar 

  • Evrendilek, G. A., & Balasubramaniam, V. M. (2011). Inactivation of listeria monocytogenes and listeria innocua in yogurt drink applying combination of high-pressure processing and mint essential oils. Food Control, 22(8), 1435–1441. https://doi.org/10.1016/j.foodcont.2011.03.005

    Article  CAS  Google Scholar 

  • Food & Beverage Insider. (2021). Consumers will pay premium for clean label. URL: https://www.foodbeverageinsider.com/market-trends-analysis/consumers-will-pay-premium-clean-label. Accessed on April 13, 2022.

  • Hruby, A., & Hu, F. B. (2015). The epidemiology of obesity: A big picture. PharmacoEconomics, 33(7), 673–689. https://doi.org/10.1007/s40273-014-0243

    Article  PubMed  PubMed Central  Google Scholar 

  • IFT. (2021). The changing face of clean label. URL: https://www.ift.org/news-and-publications/food-technology-magazine/issues/2021/september/columns/ingredients-clean-label. Accessed on April 13, 2022.

  • Janahar, J. J., Marciniak, A., Balasubramaniam, V. M., Jimenez-Flores, R., & Ting, E. (2021). Effects of pressure, shear, temperature and their interactions on milk selected quality attributes. Journal of Dairy Science, 104(2), 1531–1547.

    Article  CAS  PubMed  Google Scholar 

  • Janjarasskul, T., & Suppakul, P. (2018). Active and intelligent packaging: The indication of quality and safety. Critical Reviews in Food Science and Nutrition, 58(5), 808–831. https://doi.org/10.1080/10408398.2016.1225278

    Article  PubMed  Google Scholar 

  • Maghiari, A. L., Coricovac, D., Pinzaru, I. A., Macașoi, I. G., Marcovici, I., Simu, S., et al. (2020). High concentrations of aspartame induce pro-angiogenic effects in ovo and cytotoxic effects in HT-29 human colorectal carcinoma cells. Nutrients, 12(12), 3600.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martínez-Monteagudo, S. I., Kamat, S., Patel, N., Konuklar, G., Rangavajla, N., & Balasubramaniam, V. M. (2017). Improvements in emulsion stability of dairy beverages treated by high pressure homogenization: A pilot-scale feasibility study. Journal of Food Engineering, 193, 42–52. https://doi.org/10.1016/j.jfoodeng.2016.08.011

    Article  CAS  Google Scholar 

  • Maruyama, S., Lim, J., & Streletskaya, N. A. (2021). Clean label trade-offs: A case study of plain Yogurt. Frontiers in Nutrition. https://doi.org/10.3389/fnut.2021.704473

  • Maruyama, S., Streletskaya, N. A., & Lim, J. (2021). Clean label: Why this ingredient but not that one? Food Quality and Preference, 87, 104062.

    Article  Google Scholar 

  • National Advisory Committee on Microbiological Criteria for Foods. (2006). Requisite scientific parameters for establishing the equivalence of alternative methods of pasteurization. Journal of Food Protection, 69(5), 1190–1216.

    Article  Google Scholar 

  • Raghubeer, E. V., Phan, B. N., Onuoha, E., Diggins, S., Aguilar, V., Swanson, S., & Lee, A. (2020). The use of high-pressure processing (HPP) to improve the safety and quality of raw coconut (Cocos nucifera L) water. International Journal of Food Microbiology, 331, 108697.

    Article  CAS  PubMed  Google Scholar 

  • Roobab, U., Khan, A. W., Lorenzo, J. M., Arshad, R. N., Chen, B.-R., Zeng, X.-A., Bekhit, A. E.-D. A., Suleman, R., & Aadil, R. M. (2021). A systematic review of clean-label alternatives to synthetic additives in raw and processed meat with a special emphasis on high-pressure processing (2018–2021). Food Research International, 150, 110792. https://doi.org/10.1016/j.foodres.2021.110792

    Article  CAS  PubMed  Google Scholar 

  • Sand, C. K. (2017). Packaging solutions for clean label products. Food Technology 71. January 2017.

    Google Scholar 

  • Shelke, K. (2020). Clearing up clean label confusion. Food Technology. February 1, 2020.

    Google Scholar 

  • Singh, A. K., Ramakanth, D., Kumar, A., Lee, Y. S., & Gaikwad, K. K. (2021). Active packaging technologies for clean label food products: a review. Journal of Food Measurement and Characterization, 15, 4314–4324. https://doi.org/10.1007/s11694-021-01024-3

    Article  Google Scholar 

  • Soffritti, M., Padovani, M., Tibaldi, E., Falcioni, L., Manservisi, F., & Belpoggi, F. (2014). The carcinogenic effects of aspartame: The urgent need for regulatory re-evaluation. American Journal of Industrial Medicine, 57(4), 383–397.

    Article  CAS  PubMed  Google Scholar 

  • Uematsu, Y., Hirata, K., Suzuki, K., Iida, K., & Kamata, K. (2002). Survey of residual solvents in natural food additives by standard addition head-space GC. Food Additives & Contaminants, 19(4), 335–342.

    Article  CAS  Google Scholar 

  • Uematsu, Y., Ogimoto, M., Suzuki, K., Kabashima, J., Ito, K., & Nakazato, M. (2008). Survey of residue levels of organic solvents in “existing food additives” and health food materials by head-space GC. Shokuhin Eiseigaku Zasshi/Journal of the Food Hygienic Society of Japan, 49, 366–375.

    Article  CAS  PubMed  Google Scholar 

  • Weber, F., & Larsen, L. R. (2017). Influence of fruit juice processing on anthocyanin stability. Food Research International, 100(3), 354–365. https://doi.org/10.1016/j.foodres.2017.06.033

    Article  CAS  PubMed  Google Scholar 

  • Wieczyńska, J., Luca, A., Kidmose, U., Cavoski, I., & Edelenbos, M. (2016). The use of antimicrobial sachets in the packaging of organic wild rocket: Impact on microorganisms and sensory quality. Postharvest Biology and Technology, 121, 126–134.

    Article  Google Scholar 

  • Zhang, H. Q., Barbosa-Cánovas, G. V., Balasubramaniam, V. M., Dunne, C. P., Farkas, D. F., & Yuan, J. T. C. (2011). Nonthermal processing technologies for food. Wiley Blackwell Publishers. https://doi.org/10.1002/9780470958360

    Book  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge financial support received by The Ohio State University (USA) from USDA National Institute of Food and Agriculture grant 2018-67017-27914. The consumer survey was performed with the funding available for the course “FOOD393 Practicum” at Lincoln University (New Zealand). Authors thank Molly Davis, The Ohio State University for her assistance with proofreading the manuscript. References to commercial products or trade names are made with the understanding that no endorsement or discrimination by The Ohio State University and Lincoln University is implied.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Balasubramaniam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balasubramaniam, V.M., Lee, J., Serventi, L. (2023). Understanding New Foods: Development of Next Generation of Food Processing, Packaging, and Ingredients Technologies for Clean Label Foods. In: Serventi, L. (eds) Sustainable Food Innovation . Sustainable Development Goals Series. Springer, Cham. https://doi.org/10.1007/978-3-031-12358-0_12

Download citation

Publish with us

Policies and ethics