Skip to main content

Groups, Drift and Harmonic Measures

  • Chapter
  • First Online:
Mathematics Going Forward

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2313))

  • 1250 Accesses

Abstract

In this short note we will describe an old problem and a new approach which casts light upon it. The old problem is to understand the nature of harmonic measures for cocompact Fuchsian groups. The new approach is to compute numerically the value of the drift and, in particular, get new results on the dimension of the measure in some new examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Avez. Théoréme de Choquet–Deny pour les groupes à croissance non exponentielle. C. R. Acad. Sci. Paris Sér. A279:2528 (1974).

    Google Scholar 

  2. B. Barany, M. Pollicott and K. Simon. Stationary measures for projective transformations. Journal of Statistical Physics148(3), 393–421 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  3. A.F. Beardon. The geometry of discrete groups. Corrected reprint of the 1983 original. Graduate Texts in Mathematics 91. Springer-Verlag, New York (1995).

    Google Scholar 

  4. S. Blachére, P. Haissinsky and P. Mathieu. Harmonic measures versus quasiconformal measures for hyperbolic groups. Ann. Sci. Ec. Norm. Sup.44(4), 683–721 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  5. O. Bolza. On binary sextics with linear transformations into themselves. Amer. J. Math.10 no. 1, 47–70 (1887).

    Google Scholar 

  6. J. Bourgain. On the Furstenberg measure and density of states for the Anderson–Bernoulli model at small disorder. Journal d’Analyse Mathématique117, 273–295 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  7. V. Gadre, J. Maher and G. Tiozzo. Word length statistics for Teichmüler geodesics and singularity of harmonic measure. Comment. Math. Helv.92, no. 1, 1–36 (2017).

    Google Scholar 

  8. Schreiben Gauss an Wolfgang Bolyai, Göttingen, 2. 9. 1808. In: Franz Schmidt, Paul Stäckel (Hrsg.): Briefwechsel zwischen Carl Friedrich Gauss und Wolfgang Bolyai, B.G. Teubner, Leipzig, S. 94 (1899).

    Google Scholar 

  9. C.F. Gauß. Werke. Band VIII. (German) [Collected works. Vol. VIII] Reprint of the 1900 original. Georg Olms Verlag, Hildesheim (1973).

    Google Scholar 

  10. S. Gouëzel, F. Mathéus and F. Maucourant. Sharp lower bounds for the asymptotic entropy of symmetric random walks. Groups, Geometry, and Dynamics9, 711–735 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Ninnemann. Gutzwiller’s octagon and the triangular billiard T∗(2,  3,  8) as models for the quantization of chaotic systems by Selberg’s trace formula. Internat. J. Modern Phys. B9, no. 13–14, 1647–1753 (1995).

    Google Scholar 

  12. V. Kaimanovich and V. Le Prince. Matrix random products with singular harmonic measure. Geometriae Dedicata150, 257–279 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Kosenko. Fundamental inequality for hyperbolic Coxeter and Fuchsian groups equipped with geometric distances. arXiv preprint: arXiv:1911:00801 (2019).

  14. P. Kosenko and G. Tiozzo. The fundamental inequality for cocompact fuchsian groups. arXiv preprint: arXiv:2012:07417 (2020).

  15. T. Kuusalo and M. Näätänen. On arithmetic genus 2 subgroups of triangle groups. In: Extremal Riemann surfaces (San Francisco, CA, 1995), 21–28, Contemp. Math. 201, Amer. Math. Soc., Providence, RI (1997).

    Google Scholar 

  16. J. Stillwell. Mathematics and Its History. Springer, Berlin (2010).

    Book  MATH  Google Scholar 

  17. R. Tanaka. Dimension of harmonic measures in hyperbolic spaces. Ergod. Th. and Dynam. Sys.39, 474–499 (2019).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author is partly supported by ERC-Advanced Grant 833802-Resonances and EPSRC grant EP/T001674/1 the second author is partly supported by EPSRC grant EP/T001674/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Pollicott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pollicott, M., Vytnova, P. (2023). Groups, Drift and Harmonic Measures. In: Morel, JM., Teissier, B. (eds) Mathematics Going Forward . Lecture Notes in Mathematics, vol 2313. Springer, Cham. https://doi.org/10.1007/978-3-031-12244-6_21

Download citation

Publish with us

Policies and ethics