Skip to main content

Conjectures on Reductive Homogeneous Spaces

  • Chapter
  • First Online:
Mathematics Going Forward

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2313))

  • 1350 Accesses

Abstract

We address some conjectures and open problems in the ‘analysis of symmetries’ which include the study of non-commutative harmonic analysis and discontinuous groups for reductive homogeneous spaces beyond the classical framework:

  1. (1)

    discrete series for non-symmetric homogeneous spaces G∕H;

  2. (2)

    discontinuous groups Γ for G∕H beyond the Riemannian setting;

  3. (3)

    analysis on pseudo-Riemannian locally homogeneous spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Benoist and T. Kobayashi. Tempered homogeneous spaces IV. To appear in J. Inst. Math. Jussieu. Available also at arXiv: 2009.10391.

    Google Scholar 

  2. E. Calabi and L. Markus. Relativistic space forms. Ann. of Math.75, 63–76 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Delorme. Formule de Plancherel pour les espaces symétriques réductifs. Ann. of Math. (2)147, 417–452 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  4. W.M. Goldman. Nonstandard Lorentz space forms. J. Differential Geom.21, 301–308 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  5. B. Harris, Y. Oshima. On the asymptotic support of Plancherel measures for homogeneous spaces. arXiv:2201.11293.

    Google Scholar 

  6. K. Kannaka. Deformation of standard pseudo-Riemannian locally symmetric spaces. In preparation.

    Google Scholar 

  7. F. Kassel. Deformation of proper actions on reductive homogeneous spaces. Math. Ann.353, 599–632 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Kassel and T. Kobayashi. Poincaré series for non-Riemannian locally symmetric spaces. Adv. Math.287, 123–236 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Kassel and T. Kobayashi. Spectral analysis on standard locally homogeneous spaces. arXiv: 1912.12601.

    Google Scholar 

  10. T. Kobayashi. Proper action on a homogeneous space of reductive type. Math. Ann.285, 249–263 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  11. T. Kobayashi. Singular unitary representations and discrete series for indefinite Stiefel manifoldsU(p, q; F)∕U(p − m, q; F). Mem. Amer. Math. Soc. 95, no. 462, vi+ 106 pp. (1992).

    Google Scholar 

  12. T. Kobayashi. Discrete decomposability of the restriction of \(A_{\mathfrak q}(\lambda )\) with respect to reductive subgroups and its applications. Invent. Math.117, 181–205 (1994).

    Google Scholar 

  13. T. Kobayashi. Discontinuous groups and Clifford–Klein forms of pseudo- Riemannian homogeneous manifolds. In: Algebraic and analytic methods in representation theory (Sønderborg, 1994), pp. 99–165, Perspect. Math., 17. Academic Press, San Diego, CA (1997).

    Google Scholar 

  14. T. Kobayashi. Harmonic analysis on homogeneous manifolds of reductive type and unitary representation theory. In: Translations, Series II, Selected Papers on Harmonic Analysis, Groups, and Invariants, 183, pp. 1–31, Amer. Math. Soc. (1998).

    Google Scholar 

  15. T. Kobayashi. Deformation of compact Clifford–Klein forms of indefinite-Riemannian homogeneous manifolds. Math. Ann.310, 395–409 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  16. T. Kobayashi. Discrete series representations for the orbit spaces arising from two involutions of real reductive Lie groups. J. Funct. Anal.152, 100–135 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Kobayashi. Discontinuous groups for non-Riemannian homogeneous spaces. In: Mathematics Unlimited–2001 and Beyond, pp. 723–747, Springer, Berlin (2001).

    Google Scholar 

  18. T. Kobayashi. Intrinsic sound of anti-de Sitter manifolds. Springer Proc. Math. Stat. 191, 83–99 (2016).

    MathSciNet  MATH  Google Scholar 

  19. T. Kobayashi. Branching laws of unitary representations associated to minimal elliptic orbits for indefinite orthogonal group O(p, q). Adv. Math.388, Paper No. 107862, 38pp. (2021).

    Google Scholar 

  20. T. Kobayashi and T. Oshima. Finite multiplicity theorems for induction and restriction. Adv. Math.248, 921–944 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Kobayashi and T. Yoshino. Compact Clifford–Klein forms of symmetric spaces—revisited. Pure and Appl. Math. Quarterly1, 603–684, Special Issue: In Memory of Armand Borel (2005).

    Google Scholar 

  22. R.S. Kulkarni. Proper actions and pseudo-Riemannian space forms. Adv. Math.40, 10–51 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  23. G. Margulis. Problems and conjectures in rigidity theory. In: Mathematics: frontiers and perspectives, pp. 161–174, Amer. Math. Soc. (2000).

    Google Scholar 

  24. T. Matsuki and T. Oshima. A description of discrete series for semisimple symmetric spaces. Adv. Stud. Pure Math.4, 331–390 (1984).

    MathSciNet  MATH  Google Scholar 

  25. Y. Morita. Proof of Kobayashi’s rank conjecture on Clifford–Klein forms. J. Math. Soc. Japan71, no. 4, 1153–1171 (2019).

    Google Scholar 

  26. T. Okuda. Classification of semisimple symmetric spaces with proper \(SL(2,{\mathbb {R}})\)-actions. J. Differential Geom.94, 301–342 (2013).

    Google Scholar 

  27. N. Tholozan. Volume and non-existence of compact Clifford–Klein forms. arXiv:1511.09448v2, preprint.

    Google Scholar 

  28. K. Tojo. Classification of irreducible symmetric spaces which admit standard compact Clifford–Klein forms. Proc. Japan Acad. Ser. A Math. Sci.95, 11–15 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  29. P.E. Trapa. Annihilators and associated varieties of \(A_{\mathfrak {q}}(\lambda )\) modules for U(p, q). Compositio Math.129, 1–45 (2001).

    Google Scholar 

  30. D.A. Vogan and G.J. Zuckerman. Unitary representations with nonzero cohomology. Compositio Math.53, 51–90 (1984).

    MathSciNet  MATH  Google Scholar 

  31. N.R. Wallach. Real Reductive Groups. I. Pure Appl. Math. 132 Academic Press, Inc., Boston, MA (1988).

    Google Scholar 

  32. J.A. Wolf. Spaces of Constant Curvature. Sixth edition, xviii+424 pages, AMS Chelsea Publishing, Providence, RI (2011).

    Google Scholar 

Download references

Acknowledgements

The author would like to express his sincere gratitude to his collaborators for the various projects mentioned in this article. This work was partially supported by Grant-in-Aid for Scientific Research (A) (18H03669), JSPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Kobayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kobayashi, T. (2023). Conjectures on Reductive Homogeneous Spaces. In: Morel, JM., Teissier, B. (eds) Mathematics Going Forward . Lecture Notes in Mathematics, vol 2313. Springer, Cham. https://doi.org/10.1007/978-3-031-12244-6_17

Download citation

Publish with us

Policies and ethics