Skip to main content

Swarm Robotics: A Survey

  • Conference paper
  • First Online:
Advances in Computing Systems and Applications (CSA 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 513))

Included in the following conference series:

Abstract

Swarm robotics (SR) has recently gained a lot of interest for its desired properties: robustness, flexibility, and scalability. These properties are of paramount importance in many real-world applications. SR aims at coordinating a large number of low-cost robots by taking inspiration from the living systems that exhibit self-organized behaviour. In this survey, we review the SR literature and describe the characteristics of an SR system and its real-world applications, the existing SR research platforms and simulators, the SR design methods, and the taxonomy of the swarm behaviours. This work represents a brief and concise overview of the SR field that guides researchers to some seminal works and different tools to begin their research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://laral.istc.cnr.it/saga.

  2. 2.

    https://smavnet.epfl.ch.

  3. 3.

    https://www.darpa.mil/work-with-us/offensive-swarm-enabled-tactics.

  4. 4.

    https://www.youtube.com/watch?v=HSA5Bq-1fU4.

  5. 5.

    https://www.robotarium.gatech.edu.

  6. 6.

    https://www.argos-sim.info.

  7. 7.

    http://gazebosim.org/.

References

  1. Albani, D., Manoni, T., Arik, A., Nardi, D., Trianni, V.: Field coverage for weed mapping: toward experiments with a UAV swarm. In: Proceedings of the 11th EAI International Conference on Bio-inspired Information and Communications Technologies (BICT 2019), pp. 1–16. EAI, Pittsburg (2019)

    Google Scholar 

  2. Alkilabi, M.H.M., Narayan, A., Tuci, E.: Cooperative object transport with a swarm of e-puck robots: robustness and scalability of evolved collective strategies. Swarm Intell. 11(3), 185–209 (2017)

    Article  Google Scholar 

  3. Bazoula, A., Nemra, A.: Mobile robots formation: graph-force approach. In: 21st Mediterranean Conference on Control and Automation, Platanias, Chania, Crete, Greece, 25–28 June 2013. pp. 1162–1167. IEEE (2013). https://doi.org/10.1109/MED.2013.6608867

  4. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press (1999). https://doi.org/10.1093/oso/9780195131581.001.0001

  5. Bonani, M., Longchamp, V., Magnenat, S., Rétornaz, P., Burnier, D., Roulet, G., Vaussard, F., Bleuler, H., Mondada, F.: The marxbot, a miniature mobile robot opening new perspectives for the collective-robotic research. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4187–4193 (2010). https://doi.org/10.1109/IROS.2010.5649153

  6. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

    Article  Google Scholar 

  7. Bredeche, N., Montanier, J.M., Liu, W., Winfield, A.F.: Environment-driven distributed evolutionary adaptation in a population of autonomous robotic agents. Math. Comput. Model. Dyn. Syst. 18(1), 101–129 (2012). https://doi.org/10.1080/13873954.2011.601425

    Article  MATH  Google Scholar 

  8. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraula, G., Bonabeau, E.: Self-Organization in Biological Systems. Princeton University Press (2001). https://doi.org/10.1515/9780691212920

  9. Dorigo, M., Tuci, E., Groß, R., Trianni, V., Labella, T.H., Nouyan, S., Ampatzis, C., Deneubourg, J.L., Baldassarre, G., Nolfi, S., Mondada, F., Floreano, D., Gambardella, L.M.: The swarm-bots project. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics, pp. 31–44. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Ferrante, E., Brambilla, M., Birattari, M., Dorigo, M.: Socially-Mediated Negotiation for Obstacle Avoidance in Collective Transport, pp. 571–583. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-32723-0_41

  11. Francesca, G., Birattari, M.: Automatic design of robot swarms: achievements and challenges. Front. Robot. AI 3, 29 (2016). https://doi.org/10.3389/frobt.2016.00029

    Article  Google Scholar 

  12. Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Podevijn, G., Reina, A., Soleymani, T., Salvaro, M., Pinciroli, C., Mascia, F., Trianni, V., Birattari, M.: Automode-chocolate: automatic design of control software for robot swarms. Swarm Intell. 9(2), 125–152 (2015)

    Article  Google Scholar 

  13. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: Automode: a novel approach to the automatic design of control software for robot swarms. Swarm Intell. 8(2), 89–112 (2014)

    Article  Google Scholar 

  14. Garnier, S., Jost, C., Gautrais, J., Asadpour, M., Caprari, G., Jeanson, R., Grimal, A., Theraulaz, G.: The embodiment of cockroach aggregation behavior in a group of micro-robots. Artif. Life 14(4), 387–408 (2008). https://doi.org/10.1162/artl.2008.14.4.14400

  15. Gebhardt, G.H., Daun, K., Schnaubelt, M., Hendrich, A., Kauth, D., Neumann, G.: Learning to assemble objects with a robot swarm. In: Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2017, pp. 1547–1549. International Foundation for Autonomous Agents and Multiagent Systems, Richland (2017)

    Google Scholar 

  16. Giernacki, W., Skwierczyński, M., Witwicki, W., Wroński, P., Kozierski, P.: Crazyflie 2.0 quadrotor as a platform for research and education in robotics and control engineering. In: 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 37–42 (2017). https://doi.org/10.1109/MMAR.2017.8046794

  17. Groß, R., Dorigo, M.: Towards group transport by swarms of robots. Int. J. Bio-Inspir. Comput. 1 (2009). https://doi.org/10.1504/IJBIC.2009.022770

  18. Guzzoni, D., Cheyer, A., Julia, L., Konolige, K.: Many robots make short work: report of the SRI international mobile robot team. AI Mag. 18(1), 55 (1997). https://doi.org/10.1609/aimag.v18i1.1274

    Article  Google Scholar 

  19. Hamann, H., Schmickl, T.: BEECLUST: A Swarm Algorithm Derived from Honeybees. CRC Press, Boca Raton (2011)

    Google Scholar 

  20. Khaldi, B., Harrou, F., Cherif, F., Sun, Y.: Towards emerging cubic spline patterns with a mobile robotics swarm system. IEEE Trans. Cogn. Develop. Syst., 1 (2021). https://doi.org/10.1109/TCDS.2021.3054997

  21. Khaluf, Y., Vanhee, S., Simoens, P.: Local ant system for allocating robot swarms to time-constrained tasks. J. Comput. Sci. (2019)

    Google Scholar 

  22. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1986). https://doi.org/10.1177/027836498600500106

    Article  Google Scholar 

  23. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), vol. 3, pp. 2149–2154 (2004). https://doi.org/10.1109/IROS.2004.1389727

  24. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey, J.C., Floreano, D., Martinoli, A.: The e-puck, a robot designed for education in engineering, vol. 1, pp. 59–65. IPCB: Instituto Politécnico de Castelo Branco, Portugal (2009)

    Google Scholar 

  25. Mondada, F., Bonani, M., Riedo, F., Briod, M., Pereyre, L., Retornaz, P., Magnenat, S.: Bringing robotics to formal education: the thymio open-source hardware robot. IEEE Robot. Autom. Mag. 24(1), 77–85 (2017). https://doi.org/10.1109/MRA.2016.2636372

    Article  Google Scholar 

  26. Nedjah, N., Junior, L.S.: Review of methodologies and tasks in swarm robotics towards standardization. Swarm Evol. Comput. 50, 100565 (2019). https://doi.org/10.1016/j.swevo.2019.100565

  27. Nguyen, T., Banerjee, B.: Reinforcement learning as a rehearsal for swarm foraging. Swarm Intell. 16, 29–58 (2021)

    Article  Google Scholar 

  28. Nolfi, S., Floreano, D., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-organizing Machines. A Bradford Book. MIT Press (2000)

    Google Scholar 

  29. Pickem, D., Lee, M., Egerstedt, M.: The GRITSBot in its natural habitat - a multi-robot testbed. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 4062–4067 (2015). https://doi.org/10.1109/ICRA.2015.7139767

  30. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Birattari, M., Gambardella, L.M., Dorigo, M.: ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intell. 6(4), 271–295 (2012)

    Article  Google Scholar 

  31. Ramachandran, R.K., Kakish, Z., Berman, S.: Information correlated lévy walk exploration and distributed mapping using a swarm of robots. IEEE Trans. Rob. 36(5), 1422–1441 (2020). https://doi.org/10.1109/TRO.2020.2991612

    Article  Google Scholar 

  32. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. SIGGRAPH Comput. Graph. 21(4), 25–34 (1987). https://doi.org/10.1145/37402.37406

  33. Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: a low cost scalable robot system for collective behaviors. In: 2012 IEEE International Conference on Robotics and Automation, pp. 3293–3298 (2012). https://doi.org/10.1109/ICRA.2012.6224638

  34. Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a thousand-robot swarm. Science 345(6198), 795–799 (2014). https://doi.org/10.1126/science.1254295

    Article  Google Scholar 

  35. Şahin, E.: Swarm robotics: from sources of inspiration to domains of application. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics, pp. 10–20. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  36. Schranz, M., Umlauft, M., Sende, M., Elmenreich, W.: Swarm robotic behaviors and current applications. Front. Robot. AI 7, 36 (2020). https://doi.org/10.3389/frobt.2020.00036

    Article  Google Scholar 

  37. Shan, Q., Mostaghim, S.: Achieving task allocation in swarm intelligence with bi-objective embodied evolution. Swarm Intell. 15(3), 287–310 (2021)

    Article  Google Scholar 

  38. Silva, F., Urbano, P., Correia, L., Christensen, A.L.: odNEAT: an algorithm for decentralised online evolution of robotic controllers. Evol. Comput. 23, 421–49 (2015)

    Google Scholar 

  39. Soares, J.M., Navarro, I., Martinoli, A.: The Khepera IV mobile robot: performance evaluation, sensory data and software toolbox. In: Reis, L.P., Moreira, A.P., Lima, P.U., Montano, L., Muñoz-Martinez, V. (eds.) Robot 2015: Second Iberian Robotics Conference, pp. 767–781. Springer, Cham (2016)

    Chapter  Google Scholar 

  40. Soysal, O., Sahin, E.: Probabilistic aggregation strategies in swarm robotic systems. In: Proceedings 2005 IEEE Swarm Intelligence Symposium, pp. 325–332 (2005). https://doi.org/10.1109/SIS.2005.1501639

  41. Spears, W.M., Spears, D.F., Hamann, J.C., Heil, R.: Distributed, physics-based control of swarms of vehicles. Auton. Robot. 17(2), 137–162 (2004)

    Article  Google Scholar 

  42. Sperati, V., Trianni, V., Nolfi, S.: Evolution of self-organised path formation in a swarm of robots. In: Proceedings of the 7th International Conference on Swarm Intelligence, ANTS 2010, pp. 155–166. Springer, Heidelberg (2010)

    Google Scholar 

  43. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. A Bradford Book, Cambridge (2018)

    MATH  Google Scholar 

  44. Trianni, V., Groß, R., Labella, T.H., Sahin, E., Dorigo, M.: Evolving aggregation behaviors in a swarm of robots. In: Proceedings of the Seventh European Conference on Artificial Life, volume 2801 of Lecture Notes in Artificial Intelligence, pp. 865–874. Springer (2003)

    Google Scholar 

  45. Turgut, A.E., Çelikkanat, H., Gökçe, F., Şahin, E.: Self-organized flocking in mobile robot swarms. Swarm Intell. 2(2), 97–120 (2008)

    Article  Google Scholar 

  46. Valentini, G., Ferrante, E., Dorigo, M.: The best-of-N problem in robot swarms: formalization, state of the art, and novel perspectives. Front. Robot. AI 4, 9 (2017). https://doi.org/10.3389/frobt.2017.00009

    Article  Google Scholar 

  47. Wilson, S., Glotfelter, P., Wang, L., Mayya, S., Notomista, G., Mote, M., Egerstedt, M.: The robotarium: globally impactful opportunities, challenges, and lessons learned in remote-access, distributed control of multirobot systems. IEEE Control Syst. Mag. 40(1), 26–44 (2020). https://doi.org/10.1109/MCS.2019.2949973

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhao, H., Liu, H., Leung, Y.W., Chu, X.: Self-adaptive collective motion of swarm robots. IEEE Trans. Autom. Sci. Eng. 15(4), 1533–1545 (2018). https://doi.org/10.1109/TASE.2018.2840828

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Abdelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abdelli, A., Amamra, A., Yachir, A. (2022). Swarm Robotics: A Survey. In: Senouci, M.R., Boulahia, S.Y., Benatia, M.A. (eds) Advances in Computing Systems and Applications. CSA 2022. Lecture Notes in Networks and Systems, vol 513. Springer, Cham. https://doi.org/10.1007/978-3-031-12097-8_14

Download citation

Publish with us

Policies and ethics