Skip to main content

Radiology in Suspected Child Abuse

  • Chapter
  • First Online:
Forensic Aspects of Paediatric Fractures

Abstract

In 1946, the paediatric radiologist John P. Caffey was the first to describe the relation between the presence of multiple fractures of the long bones and subdural haematomas in six children in whom no previous trauma was known. Since then, radiology plays a pivotal role in the detection and description of fractures related to potential child abuse. It is not uncommon that radiologists are the first clinicians that raise the possibility of potential non-accidental injury. In this chapter the importance of radiological imaging protocols, such as those from the Royal College of Radiologists and the Society and College of Radiographers and the American College of Radiology, is highlighted. The different imaging techniques and their indications and limitations in living and deceased victims of potential child are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kempe CH, Silverman FN, Steele BF, Droegenmueller W, Silver HK (1962) The battered-child syndrome. JAMA 181:17–24

    CAS  Google Scholar 

  2. Caffey J (1946) Multiple fractures in the long bones of infants suffering from chronic subdural hematoma. Am J Roentgenol Radium Therapy, Nucl Med 56:163–173

    CAS  Google Scholar 

  3. Silverman FN (1953) The roentgen manifestations of unrecognized skeletal trauma in infants. Am J Roentgenol Radium Therapy Nucl Med 69:413–427

    CAS  Google Scholar 

  4. Woolley PV Jr, Evans WA Jr (1955) Significance of skeletal lesions in infants resembling those of traumatic origin. J Am Med Assoc 158:539–543

    Google Scholar 

  5. Caffey J (1957) Some traumatic lesions in growing bones other than fractures and dislocations: clinical and radiological features: the Mackenzie Davidson memorial lecture. Br J Radiol 30:225–238

    CAS  Google Scholar 

  6. Ellerstein NS, Norris KJ (1984) Value of radiologic skeletal survey in assessment of abused children. Pediatrics 74:1075–1078

    CAS  Google Scholar 

  7. Wootton-Gorges SL, Soares BP, Alazraki AL, Anupindi SA, Blount JP, Booth TN, Dempsey ME, Falcone RA Jr, Hayes LL, Kulkarni AV, Partap S, Rigsby CK, Ryan ME, Safdar NM, Trout AT, Widmann RF, Karmazyn BK, Palasis S (2017) ACR appropriateness criteria - suspected physical abuse-child. J Am Coll Radiol 14:S338–s349

    Google Scholar 

  8. The Royal College of Radiologists (RCR) and the Society and College of Radiographers (SCoR) (2017) The radiological investigation of suspected physical abuse in children. https://www.rcr.ac.uk/publication/radiological-investigation-suspected-physical-abuse-children. Accessed 5 July 2021

  9. Ingram JD, Connell J, Hay TC, Strain JD, Mackenzie T (2000) Oblique radiographs of the chest in nonaccidental trauma. Emerg Radiol 7:42–46

    Google Scholar 

  10. Hansen KK, Prince JS, Nixon GW (2008) Oblique chest views as a routine part of skeletal surveys performed for possible physical abuse–is this practice worthwhile? Child Abuse Negl 32:155–159

    Google Scholar 

  11. Marine MB, Corea D, Steenburg SD, Wanner M, Eckert GJ, Jennings SG, Karmazyn B (2014) Is the new ACR-SPR practice guideline for addition of oblique views of the ribs to the skeletal survey for child abuse justified? AJR Am J Roentgenol 202:868–871

    Google Scholar 

  12. Kleinman PL, Kleinman PK, Savageau JA (2004) Suspected infant abuse: radiographic skeletal survey practices in pediatric health care facilities. Radiology 233:477–485

    Google Scholar 

  13. Offiah AC, Hall CM (2003) Observational study of skeletal surveys in suspected non-accidental injury. Clin Radiol 58:702–705

    CAS  Google Scholar 

  14. van Rijn RR, Kieviet N, Hoekstra R, Nijs HGT, Bilo RAC (2009) Radiology in suspected non accidental injury: theory and practice in the Netherlands. Eur J Radiol 71:147–151

    Google Scholar 

  15. Loos MHJ, Almekinders CAM, Heymans MW, de Vries A, Bakx R (2020) Incidence and characteristics of non-accidental burns in children: a systematic review. Burns 46(6):1243

    Google Scholar 

  16. Hicks RA, Stolfi A (2007) Skeletal surveys in children with burns caused by child abuse. Pediatr Emerg Care 23:308–313

    Google Scholar 

  17. Fagen KE, Shalaby-Rana E, Jackson AM (2015) Frequency of skeletal injuries in children with inflicted burns. Pediatr Radiol 45:396–401

    Google Scholar 

  18. Degraw M, Hicks RA, Lindberg D (2010) Incidence of fractures among children with burns with concern regarding abuse. Pediatrics 125:e295–e299

    Google Scholar 

  19. Howell S, Bailey L, Coffman J (2019) Evaluation of drug-endangered children: the yield of toxicology and skeletal survey screening. Child Abuse Negl 96:104081

    Google Scholar 

  20. Wells K (2009) Substance abuse and child maltreatment. Pediatr Clin N Am 56:345–362

    Google Scholar 

  21. Kelleher K, Chaffin M, Hollenberg J, Fischer E (1994) Alcohol and drug disorders among physically abusive and neglectful parents in a community-based sample. Am J Public Health 84:1586–1590

    CAS  PubMed Central  Google Scholar 

  22. Campbell KA, Bogen DL, Berger RP (2006) The other children: a survey of child abuse physicians on the medical evaluation of children living with a physically abused child. Arch Pediatr Adolesc Med 160:1241–1246

    Google Scholar 

  23. Hamilton-Giachritsis CE, Browne KD (2005) A retrospective study of risk to siblings in abusing families. J Fam Psychol 19:619–624

    Google Scholar 

  24. Lindberg DM, Shapiro RA, Laskey AL, Pallin DJ, Blood EA, Berger RP (2012) Prevalence of abusive injuries in siblings and household contacts of physically abused children. Pediatrics 130:193–201

    Google Scholar 

  25. McNamara CR, Panigrahy A, Sheetz M, Berger RP (2021) The likelihood of an occult fracture in skeletal surveys obtained in children more than 2 years old with concerns of physical abuse. Pediatr Emerg Care 38(2):e488–e492

    Google Scholar 

  26. Alexander R, Kleinman PK (2000) Diagnostic imaging of child abuse – portable guides to investigating child abuse. US Department of Justice, Washington

    Google Scholar 

  27. Hulson OS, van Rijn RR, Offiah AC (2014) European survey of imaging in non-accidental injury demonstrates a need for a consensus protocol. Pediatr Radiol 44:1557–1563

    Google Scholar 

  28. Swinson S, Tapp M, Brindley R, Chapman S, Offiah A, Johnson K (2008) An audit of skeletal surveys for suspected non-accidental injury following publication of the British Society of Paediatric Radiology guidelines. Clin Radiol 63:651–656

    CAS  Google Scholar 

  29. Patel H, Swinson S, Johnson K (2017) Improving national standards of child protection skeletal surveys: the value of college guidance. Clin Radiol 72:202–206

    CAS  Google Scholar 

  30. Wanner MR, Marine MB, Hibbard RA, Ouyang F, Jennings SG, Shea L, Karmazyn B (2019) Compliance with skeletal surveys for child abuse in general hospitals: a Statewide quality improvement process. AJR Am J Roentgenol 2019:1–6

    Google Scholar 

  31. Kleinman PK, Nimkin K, Spevak MR, Rayder SM, Madansky DL, Shelton YA, Patterson MM (1996) Follow-up skeletal surveys in suspected child abuse. AJR Am J Roentgenol 167:893–896

    CAS  Google Scholar 

  32. Prosser I, Maguire S, Harrison SK, Mann M, Sibert JR, Kemp AM (2005) How old is this fracture? Radiologic dating of fractures in children: a systematic review. AJR Am J Roentgenol 184:1282–1286

    Google Scholar 

  33. Zimmerman S, Makoroff K, Care M, Thomas A, Shapiro R (2005) Utility of follow-up skeletal surveys in suspected child physical abuse evaluations. Child Abuse Negl 29:1075–1083

    Google Scholar 

  34. Harper NS, Eddleman S, Lindberg DM (2013) The utility of follow-up skeletal surveys in child abuse. Pediatrics 131:e672–e678

    Google Scholar 

  35. Drubach LA, Sapp MV, Laffin S, Kleinman PK (2008) Fluorine-18 NaF PET imaging of child abuse. Pediatr Radiol 38:776–779

    Google Scholar 

  36. Blangis F, Poullaouec C, Launay E, Vabres N, Sadones F, Eugène T, Cohen JF, Chalumeau M, Gras-Le Guen C (2020) Bone scintigraphy after a negative radiological skeletal survey improves the detection rate of inflicted skeletal injury in children. Front Pediatr 8:498

    PubMed Central  Google Scholar 

  37. Haase GM, Ortiz VN, Sfanakis GN (1980) The value of radionuclide bone scanning in the early recognition of deliberate child abuse. J Trauma 20:873–875

    CAS  Google Scholar 

  38. Sty JR, Starshak RJ (1983) The role of bone scintigraphy in the evaluation of suspected child abuse. Radiology 146:369–375

    CAS  Google Scholar 

  39. Jaudes PK (1984) Comparison of radiography and radionuclide bone scanning in the detection of child abuse. Pediatrics 73:166–168

    CAS  Google Scholar 

  40. Mandelstam SA, Cook D, Fitzgerald M, Ditchfield MR (2003) Complementary use of radiological skeletal survey and bone scintigraphy in detection of bony injuries in suspected child abuse. Arch Dis Child 88:387–390

    CAS  PubMed Central  Google Scholar 

  41. Bainbridge JK, Huey BM, Harrison SK (2015) Should bone scintigraphy be used as a routine adjunct to skeletal survey in the imaging of non-accidental injury? A 10 year review of reports in a single centre. Clin Radiol 70:e83–e89

    CAS  Google Scholar 

  42. Barlucea A, Silva F, Laguna R, Montalvan C (2010) Child abuse patterns: retrospective evaluation of clinical, radiographic and scintigraphic data in a Hispanic population. J Nucl Med 51:1655

    Google Scholar 

  43. Kemp AM, Butler A, Morris S, Mann M, Kemp KW, Rolfe K, Sibert JR, Maguire S (2006) Which radiological investigations should be performed to identify fractures in suspected child abuse? Clin Radiol 61:723–736

    CAS  Google Scholar 

  44. Blangis F, Taylor M, Adamsbaum C, Devillers A, Gras-Le Guen C, Launay E, Bossuyt PM, Cohen JF, Chalumeau M (2020) Add-on bone scintigraphy after negative radiological skeletal survey for the diagnosis of skeletal injury in children suspected of physical abuse: a systematic review and meta-analysis. Arch Dis Child 106(4):361–366

    Google Scholar 

  45. Scaglione M, Pinto A, Pedrosa I, Sparano A, Romano L (2008) Multi-detector row computed tomography and blunt chest trauma. Eur J Radiol 65:377–388

    Google Scholar 

  46. Sangster GP, Gonzalez-Beicos A, Carbo AI, Heldmann MG, Ibrahim H, Carrascosa P, Nazar M, D’Agostino HB (2007) Blunt traumatic injuries of the lung parenchyma, pleura, thoracic wall, and intrathoracic airways: multidetector computer tomography imaging findings. Emerg Radiol 14:297–310

    Google Scholar 

  47. Provenzale J (2007) CT and MR imaging of acute cranial trauma. Emerg Radiol 14:1–12

    Google Scholar 

  48. Geijer M, El-Khoury GY (2006) MDCT in the evaluation of skeletal trauma: principles, protocols, and clinical applications. Emerg Radiol 13:7–18

    Google Scholar 

  49. Ringl H, Lazar M, Topker M, Woitek R, Prosch H, Asenbaum U, Balassy C, Toth D, Weber M, Hajdu S, Soza G, Wimmer A, Mang T (2015) The ribs unfolded – a CT visualization algorithm for fast detection of rib fractures: effect on sensitivity and specificity in trauma patients. Eur Radiol 25:1865–1874

    Google Scholar 

  50. Sanchez TR, Grasparil AD, Chaudhari R, Coulter KP, Wootton-Gorges SL (2018) Characteristics of rib fractures in child abuse-the role of low-dose chest computed tomography. Pediatr Emerg Care 34:81–83

    Google Scholar 

  51. Sanchez TR, Lee JS, Coulter KP, Seibert JA, Stein-Wexler R (2015) CT of the chest in suspected child abuse using submillisievert radiation dose. Pediatr Radiol 45:1072–1076

    Google Scholar 

  52. Shelmerdine SC, Langan D, Hutchinson JC, Hickson M, Pawley K, Suich J, Palm L, Sebire NJ, Wade A, Arthurs OJ (2018) Chest radiographs versus CT for the detection of rib fractures in children (DRIFT): a diagnostic accuracy observational study. Lancet Child Adolesc Health 2:802–811

    PubMed Central  Google Scholar 

  53. Stoodley N (2006) Controversies in non-accidental head injury in infants. Br J Radiol 79:550–553

    CAS  Google Scholar 

  54. Culotta PA, Crowe JE, Tran QA, Jones JY, Mehollin-Ray AR, Tran HB, Donaruma-Kwoh M, Dodge CT, Camp EA, Cruz AT (2017) Performance of computed tomography of the head to evaluate for skull fractures in infants with suspected non-accidental trauma. Pediatr Radiol 47:74–81

    Google Scholar 

  55. Sharp SR, Patel SM, Brown RE, Landes C (2018) Head imaging in suspected non accidental injury in the paediatric population. In the advent of volumetric CT imaging, has the skull X-ray become redundant? Clin Radiol 73:449–453

    CAS  Google Scholar 

  56. Martin A, Paddock M, Johns CS, Smith J, Raghavan A, Connolly DJA, Offiah AC (2020) Avoiding skull radiographs in infants with suspected inflicted injury who also undergo head CT: “a no-brainer?”. Eur Radiol 30:1480–1487

    Google Scholar 

  57. Pennell C, Aundhia M, Malik A, Poletto E, Grewal H, Atkinson N (2021) Utility of skull radiographs in infants undergoing 3D head CT during evaluation for physical abuse. J Pediatr Surg 56(6):1180

    Google Scholar 

  58. Orman G, Wagner MW, Seeburg D, Zamora CA, Oshmyansky A, Tekes A, Poretti A, Jallo GI, Huisman TA, Bosemani T (2015) Pediatric skull fracture diagnosis: should 3D CT reconstructions be added as routine imaging? J Neurosurg Pediatr 16:426–431

    Google Scholar 

  59. Deyle S, Brehmer T, Evangelopoulos DS, Krause F, Benneker LM, Zimmermann H, Exadaktylos AK (2010) Review of Lodox Statscan in the detection of peripheral skeletal fractures in multiple injury patients. Injury 41:818–822

    CAS  Google Scholar 

  60. Deyle S, Wagner A, Benneker LM, Jeger V, Eggli S, Bonel HM, Zimmermann H, Exadaktylos AK (2009) Could full-body digital X-ray (LODOX-Statscan) screening in trauma challenge conventional radiography? J Trauma 66:418–422

    Google Scholar 

  61. Evangelopoulos DS, von Tobel M, Cholewa D, Wolf R, Exadaktylos AK, Zachariou Z (2010) Impact of Lodox Statscan on radiation dose and screening time in paediatric trauma patients. Eur J Pediatr Surg 20:382–386

    CAS  Google Scholar 

  62. Flach PM, Ross SG, Ampanozi G, Ebert L, Germerott T, Hatch GM, Thali MJ, Patak MA (2012) “Drug mules” as a radiological challenge: sensitivity and specificity in identifying internal cocaine in body packers, body pushers and body stuffers by computed tomography, plain radiography and Lodox. Eur J Radiol 81:2518–2526

    Google Scholar 

  63. Fu CY, Wang YC, Hsieh CH, Chen RJ (2011) Lodox/Statscan provides benefits in evaluation of gunshot injuries. Am J Emerg Med 29:823–827

    Google Scholar 

  64. Fu CY, Wu SC, Chen RJ (2008) Lodox/Statscan provides rapid identification of bullets in multiple gunshot wounds. Am J Emerg Med 26:965.e965–965.e967

    Google Scholar 

  65. Huang HC, Fu CY, Hsieh CH, Wang YC, Wu SC, Chen RJ, Huang JC (2012) Lodox/Statscan facilitates the early detection of commonly overlooked extracranial injuries in patients with traumatic brain injury. Eur J Trauma Emerg Surg 38:319–326

    Google Scholar 

  66. Knobel GJ, Flash G, Bowie GF (2006) Lodox Statscan proves to be invaluable in forensic medicine. S Afr Med J 96:593–594, 596

    CAS  Google Scholar 

  67. Pitcher RD, van As AB, Sanders V, Douglas TS, Wieselthaler N, Vlok A, Paverd S, Kilborn T, Rode H, Potgieter H, Beningfield SJ (2008) A pilot study evaluating the “STATSCAN” digital X-ray machine in paediatric polytrauma. Emerg Radiol 15:35–42

    Google Scholar 

  68. Pitcher RD, Wilde JC, Douglas TS, van As AB (2009) The use of the Statscan digital X-ray unit in paediatric polytrauma. Pediatr Radiol 39:433–437

    Google Scholar 

  69. Whiley SP, Alves H, Grace S (2013) Full-body X-ray imaging to facilitate triage: a potential aid in high-volume emergency departments. Emerg Med Int 2013:437078

    CAS  PubMed Central  Google Scholar 

  70. Whiley SP, Mantokoudis G, Ott D, Zimmerman H, Exadaktylos AK (2012) A review of full-body radiography in nontraumatic emergency medicine. Emerg Med Int 2012:108129

    CAS  PubMed Central  Google Scholar 

  71. Yang L, Ye LG, Ding JB, Zheng ZJ, Zhang M (2016) Use of a full-body digital X-ray imaging system in acute medical emergencies: a systematic review. Emerg Med J 33:144–151

    Google Scholar 

  72. Beningfield S, Potgieter H, Nicol A, van As S, Bowie G, Hering E, Latti E (2003) Report on a new type of trauma full-body digital X-ray machine. Emerg Radiol 10:23–29

    CAS  Google Scholar 

  73. Douglas TS, Sanders V, Pitcher R, van As AB (2008) Early detection of fractures with low-dose digital X-ray images in a pediatric trauma unit. J Trauma 65:E4–E7

    Google Scholar 

  74. Solomons I (2015) Scanners to combat diamond theft at Debswana mines. Mining Weekly. https://www.miningweekly.com/article/hi-tech-scanners-to-expose-diamond-theft-2015-01-23

  75. Mantokoudis G, Hegner S, Dubach P, Bonel HM, Senn P, Caversaccio MD, Exadaktylos AK (2013) How reliable and safe is full-body low-dose radiography (LODOX Statscan) in detecting foreign bodies ingested by adults? Emerg Med J 30:559–564

    Google Scholar 

  76. du Plessis M, Date-Chong M, Liebenberg L (2020) Lodox®: the invaluable radiographic solution in the forensic setting. Int J Legal Med 134:655–662

    Google Scholar 

  77. Spies AJ, Steyn M, Bussy E, Brits D (2020) Forensic imaging: the sensitivities of various imaging modalities in detecting skeletal trauma in simulated cases of child abuse using a pig model. J Forensic Legal Med 76:102034

    Google Scholar 

  78. Hargaden G, O'Connell M, Kavanagh E, Powell T, Ward R, Eustace S (2003) Current concepts in wholebody imaging using turbo short tau inversion recovery MR imaging. AJR Am J Roentgenol 180:247–252

    CAS  Google Scholar 

  79. Kellenberger CJ, Epelman M, Miller SF, Babyn PS (2004) Fast STIR whole-body MR imaging in children. Radiographics 24:1317–1330

    Google Scholar 

  80. Kumar J, Seith A, Kumar A, Sharma R, Bakhshi S, Kumar R, Agarwala S (2008) Whole-body MR imaging with the use of parallel imaging for detection of skeletal metastases in pediatric patients with small-cell neoplasms: comparison with skeletal scintigraphy and FDG PET/CT. Pediatr Radiol 38:953–962

    Google Scholar 

  81. Schooler GR, Davis JT, Daldrup-Link HE, Frush DP (2018) Current utilization and procedural practices in pediatric whole-body MRI. Pediatr Radiol 48:1101–1107

    Google Scholar 

  82. Merlini L, Carpentier M, Ferrey S, Anooshiravani M, Poletti PA, Hanquinet S (2017) Whole-body MRI in children: would a 3D STIR sequence alone be sufficient for investigating common paediatric conditions? A comparative study. Eur J Radiol 88:155–162

    Google Scholar 

  83. Albano D, Patti C, Lagalla R, Midiri M, Galia M (2017) Whole-body MRI, FDG-PET/CT, and bone marrow biopsy, for the assessment of bone marrow involvement in patients with newly diagnosed lymphoma. J Magn Reson Imaging 45:1082–1089

    Google Scholar 

  84. Arnoldi AP, Schlett CL, Douis H, Geyer LL, Voit AM, Bleisteiner F, Jansson AF, Weckbach S (2017) Whole-body MRI in patients with non-bacterial osteitis: radiological findings and correlation with clinical data. Eur Radiol 27:2391–2399

    CAS  Google Scholar 

  85. Leclair N, Thormer G, Sorge I, Ritter L, Schuster V, Hirsch FW (2016) Whole-body diffusion-weighted imaging in chronic recurrent multifocal osteomyelitis in children. PLoS One 11:e0147523

    PubMed Central  Google Scholar 

  86. Smets AM, Deurloo EE, Slager TJE, Stoker J, Bipat S (2018) Whole-body magnetic resonance imaging for detection of skeletal metastases in children and young people with primary solid tumors – systematic review. Pediatr Radiol 48:241–252

    CAS  Google Scholar 

  87. Elterman T, Beer M, Girschick HJ (2007) Magnetic resonance imaging in child abuse. J Child Neurol 22:170–175

    Google Scholar 

  88. Stranzinger E, Kellenberger CJ, Braunschweig S, Hopper R, Huisman TAGM (2007) Whole-body STIR MR imaging in suspected child abuse: an alternative to skeletal survey radiography? Eur J Radiol Extra 63:43–47

    Google Scholar 

  89. Evangelista P, Barron C, Goldberg A, Jenny C, Tung G (2006) MRI STIR for the evaluation of nonaccidental trauma in children

    Google Scholar 

  90. Proisy M, Vivier PH, Morel B, Bruneau B, Sembely-Taveau C, Vacheresse S, Devillers A, Lecloirec J, Bodet-Milin C, Dubois M, Hamonic S, Bajeux E, Ganivet A, Adamsbaum C, Treguier C (2021) Whole-body MR imaging in suspected physical child abuse: comparison with skeletal survey and bone scintigraphy findings from the PEDIMA prospective multicentre study. Eur Radiol 31(11):8069

    Google Scholar 

  91. Eley KA, McIntyre AG, Watt-Smith SR, Golding SJ (2012) “Black bone” MRI: a partial flip angle technique for radiation reduction in craniofacial imaging. Br J Radiol 85:272–278

    CAS  PubMed Central  Google Scholar 

  92. Eley KA, Watt-Smith SR, Golding SJ (2012) “Black bone” MRI: a potential alternative to CT when imaging the head and neck: report of eight clinical cases and review of the Oxford experience. Br J Radiol 85:1457–1464

    CAS  PubMed Central  Google Scholar 

  93. Low XZ, Lim MC, Nga V, Sundar G, Tan AP (2021) Clinical application of “black bone” imaging in paediatric craniofacial disorders. Br J Radiol 94:20200061

    PubMed Central  Google Scholar 

  94. Dremmen MHG, Wagner MW, Bosemani T, Tekes A, Agostino D, Day E, Soares BP, Huisman T (2017) Does the addition of a “black bone” sequence to a fast multisequence trauma MR protocol allow MRI to replace CT after traumatic brain injury in children? AJNR Am J Neuroradiol 38:2187–2192

    CAS  PubMed Central  Google Scholar 

  95. Kralik SF, Supakul N, Wu IC, Delso G, Radhakrishnan R, Ho CY, Eley KA (2019) Black bone MRI with 3D reconstruction for the detection of skull fractures in children with suspected abusive head trauma. Neuroradiology 61:81–87

    Google Scholar 

  96. Marine MB, Hibbard RA, Jennings SG, Karmazyn B (2019) Ultrasound findings in classic metaphyseal lesions: emphasis on the metaphyseal bone collar and zone of provisional calcification. Pediatr Radiol 49:913–921

    Google Scholar 

  97. Karmazyn B, Marine MB, Wanner MR, Delaney LR, Cooper ML, Shold AJ, Jennings SG, Hibbard RA (2020) Accuracy of ultrasound in the diagnosis of classic metaphyseal lesions using radiographs as the gold standard. Pediatr Radiol 50:1123

    Google Scholar 

  98. Markowitz RI, Hubbard AM, Harty MP, Bellah RD, Kessler A, Meyer JS (1993) Sonography of the knee in normal and abused infants. Pediatr Radiol 23:264–267

    CAS  Google Scholar 

  99. Kelloff J, Hulett R, Spivey M (2009) Acute rib fracture diagnosis in an infant by US: a matter of child protection. Pediatr Radiol 39:70–72

    Google Scholar 

  100. Smeets AJ, Robben SG, Meradji M (1990) Sonographically detected costo-chondral dislocation in an abused child. A new sonographic sign to the radiological spectrum of child abuse. Pediatr Radiol 20:566–567

    CAS  Google Scholar 

  101. Lachmann E, Whelan M (1936) The roentgen diagnosis of osteoporosis and its limitations. Radiology 26:165–177

    Google Scholar 

  102. Rosendahl K, Lundestad A, Bjørlykke JA, Lein RK, Angenete O, Augdal TA, Müller LO, Jaramillo D (2020) Revisiting the radiographic assessment of osteoporosis-osteopenia in children 0–2 years of age. A systematic review. PLoS One 15:e0241635

    CAS  PubMed Central  Google Scholar 

  103. van Rijn RR, Van Kuijk C (2009) Of small bones and big mistakes; bone densitometry in children revisited. Eur J Radiol 71:432–439

    Google Scholar 

  104. Kalkwarf HJ, Zemel BS, Yolton K, Heubi JE (2013) Bone mineral content and density of the lumbar spine of infants and toddlers: influence of age, sex, race, growth, and human milk feeding. J Bone Miner Res 28:206–212

    CAS  Google Scholar 

  105. Manousaki D, Rauch F, Chabot G, Dubois J, Fiscaletti M, Alos N (2016) Pediatric data for dual X-ray absorptiometric measures of normal lumbar bone mineral density in children under 5 years of age using the lunar prodigy densitometer. J Musculoskelet Neuronal Interact 16:247–255

    CAS  PubMed Central  Google Scholar 

  106. Thodberg HH, van Rijn RR, Tanaka T, Martin DD, Kreiborg S (2010) A paediatric bone index derived by automated radiogrammetry. Osteoporos Int 21:1391–1400

    CAS  Google Scholar 

  107. Di Iorgi N, Maruca K, Patti G, Mora S (2018) Update on bone density measurements and their interpretation in children and adolescents. Best Pract Res Clin Endocrinol Metab 32:477–498

    Google Scholar 

  108. Adams JE (2016) Bone densitometry in children. Semin Musculoskelet Radiol 20:254–268

    Google Scholar 

  109. Gordon CM, Leonard MB, Zemel BS (2014) 2013 Pediatric position development conference: executive summary and reflections. J Clin Densitom 17:219–224

    Google Scholar 

  110. Martins A, Monjardino T, Nogueira L, Canhao H, Lucas R (2017) Do bone mineral content and density determine fracture in children? A possible threshold for physical activity. Pediatr Res 82:396–404

    CAS  Google Scholar 

  111. Wasserman H, Gordon CM (2017) Bone mineralization and fracture risk assessment in the pediatric population. J Clin Densitom 20:389–396

    Google Scholar 

  112. Clark EM, Ness AR, Bishop NJ, Tobias JH (2006) Association between bone mass and fractures in children: a prospective cohort study. J Bone Miner Res 21:1489–1495

    Google Scholar 

  113. Cohen MC, Whitby E (2007) The use of magnetic resonance in the hospital and coronial pediatric postmortem examination. Forensic Sci Med Pathol 3:289–296

    CAS  Google Scholar 

  114. Dedouit F, Guilbeau-Frugier C, Capuani C, Sévely A, Joffre F, Rougé D, Rousseau H, Telmon N (2008) Child abuse: practical application of autopsy, radiological, and microscopic studies. J Forensic Sci 53:1424–1429

    Google Scholar 

  115. Sonnemans LJP, Vester MEM, Kolsteren EEM, Erwich J, Nikkels PGJ, Kint PAM, van Rijn RR, Klein WM (2018) Dutch guideline for clinical foetal-neonatal and paediatric post-mortem radiology, including a review of literature. Eur J Pediatr 177:791–803

    CAS  PubMed Central  Google Scholar 

  116. Klein WM, Duijst WLJM, Erwich JJHM, Hofman PAM, Kint PAM, Kroll JJF, Nikkels PGJ, Renken NS, Van Rijn RR, Rosier Y, Scheeren CIE, Stomp SJ, van der Valk P (2018) Klinische postmortem radiologie. https://richtlijnendatabase.nl/richtlijn/klinische_postmortem_radiologie

  117. Shelmerdine SC, Gerrard CY, Rao P, Lynch M, Kroll JJF, Martin D, Miller E, Filograna L, Martinez RM, Ukpo O, Daly B, Hyodoh H, Johnson K, Watt A, Taranath A, Brown SD, Perry DH, Thorup Boel LW, Borowska-Solonynko A, van Rijn RR, Klein WM, Whitby A, Arthurs OJ (2019) Joint European Society of Paediatric Radiology (ESPR) and International Society for Forensic Radiology and Imaging (ISFRI) guidelines: paediatric post-mortem computed tomography (CT) imaging protocol. Pediatr Radiol 49:694–701

    PubMed Central  Google Scholar 

  118. Laskey AL, Haberkorn KL, Applegate KE, Catellier MJ (2009) Postmortem skeletal survey practice in pediatric forensic autopsies: a national survey. J Forensic Sci 54:189–191

    Google Scholar 

  119. Norman MG, Smialek JE, Newman DE, Horembala EJ (1984) The postmortem examination on the abused child. Pathological, radiographic, and legal aspects. Perspect Pediatr Pathol 8:313–343

    CAS  Google Scholar 

  120. Kleinman PK, Marks SC Jr, Richmond JM, Blackbourne BD (1995) Inflicted skeletal injury: a postmortem radiologic-histopathologic study in 31 infants. AJR AmJ Roentgenol 165:647–650

    CAS  Google Scholar 

  121. McGraw EP, Pless JE, Pennington DJ, White SJ (2002) Postmortem radiography after unexpected death in neonates, infants, and children: should imaging be routine? AJR Am J Roentgenol 178:1517–1521

    Google Scholar 

  122. Sperry K, Pfalzgraf R (1990) Inadvertent clavicular fractures caused by “chiropractic” manipulations in an infant: an unusual form of pseudoabuse. J Forensic Sci 35:1211–1216

    CAS  Google Scholar 

  123. Ojima K, Matsumoto H, Hayase T, Fukui Y (1994) An autopsy case of osteogenesis imperfecta initially suspected as child abuse. Forensic Sci Int 65:97–104

    CAS  Google Scholar 

  124. Hughes-Roberts Y, Arthurs OJ, Moss H, Set PA (2012) Post-mortem skeletal surveys in suspected non-accidental injury. Clin Radiol 67:868–876

    CAS  Google Scholar 

  125. Lorand MA, Fitzpatrick JJ, Soter DK (1996) Radiographic atlas of child abuse: a case studies approach. Igaku-Shoin Medical Pub, New York

    Google Scholar 

  126. Grabherr S, Gygax E, Sollberger B, Ross S, Oesterhelweg L, Bolliger S, Christe A, Djonov V, Thali MJ, Dirnhofer R (2008) Two-step postmortem angiography with a modified heart-lung machine: preliminary results. AJR Am J Roentgenol 190:345–351

    Google Scholar 

  127. Stawicki SP, Gracias VH, Schrag SP, Martin ND, Dean AJ, Hoey BA (2008) The dead continue to teach the living: examining the role of computed tomography and magnetic resonance imaging in the setting of postmortem examinations. J Surg Educ 65:200–205

    Google Scholar 

  128. Griffiths PD, Paley MN, Whitby EH (2005) Post-mortem MRI as an adjunct to fetal or neonatal autopsy. Lancet 365:1271–1273

    CAS  Google Scholar 

  129. Shiotani S, Kohno M, Ohashi N, Yamazaki K, Nakayama H, Watanabe K (2004) Postmortem computed tomographic (PMCT) demonstration of the relation between gastrointestinal (GI) distension and hepatic portal venous gas (HPVG). Radiat Med 22:25–29

    Google Scholar 

  130. Grabherr S, Egger C, Vilarino R, Campana L, Jotterand M, Dedouit F (2017) Modern post-mortem imaging: an update on recent developments. Forensic Sci Res 2:52–64

    PubMed Central  Google Scholar 

  131. Ampanozi G, Thali YA, Schweitzer W, Hatch GM, Ebert LC, Thali MJ, Ruder TD (2017) Accuracy of non-contrast PMCT for determining cause of death. Forensic Sci Med Pathol 13:284–292

    Google Scholar 

  132. Grabherr S, Heinemann A, Vogel H, Rutty G, Morgan B, Wozniak K, Dedouit F, Fischer F, Lochner S, Wittig H, Guglielmi G, Eplinius F, Michaud K, Palmiere C, Chevallier C, Mangin P, Grimm JM (2018) Postmortem CT angiography compared with autopsy: a forensic multicenter study. Radiology 288:270–276

    Google Scholar 

  133. Thayyil S, Sebire NJ, Chitty LS, Wade A, Chong W, Olsen O, Gunny RS, Offiah AC, Owens CM, Saunders DE, Scott RJ, Jones R, Norman W, Addison S, Bainbridge A, Cady EB, Vita ED, Robertson NJ, Taylor AM (2013) Post-mortem MRI versus conventional autopsy in fetuses and children: a prospective validation study. Lancet 382:223–233

    Google Scholar 

  134. Krentz BV, Alamo L, Grimm J, Dedouit F, Bruguier C, Chevallier C, Egger C, Da Silva LF, Grabherr S (2016) Performance of post-mortem CT compared to autopsy in children. Int J Legal Med 130:1089–1099

    Google Scholar 

  135. Proisy M, Marchand AJ, Loget P, Bouvet R, Roussey M, Pele F, Rozel C, Treguier C, Darnault P, Bruneau B (2013) Whole-body post-mortem computed tomography compared with autopsy in the investigation of unexpected death in infants and children. Eur Radiol 23:1711–1719

    Google Scholar 

  136. Sieswerda-Hoogendoorn T, Soerdjbalie-Maikoe V, de Bakker H, van Rijn RR (2014) Postmortem CT compared to autopsy in children; concordance in a forensic setting. Int J Legal Med 128(6):957

    Google Scholar 

  137. Shelmerdine SC, Davendralingam N, Palm L, Minden T, Cary N, Sebire NJ, Arthurs OJ (2019) Diagnostic accuracy of postmortem CT of children: a retrospective single-center study. AJR Am J Roentgenol 212:1335. https://doi.org/10.2214/AJR.18.20534

    Article  Google Scholar 

  138. Bajaj M, Offiah AC (2015) Imaging in suspected child abuse: necessity or radiation hazard? Arch Dis Child 100:1163

    Google Scholar 

  139. Berger RP, Panigrahy A, Gottschalk S, Sheetz M (2016) Effective radiation dose in a skeletal survey performed for suspected child abuse. J Pediatr 171:310–312

    Google Scholar 

  140. Hampel J, Pascoal A (2018) Comparison and optimization of imaging techniques in suspected physical abuse paediatric radiography. Br J Radiol 91:20170650

    PubMed Central  Google Scholar 

  141. Rao R, Browne D, Lunt B, Perry D, Reed P, Kelly P (2019) Radiation doses in diagnostic imaging for suspected physical abuse. Arch Dis Child 104:863–868

    Google Scholar 

  142. Nickoloff EL, Lu ZF, Dutta AK, So JC (2008) Radiation dose descriptors: BERT, COD, DAP, and other strange creatures. Radiographics 28:1439–1450

    Google Scholar 

  143. United Nations Scientific Committee on the Effects of Atomic Radiation (2010) Sources and effects of ionizing radiation. https://www.unscear.org/docs/publications/2010/UNSCEAR_2010_Report.pdf. Accessed 5 July 2021

  144. U.S. Nuclear Regulatory Commission (NRC) Personal annual radiation dose calculator. https://www.nrc.gov/about-nrc/radiation/around-us/calculator.html. Accessed 5 July 2021

  145. Sheppard JP, Nguyen T, Alkhalid Y, Beckett JS, Salamon N, Yang I (2018) Risk of brain tumor induction from pediatric head CT procedures: a systematic literature review. Brain Tumor Res Treat 6:1–7

    PubMed Central  Google Scholar 

  146. Abalo KD, Rage E, Leuraud K, Richardson DB, Le Pointe HD, Laurier D, Bernier MO (2021) Early life ionizing radiation exposure and cancer risks: systematic review and meta-analysis. Pediatr Radiol 51:45–56

    Google Scholar 

  147. Bernier MO, Baysson H, Pearce MS, Moissonnier M, Cardis E, Hauptmann M, Struelens L, Dabin J, Johansen C, Journy N, Laurier D, Blettner M, Le Cornet L, Pokora R, Gradowska P, Meulepas JM, Kjaerheim K, Istad T, Olerud H, Sovik A, Bosch de Basea M, Thierry-Chef I, Kaijser M, Nordenskjöld A, Berrington de Gonzalez A, Harbron RW, Kesminiene A (2019) Cohort profile: the EPI-CT study: a European pooled epidemiological study to quantify the risk of radiation-induced cancer from paediatric CT. Int J Epidemiol 48:379–381

    Google Scholar 

  148. Center for Disease Control and Prevention (CDD) Radiation from Air Travel. https://www.cdc.gov/nceh/radiation/air_travel.html. Accessed 5 July 2021

  149. Public Health England (2011) Ionising radiation: dose comparisons. https://www.gov.uk/government/publications/ionising-radiation-dose-comparisons/ionising-radiation-dose-comparisons. Accessed 5 July 2021

  150. U.S. Nuclear Regulatory Commission (NRC) Doses in Our Daily Lives. https://www.nrc.gov/about-nrc/radiation/around-us/doses-daily-lives.html. Accessed 5 July 2021

  151. Scheuer JL, Musgrave JH, Evans SP (1980) The estimation of late fetal and perinatal age from limb bone length by linear and logarithmic regression. Ann Hum Biol 7:257–265

    CAS  Google Scholar 

  152. Rijksinstituut voor Volksgezondheid en Milieu Natural radiation in figures [Natuurlijke straling in cijfers]. https://www.rivm.nl/straling-en-radioactiviteit/straling-van-natuurlijke-oorsprong/natuurlijke-straling-in-cijfers. Accessed 5 July 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rick R. van Rijn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van Rijn, R.R., Nievelstein, R.A.J., Robben, S.G.F. (2023). Radiology in Suspected Child Abuse. In: Bilo, R.A., Robben, S.G.F., van Rijn, R.R. (eds) Forensic Aspects of Paediatric Fractures. Springer, Cham. https://doi.org/10.1007/978-3-031-12041-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12041-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12040-4

  • Online ISBN: 978-3-031-12041-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics