Skip to main content

A 3D Two-Phase Conservative Level-Set Method Using an Unstructured Finite-Volume Formulation

  • Chapter
  • First Online:
Mathematical and Computational Models of Flows and Waves in Geophysics

Part of the book series: CIMAT Lectures in Mathematical Sciences ((CIMATLMS))

  • 325 Accesses

Abstract

Mathematical and computational modeling of two-phase flows simulations is widely used in many physical and industrial applications. Moreover, a numerical model with an unstructured level-set method allows for flexible applications to geophysical flows of arbitrary domains with the presence of many obstacles. In this work, we introduce a new second-order time- and space-accurate method developed to solve in parallel a conservative level-set equation in three-dimensional geometries. We employ a θ-method for the time integration and a finite-volume method on prisms elements consisting of triangular cells on the horizontal plane and several layers in the vertical direction for the space discretization. We apply an upwind scheme with a Local Extremum Diminishing flux limiter to approximate the convective terms that solves the level-set equation using either the Heaviside function or the regularized characteristic function. Moreover, we present a parallelization strategy using a block domain decomposition technique and Message Passing Interface. The numerical method is initially validated against classical advection test cases and unstructured grids. Finally, several interface-capturing tests, including topology changes, are used to demonstrate the capabilities and performance of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Hoïnk, J. Schmalzl, U. Hansen, Dynamics of metal-silicate separation in a terrestrial magma ocean. Geochem. Geophys. Geosyst. 7(9) (2006)

    Google Scholar 

  2. J. Monteux, Y. Ricard, N. Coltice, F. Dubuffet, M. Ulvrova, A model of metal-silicate separation on growing planets. Earth Planet. Sci. Lett. 287, 353–362 (2009)

    Article  Google Scholar 

  3. H. Schmeling et al., A benchmark comparison of spontaneous subduction models-Towards a free surface. Phys. Earth. Planet. Inter. 171, 198–223 (2008)

    Article  Google Scholar 

  4. J. van Hunen, A.P. van den Berg, N.J. Vlaar, Various mechanisms to induce present day shallow flat subduction and implications for the younger Earth: a numerical parameter study. Phys. Earth. Planet. Inter. 146, 179–174 (2004)

    Article  Google Scholar 

  5. L. Bourgouin, H.B. MÃijhlhaus, A. Jane Hale, A. Arsac, Studying the influence of a solid shell on lava dome growth and evolution using the level set method. Geophys. J. Int. 170(3), 1431–1438 (2007)

    Article  Google Scholar 

  6. A.J. Hale, L. Bourgouin, H.B. Mühlhaus, Using the level set method to model endogenous lava dome growth. J. Geophys. Res. Solid Earth 112(B3) (2007)

    Google Scholar 

  7. L. Bourgouin, H.B. Mühlhaus, A.J. Hale, A. Arsac, Towards realistic simulations of lava dome growth using the level set method. Acta Geotech. 1(4), 225–236 (2006)

    Article  Google Scholar 

  8. H. Samuel, M. Evonuk, Modeling advection in geophysical flows with particle level sets. Geochem. Geophys. Geosyst. 11(8) (2010)

    Google Scholar 

  9. J. Suckale, J.C. Nave, B.H. Hager, It takes three to tango: 1. Simulating buoyancy-driven flow in the presence of large viscosity contrasts. J. Geophys. Res. Solid Earth 115(B7) (2010)

    Google Scholar 

  10. R. Scardovelli, S. Zaleski, Direct numerical simulation of free-surface and interfacial flow. Ann. Rev. Fluid Mech. 31, 567–603 (1999)

    Article  MathSciNet  Google Scholar 

  11. J.M. Floryan, H. Rasmussen, Numerical methods for viscous flows with moving boundaries. Appl. Mech. Rev. 42(12), 323–341 (1989)

    Article  MathSciNet  Google Scholar 

  12. T. Okamoto, M. Kawahara, Two-dimensional sloshing analysis by Lagrangian finite element method. Int. J. Num. Meth. Fluids 11, 453–477 (1990)

    Article  MATH  Google Scholar 

  13. G. Tryggvason et al., A front-tracking method for computations of multiphase flows. J. Comput. Phys. 169, 708–759 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Uh, S. Xu, The immersed interface method for simulating two-fluid flows. Numer. Math. Theory Methods Appl. 7(4), 447–472 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Kang, R.P. Fedkiw, X.D. Liu, A boundary condition capturing method for multiphase incompressible flow. J. Scient. Comput. 15, 323–360 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. C. Farhat, A. Rallu, S. Shankaran, A higher-order generalized ghost fluid method for the poor for the three-dimensional two-phase flow computation of underwater implosions. J. Comput. Phys. 227, 7674–7700 (2008)

    Article  MATH  Google Scholar 

  17. C.W. Hirt, B.D. Nichols, Volume of Fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981)

    Article  MATH  Google Scholar 

  18. A. Kawano, A simple volume-of-fluid reconstruction method for three-dimensional two-phase flows. Comput. Fluids 134, 130–145 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Osher, R.P. Fedkiw, Level set method: an overview and some recent results. J. Comput. Phys. 169, 463–502 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. J.A. Sethian, P. Smereka, Level set methods for fluids interfaces. Ann. Rev. Fluid Mech. 35, 341–372 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Chen, P. Minev, K. Nandakumar, A projection scheme for incompressible multiphase flow using adaptive Eulerian grid. Int. J. Numer. Meth. Fluids 45, 1–19 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. E. Marchandise, P. Geuzaine, N. Chevaugeon, A Quadrature free discontinuous Galerkin method for the level set equation. J. Comput. Phys. 212, 338–357 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Frolkovic, D. Logashenko, G. Wittum, Flux-based level set method for two phase flows, in Finite Volumes for Complex Applications, ed. by R. Eymard, J.M. Herard (Wiley, 2008), pp. 415–422

    Google Scholar 

  24. X. Lv, Q. Zou, Y. Zhao, D. Reeve, A novel coupled level set and volume of fluid method for sharp interface capturing on 3D tetrahedral grids. J. Comput. Phys. 229, 2573–2604 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. C.E. Kees, I. Akkerman, M.W. Farthing, Y. Bazilevs, A conservative level set method suitable for variable-order approximations and unstructured meshes. J. Comput. Phys. 230, 4536–4558 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. K. Ito, T. Kunugi, H. Ohshima, T. Kawamura, A volume-conservative PLIC algorithm on three-dimensional fully unstructured meshes. Comput. Fluids 88, 250–261 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. N. Balcázar, L. Jofre, O. Lehmkuhl, J. Castro, J. Rigola, A finite-volume/level-set method for simulating two-phase flows on unstructured grids. Int. J. Multiph. Flow 64, 55–72 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. B. Xie, J. Peng, X. Feng, An unstructured-grid numerical model for interfacial multiphase fluids based on multi-moment finite volume formulation and THINC method. Int. J. Multiph. Flow 89, 375–398 (2017)

    Article  MathSciNet  Google Scholar 

  29. E. Olsson, G. Kreiss, A conservative level set method for two phase flow. J. Comput. Phys. 210, 225–246 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. L.X. Li, H.S. Liao, L.J. Qi, An improved r-factor algorithm for TVD schemes. Int. J. Heat Mass Transf. 51(3–4), 610–617 (2008)

    Article  MATH  Google Scholar 

  31. M. Uh Zapata, R. Itzá Balam, A conservative level-set/finite-volume method on unstructured grids based on a central interpolation scheme. J. Comput. Phys. 444, 110576 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. F.S. Lien, A pressure-based unstructured grid method for all-speed flows. Int. J. Numer. Meth. Fluids 33, 355–374 (2000)

    Article  MATH  Google Scholar 

  33. D. Vidović, A. Segal, P. Wesseling, A superlinearly convergent Mach-uniform finite volume method for the Euler equations on staggered unstructured grids. J. Comput. Phys. 217(2), 277–294 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Y. Sato, T. Hino, K. Ohashi, Parallelization of an unstructured Navier-Stokes solver using a multi-color ordering method for OpenMP. Comput. Fluids 88, 496–509 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. M. Uh Zapata, D. Pham Van Bang, K.D. Nguyen, Parallel SOR methods with a parabolic-diffusion acceleration technique for solving an unstructured-grid Poisson equation on 3D arbitrary geometries. Int. J. Comp. Fluid Dyn. 30(5), 370–385 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. L. Zhao, X. Bai, T. Li, J.J.R. Williams, Improved conservative level set method. Int. J. Numer. Meth. Fluids 75(8), 575–590 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. R. Eymard, T. Gallouet, R. Herbin, Finite volume methods, in Handbook of Numerical Analysis, vol. VII (Elsevier, North-Holland, 2000)

    MATH  Google Scholar 

  38. M. Uh Zapata, D. Pham Van Bang, K.D. Nguyen, An unstructured finite volume technique for the 3D Poisson equation on arbitrary geometry using a σ-coordinate system. Int. J. Numer. Meth. Fluids 76(10), 611–631 (2014)

    Article  MathSciNet  Google Scholar 

  39. D. Kim, H. Choi, A second-order time-accurate finite volume method for unsteady incompressible flow on hybrid unstructured grids. J. Comput. Phys. 162, 411–428 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  40. S.T. Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys. 31(3), 335–62 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  41. D. Enright, R. Fedkiw, J. Ferziger, I. Mitchell, A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183(1), 83–116 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. R.J. LeVeque, High-resolution conservative algorithms for advection in incompressible flow. SIAM J. Numer. Anal. 33(2), 627–65 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  43. R.N. Elias, A.L.G.A. Coutinho, Stabilized edge-based finite element simulation of free-surface flows. Int. J. Numer. Methods Fluids 54, 965–993 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Mexican Council of Science and Technology projects Investigadoras e Investigadores por Mexico and postdoctoral for their financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel UhZapata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

UhZapata, M., ItzáBalam, R. (2022). A 3D Two-Phase Conservative Level-Set Method Using an Unstructured Finite-Volume Formulation. In: Hernández-Dueñas, G., Moreles, M.A. (eds) Mathematical and Computational Models of Flows and Waves in Geophysics. CIMAT Lectures in Mathematical Sciences. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-12007-7_3

Download citation

Publish with us

Policies and ethics