Skip to main content

Effectiveness of Distributed Acoustic Sensing for Acquiring Surface Wave Dispersion Data Using Multichannel Analysis of Surface Waves

  • Conference paper
  • First Online:
Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering (Beijing 2022) (PBD-IV 2022)

Abstract

Distributed acoustic sensing (DAS) is a rapidly expanding tool to sense vibrations and system deformations in many engineering applications. In terms of site characterization, DAS presents the ability to make static and dynamic strain measurements on a scale (e.g., kilometers), density (e.g., meter-scale), and fidelity (e.g., microstrain) that was previously unattainable with traditional measurement technologies. In this study, we assess the effectiveness of using DAS to extract surface wave dispersion data using the multichannel analysis of surface waves (MASW) technique. We utilized both highly-controlled, broadband vibroseis shaker truck and more-variable, narrow-band sledgehammer sources to excite the near surface and compared the DAS-derived dispersion data directly with concurrently acquired traditional geophone-derived dispersion data. We report that the differences between the two sensing approaches are minimal and well within the uncertainty bounds associated with each individual measurement for the following DAS testing conditions: (a) a tight-buffered or strain-sensing fiber optic cable is used, (b) the cable is buried in a shallow trench to enhance coupling, and (c) short gauge lengths and small channel separations are used. Our deployed conditions are more promising than previous attempts documented in the literature, thereby demonstrating that DAS can provide accurate measurements of surface wave dispersion data of the same quality as geophones. We show that frequency-dependent normalization of the dispersion image removes the effects of scaling, integration, and differentiation of the measured data, thereby removing the need to post-process the geophone-derived and DAS-derived waveforms into equivalent units before performing dispersion processing. Finally, we summarize the important effect of gauge length on the dispersion data for future reference. This study demonstrates that DAS, when appropriate considerations are made, can be used in-lieu of traditional sensors (i.e., geophones) for making high-quality measurements of surface wave dispersion data using the MASW technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Acknowledgements

This work was supported in part by the U.S. National Science Foundation (NSF) grants CMMI-2037900, CMMI-1520808, and CMMI-1931162. However, any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NSF. Special thanks to Dr. Kevin Anderson at Austin Water - Center for Environmental Research for the access to the Hornsby Bend Biosolids Management Plant test site. Special thanks to Dr. Kenichi Soga for the contribution of the NanZee cable used in this study. Special thanks to Todd Bown and the OptaSense team for their assistance in configuring the ODH4, extracting and filtering the DAS-derived seismic waveforms, and permitting us to publish these results. Active-source surface wave processing and calculation of dispersion statistics were performed using the Python package swprocess v0.1.0b0 (Vantassel 2021a). Subsequent operations with the dispersion statistics were performed using the Python package swprepost v1.0.0 (Vantassel 2021b).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph P. Vantassel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vantassel, J.P. et al. (2022). Effectiveness of Distributed Acoustic Sensing for Acquiring Surface Wave Dispersion Data Using Multichannel Analysis of Surface Waves. In: Wang, L., Zhang, JM., Wang, R. (eds) Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering (Beijing 2022). PBD-IV 2022. Geotechnical, Geological and Earthquake Engineering, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-031-11898-2_77

Download citation

Publish with us

Policies and ethics