Skip to main content

Transfer Learning via Representation Learning

  • Chapter
  • First Online:
Federated and Transfer Learning

Part of the book series: Adaptation, Learning, and Optimization ((ALO,volume 27))

Abstract

The remarkable performance boost of artificial intelligence (AI) algorithms is a result of re-emergence of deep neural networks that have been applied in a diverse set of applications. The success of deep learning stems from relaxing the need for the non-trivial task of feature-engineering. However, this remarkable success is conditioned on manually annotating a large amount of data points to generate suitable training datasets to supervise training of these networks. Since manual data annotation is time-consuming and expensive in many applications, learning in data-scarce regimes has been a major recent area of research focus in machine learning (ML) and AI. Transferring and reusing knowledge from a related learning problem is a core strategy for addressing challenges of learning in data-scarce regimens. Transfer learning is not a new field in ML and several great survey exist on this topicĀ [63, 95, 98, 105, 120]. However, these existing survey are meant to be general and extensively survey many works in the area. In this chapter, we survey a very specific subset of works in this area. Our goal is to explore a framework that unifies a broad range of knowledge transfer problems as learning cross-problems relations and similarities using an representation learning. By representation learning, we mean representing the data in the input space in a latent embedding space. The latent embedding space is meant as an intermediate space to explore relationships between several ML problems. We review the recently developed algorithms that use this strategy to address several primary transfer learning settings in five primary area of: (i) online and offline multitask learning, (ii) lifelong learning and continual learning, (iii) low-shot learning, including, few-shot learning and zero-shot learning, (iv) domain adaptation, and (v) collective/distributed learning. We discuss existing challenges and future potential research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad WU, Zhang Z, Ma X, Chang K-W, Peng N (2019) Cross-lingual dependency parsing with unlabeled auxiliary languages. In: Proceedings of the 23rd conference on computational natural language learning (CoNLL)

    Google ScholarĀ 

  2. Baevski A, Zhou Y, Mohamed A, Auli M (2020) wav2vec 2.0: a framework for self-supervised learning of speech representations. In: Advances in neural information processing systems, vol 33

    Google ScholarĀ 

  3. Baktashmotlagh M, Harandi M, Lovell B, Salzmann M (2013) Unsupervised domain adaptation by domain invariant projection. In: International conference on computer vision, pp 769ā€“776

    Google ScholarĀ 

  4. Baxter J (2000) A model of inductive bias learning. J Artif Intell Res 12:149ā€“198

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  5. Bickel S, Bogojeska J, Lengauer T, Scheffer T (2008) Multi-task learning for HIV therapy screening. In: Proceedings of the 25th international conference on Machine learning, pp 56ā€“63

    Google ScholarĀ 

  6. CandĆØs EJ, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489ā€“509

    Google ScholarĀ 

  7. Chang M-W, Ratinov L-A, Roth D, Srikumar V (2008) Importance of semantic representation: dataless classification. In Aaai 2:830ā€“835

    Google ScholarĀ 

  8. Changpinyo S, Hu H, Sha F (2018) Multi-task learning for sequence tagging: an empirical study. In: Proceedings of the 27th international conference on computational linguistics, pp 2965ā€“2977

    Google ScholarĀ 

  9. Chen M, Chang K-W, Roth D (2020) Recent advances in transferable representation learning. In: AAAI tutorials

    Google ScholarĀ 

  10. Chen S, Crammer K, He H, Roth D, Su WJ (2021) Weighted training for cross-task learning. arXiv:2105.14095

  11. Chen T, Kornblith S, Norouzi M, Hinton G (2020) A simple framework for contrastive learning of visual representations. In: International conference on machine learning PMLR, pp 1597ā€“1607

    Google ScholarĀ 

  12. Xilun Chen Yu, Sun BA, Cardie C, Weinberger K (2018) Adversarial deep averaging networks for cross-lingual sentiment classification. Trans Assoc Comput Linguist 6:557ā€“570

    ArticleĀ  Google ScholarĀ 

  13. Chen X, Chen M, Fan C, Uppunda A, Zaniolo C (2020) Cross-lingual knowledge graph completion via ensemble knowledge transfer. In: EMNLP

    Google ScholarĀ 

  14. Chen Z, Liu B (2018) Lifelong machine learning. Synth Lect Artif Intell Mach Learn 12(3):1ā€“207

    Google ScholarĀ 

  15. Courty N, Flamary R, Tuia D, Rakotomamonjy A (2017) Optimal transport for domain adaptation. IEEE Trans Pattern Anal Mach Intell 39(9):1853ā€“1865

    ArticleĀ  Google ScholarĀ 

  16. Devlin J, Chang M-W, Lee K, Toutanova K (2019) Bert: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT (1)

    Google ScholarĀ 

  17. Dinu G, Lazaridou A, Baroni M (2014) Improving ZSL by mitigating the hubness problem. arXiv:1412.6568

  18. Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289ā€“1306

    Google ScholarĀ 

  19. Bo D, Wang S, Chang X, Wang N, Zhang L, Tao D (2018) Multi-task learning for blind source separation. IEEE Trans Image Process 27(9):4219ā€“4231

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  20. Shaolei Du S, Hu W, Kakade SM, Lee JD, Lei Q (2021) Few-shot learning via learning the representation, provably. In: International conference on learning representations

    Google ScholarĀ 

  21. Fernando B, Habrard A, Sebban M, Tuytelaars T (2013) Unsupervised visual domain adaptation using subspace alignment. In: International conference on computer vision, pp 2960ā€“2967

    Google ScholarĀ 

  22. FitzGerald N, Michael J, He L, Zettlemoyer L (2018) Large-scale QA-SRL parsing. In: ACL, pp 2051ā€“2060

    Google ScholarĀ 

  23. Freund Y, Iyer R, Schapire RE, Singer Y (2004) RankBoost: an efficient boosting algorithm for combining preferences. J Mach Learn Res (JMLR) 4(6):933ā€“969

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  24. Gabourie A, Rostami M, Kolouri S, Kim K (2019) Learning a domain-invariant embedding for unsupervised domain adaptation using class-conditioned distribution alignment. In: Allerton conference on communication, control, and computing, pp 352ā€“359

    Google ScholarĀ 

  25. Ganin Y, Lempitsky V (2015) Unsupervised domain adaptation by backpropagation. In: Proceedings of international conference on machine learning

    Google ScholarĀ 

  26. Gong B, Shi Y, Sha F, Grauman K (2012) Geodesic flow kernel for unsupervised domain adaptation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2066ā€“2073

    Google ScholarĀ 

  27. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville AC, Bengio Y (2014) Generative adversarial nets. In: Proceedings of the neural information processing systems

    Google ScholarĀ 

  28. Guo J Darsh J Shah, Barzilay R (2018) Multi-source domain adaptation with mixture of experts. In: EMNLP

    Google ScholarĀ 

  29. Gupta A, Devin C, Liu Y, Abbeel P, Levine S (2017) Learning invariant feature spaces to transfer skills with reinforcement learning. In: Proceedings of the international conference on learning representations, pp 1ā€“122

    Google ScholarĀ 

  30. Hadsell R, Chopra S, LeCun Y (2006) Dimensionality reduction by learning an invariant mapping. In: Proceedings of the IEEE conference on computer vision and pattern recognition, volĀ 2. IEEE, pp 1735ā€“1742

    Google ScholarĀ 

  31. Hao J, Ju C, Chen M, Sun Y, Zaniolo C, Wang W (2020) Bio-joie: joint representation learning of biological knowledge bases. In: Proceedings of the 11st ACM conference on bioinformics, computational biology and biomedicine (BCB). ACM

    Google ScholarĀ 

  32. Hao N, Oghbaee A, Rostami M, Derbinsky N, Bento J (2016) Testing fine-grained parallelism for the admm on a factor-graph. In: 2016 IEEE international parallel and distributed processing symposium workshops (IPDPSW). IEEE, pp 835ā€“844

    Google ScholarĀ 

  33. He H, Ning Q, Roth D (2020) QuASE: question-answer driven sentence encoding. In: Proceedings of the 58th annual meeting of the association for computational linguistics, pp 8743ā€“8758

    Google ScholarĀ 

  34. He H, Zhang M, Ning Q, Roth D (2021) Foreseeing the benefits of incidental supervision. In: Proceedings of the conference on empirical methods in natural language processing (EMNLP)

    Google ScholarĀ 

  35. He L, Lewis M, Zettlemoyer L (2015) Question-answer driven semantic role labeling: using natural language to annotate natural language. In: EMNLP, pp 643ā€“653

    Google ScholarĀ 

  36. Hoffman J, Tzeng E, Park T, Zhu J-Y, Isola P, Saenko K, Efros A, Darrell T (2018) Cycada: cycle-consistent adversarial domain adaptation. In: International conference on machine learning. PMLR, pp 1989ā€“1998

    Google ScholarĀ 

  37. Hwang GM, Schultz KM, Monaco JD, Zhang K (2021) Neuro-inspired dynamic replanning in swarms-theoretical neuroscience extends swarming in complex environments. Johns Hopkins APL Tech Digest 35:443ā€“447

    Google ScholarĀ 

  38. Isele D, Rostami M, Eaton E (2016) Using task features for zero-shot knowledge transfer in lifelong learning. In: Proceedings of the international joint conferences on artificial intelligence, pp 1620ā€“1626

    Google ScholarĀ 

  39. Jin X, Lin Y, Rostami M, Ren X (2021) Learn continually, generalize rapidly: lifelong knowledge accumulation for few-shot learning. In: Findings of EMNLP

    Google ScholarĀ 

  40. Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks

    Google ScholarĀ 

  41. Kiros R, Zhu Y, Salakhutdinov RR, Zemel R, Urtasun R, Torralba A, Fidler S (2015) Skip-thought vectors. In: Advances in neural information processing systems, pp 3294ā€“3302

    Google ScholarĀ 

  42. Klein A, Mamou J, Pyatkin V, Stepanov D, He H, Roth D, Zettlemoyer L, Dagan I (2020) QANom: question-answer driven srl for nominalizations. In: Proceedings of the 28th international conference on computational linguistics, pp 3069ā€“3083

    Google ScholarĀ 

  43. Kodirov E, X T, Gong S (2017) Semantic autoencoder for zero-shot learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition

    Google ScholarĀ 

  44. Kodirov E, Xiang T, Fu Z, Gong S (2015) Unsupervised domain adaptation for zero-shot learning. In: International conference on computer vision, pp 2452ā€“2460

    Google ScholarĀ 

  45. Kolesnikov A, Zhai X, Beyer L (2019) Revisiting self-supervised visual representation learning. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 1920ā€“1929

    Google ScholarĀ 

  46. Kolouri S, Rostami M, Owechko Y, Kim K (2018) Joint dictionaries for zero-shot learning. In: Proceedings of the AAAI conference on artificial intelligence, pp 3431ā€“3439

    Google ScholarĀ 

  47. Kumar A, DaumĆ© H (2012) Learning task grouping and overlap in multi-task learning. In: Proceedings of international conference on machine learning, pp 1383ā€“1390

    Google ScholarĀ 

  48. Lampert C, Nickisch H, Harmeling S (2009) Learning to detect unseen object classes by between-class attribute transfer. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 951ā€“958

    Google ScholarĀ 

  49. Le D, Thai M, Nguyen T (2020) Multi-task learning for metaphor detection with graph convolutional neural networks and word sense disambiguation. In: Proceedings of the AAAI conference on artificial intelligence, vol 34, pp 8139ā€“8146

    Google ScholarĀ 

  50. Liu NF, Gardner M, Belinkov Y, Peters ME, Smith NA (2019) Linguistic knowledge and transferability of contextual representations. In: Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, Vol 1 (Long and Short Papers), pp 1073ā€“1094

    Google ScholarĀ 

  51. Ma D, Ryant N, Liberman M (2021) Probing acoustic representations for phonetic properties. In: ICASSP 2021-2021 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 311ā€“315

    Google ScholarĀ 

  52. Maurer A (2004) A note on the PAC-Bayesian theorem. arXiv:cs/0411099

  53. Maurer A, Pontil M, Romera-Paredes B (2016) The benefit of multitask representation learning. J Mach Learn Res 17(1):2853ā€“2884

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  54. McMahan B, Moore E, Ramage D, Hampson S, Aguera yĀ Arcas B (2017) Communication-efficient learning of deep networks from decentralized data. In: Artificial intelligence and statistics. PMLR, pp 1273ā€“1282

    Google ScholarĀ 

  55. McNamara D, Balcan M-F (2017) Risk bounds for transferring representations with and without fine-tuning. In: International conference on machine learning, pp 2373ā€“2381

    Google ScholarĀ 

  56. Michael J (2017) Gabriel Stanovsky. Ido Dagan, and Luke Zettlemoyer. Crowdsourcing question-answer meaning representations. NAACL, Luheng He

    Google ScholarĀ 

  57. Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector space. arXiv:1301.3781

  58. Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and phrases and their compositionality. In: Advances in neural information processing systems, pp 3111ā€“3119

    Google ScholarĀ 

  59. Mirtaheri M, Rostami M, Ren X, Morstatter F, Galstyan A (2021) One-shot learning for temporal knowledge graphs. In: 3rd conference on automated knowledge base construction

    Google ScholarĀ 

  60. Morgenstern Y, Rostami M, Purves D (2014) Properties of artificial networks evolved to contend with natural spectra. Proc Natl Acad Sci 111(Supplement 3):10868ā€“10872

    ArticleĀ  Google ScholarĀ 

  61. Nigam I, Huang C, Ramanan D (2018) Ensemble knowledge transfer for semantic segmentation. In: WACV. IEEE, pp 1499ā€“1508

    Google ScholarĀ 

  62. Okamoto N, Minami S, Hirakawa T, Yamashita T, Fujiyoshi H (2021) Deep ensemble collaborative learning by using knowledge-transfer graph for fine-grained object classification. arXiv:2103.14845

  63. Pan SJ, Yang Q (2009) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345ā€“1359

    Google ScholarĀ 

  64. Pei Z, Cao Z, Long M, Wang J (2018) Multi-adversarial domain adaptation. In: Thirty-second AAAI conference on artificial intelligence

    Google ScholarĀ 

  65. Peng W, Tang Q, Dai W, Chen T (2022) Improving cancer driver gene identification using multi-task learning on graph convolutional network. Briefings Bioinf 23(1):bbab43

    Google ScholarĀ 

  66. Peters ME, Neumann M, Iyyer M, Gardner M, Clark C, Lee K, Zettlemoyer L (2018) Deep contextualized word representations. In: Proceedings of NAACL-HLT, pp 2227ā€“2237

    Google ScholarĀ 

  67. Pope PE, Kolouri S, Rostami M, Martin CE, Hoffmann H (2019) Explainability methods for graph convolutional neural networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 10772ā€“10781

    Google ScholarĀ 

  68. Rakshit S, Tamboli D, Meshram PS, Banerjee B, Roig G, Chaudhuri S (2020) Multi-source open-set deep adversarial domain adaptation. In: European conference on computer vision. Springer, pp 735ā€“750

    Google ScholarĀ 

  69. Rehman A, Rostami M, Wang Z, Brunet D, Vrscay ER (2012) Ssim-inspired image restoration using sparse representation. EURASIP J Adv Signal Process 2012(1):1ā€“12

    Google ScholarĀ 

  70. Romera-Parede B, Torr P (2015) An embarrassingly simple approach to ZSL. In: Proceedings of international conference on machine learning, pp 2152ā€“2161

    Google ScholarĀ 

  71. Rostami M, Huber D, Lu T (2018) A crowdsourcing triage algorithm for geopolitical event forecasting. In: ACM RecSys conference, pp 377ā€“381

    Google ScholarĀ 

  72. Rostami M, Isele D, Eaton E (2020) Using task descriptions in lifelong machine learning for improved performance and zero-shot transfer. J Artif Intell Res

    Google ScholarĀ 

  73. Rostami M, Kolouri S, Kim K, Eaton E (2018) Multi-agent distributed lifelong learning for collective knowledge acquisition. In: International conference on autonomous agents and multiagent systems, pp 712ā€“720

    Google ScholarĀ 

  74. Rostami M, Kolouri S, Kim K, Eaton E (2019) Sar image classification using few-shot cross-domain transfer learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops

    Google ScholarĀ 

  75. Rostami M, Kolouri S, McClelland J, Pilly P (2020) Generative continual concept learning. In: Proceedings of the AAAI conference on artificial intelligence

    Google ScholarĀ 

  76. Rostami M, Kolouri S, Pilly P (2019) Complementary learning for overcoming catastrophic forgetting using experience replay. In: Proceedings of the international joint conferences on artificial intelligence, pp 3339ā€“3345

    Google ScholarĀ 

  77. Rostami M (2019) Learning transferable knowledge through embedding spaces. PhD thesis, University of Pennsylvania

    Google ScholarĀ 

  78. Rostami M (2021) Lifelong domain adaptation via consolidated internal distribution. Advances in neural information processing systems, 34

    Google ScholarĀ 

  79. Rostami M (2021) Transfer learning through embedding spaces. CRC Press

    Google ScholarĀ 

  80. Rostami M, Babaie-Zadeh M, Samadi S, Jutten C (2011) Blind source separation of discrete finite alphabet sources using a single mixture. In: 2011 IEEE statistical signal processing workshop (SSP). IEEE, pp 709ā€“712

    Google ScholarĀ 

  81. Rostami M, Cheung N-M, QS Quek T (2013) Compressed sensing of diffusion fields under heat equation constraint. In: 2013 IEEE international conference on acoustics, speech and signal processing. IEEE, pp 4271ā€“4274

    Google ScholarĀ 

  82. Rostami M, Galstyan A (2020) Learning a max-margin classifier for cross-domain sentiment analysis

    Google ScholarĀ 

  83. Rostami M, Galstyan A (2020) Sequential unsupervised domain adaptation through prototypical distributions

    Google ScholarĀ 

  84. Rostami M, Galstyan A (2021) Cognitively inspired learning of incremental drifting concepts. arXiv:2110.04662

  85. Rostami M, Kolouri S, Eaton E, Kim K (2019) Deep transfer learning for few-shot sar image classification. Remote Sensing 11(11):1374

    ArticleĀ  Google ScholarĀ 

  86. Rostami M, Kolouri S, Murez Z, Owechko Y, Eaton E, Kim K (2022) Zero-shot image classification using coupled dictionary embedding. Mach Learn with Appl 8:100278

    ArticleĀ  Google ScholarĀ 

  87. Rostami M, Spinoulas L, Hussein M, Mathai J, Abd-Almageed W (2021) Detection and continual learning of novel face presentation attacks. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 14851ā€“14860

    Google ScholarĀ 

  88. Ruvolo P, Eaton E (2013) ELLA: an efficient lifelong learning algorithm. In: Proceedings of international conference on machine learning, pp 507ā€“515

    Google ScholarĀ 

  89. Shamir O, Srebro N (2014) Distributed stochastic optimization and learning. In: 2014 52nd annual allerton conference on communication, control, and computing (Allerton). IEEE, pp 850ā€“857

    Google ScholarĀ 

  90. Shin H, Lee J, Kim J, Kim J (2017) Continual learning with deep generative replay. In: Proceedings of the neural information processing systems, pp 2990ā€“2999

    Google ScholarĀ 

  91. Smith V, Chiang C-K, Sanjabi M, Talwalkar AS (2017) Federated multi-task learning. Advances in neural information processing systems, 30

    Google ScholarĀ 

  92. Sorokin A, Forsyth D (2008)Utility data annotation with amazon mechanical turk. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops. IEEE, pp 1ā€“8

    Google ScholarĀ 

  93. Stan S, Rostami M (2021) Unsupervised model adaptation for continual semantic segmentation. In: Proceedings of the AAAI conference on artificial intelligence, vol 35, pp 2593ā€“2601

    Google ScholarĀ 

  94. Stan S, Rostami M (2021) Unsupervised model adaptation for continual semantic segmentation. In: Proceedings of the AAAI conference on artificial intelligence

    Google ScholarĀ 

  95. Tan C, Sun F, Kong T, Zhang W, Yang C, Liu C (2018) A survey on deep transfer learning. In: International conference on artificial neural networks. Springer, pp 270ā€“279

    Google ScholarĀ 

  96. Tenney I, Xia P, Chen B, Wang A, Poliak A, McCoy RT, Kim N, VanĀ Durme B, Bowman SR, Das D etĀ al (2018) What do you learn from context? probing for sentence structure in contextualized word representations. In: International conference on learning representations

    Google ScholarĀ 

  97. Tommasi T, Quadrianto N, Caputo B, Lampert C (2012) Beyond dataset bias: Multi-task unaligned shared knowledge transfer. In: Asian conference on computer vision, pp 1ā€“15

    Google ScholarĀ 

  98. Torrey L, Shavlik J (2010) Transfer learning. In: Handbook of research on machine learning applications and trends: algorithms, methods, and techniques. IGI global, pp 242ā€“264

    Google ScholarĀ 

  99. Tripuraneni N, Jordan M, Jin C (2020) On the theory of transfer learning: The importance of task diversity. In :Advances in neural information processing systems, vol 33, pp 7852ā€“7862

    Google ScholarĀ 

  100. Tzeng E, Ā Hoffman J, Saenko K, Ā Darrell T (2017) Adversarial discriminative domain adaptation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7167ā€“7176

    Google ScholarĀ 

  101. vanĀ de Ven GM, Siegelmann HT, Tolias AS (2020) Brain-inspired replay for continual learning with artificial neural networks. Nat Commun 11(1):1ā€“14

    Google ScholarĀ 

  102. von Oswald J, Henning C, Sacramento J, Grewe BF (2019) Continual learning with hypernetworks. In: International conference on learning representations

    Google ScholarĀ 

  103. Wang A, Hula J, Xia P, Pappagari R, McCoy RT, Patel R, Kim N, Tenney I, Huang Y, Yu K etĀ al (2019) Can you tell me how to get past sesame street? sentence-level pretraining beyond language modeling. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 4465ā€“4476

    Google ScholarĀ 

  104. Wang C, Niepert M, Li H (2019) Recsys-dan: discriminative adversarial networks for cross-domain recommender systems. IEEE Trans Neural Netw Learn Syst 31(8):2731ā€“2740

    ArticleĀ  Google ScholarĀ 

  105. Weiss K, Khoshgoftaar TM, Wang D (2016) A survey of transfer learning. J Big Data 3(1):1ā€“40

    Google ScholarĀ 

  106. Xie Z, Cao W, Wang X, Ming Z, Zhang J, Zhang J (2020) A biologically inspired feature enhancement framework for zero-shot learning. In: 2020 7th ieee international conference on cyber security and cloud computing (CSCloud)/2020 6th IEEE international conference on edge computing and scalable cloud (EdgeCom). IEEE, pp 120ā€“125

    Google ScholarĀ 

  107. Xue D, Liao X, Carin L, Krishnapuram B (2007) Multi-task learning for classification with dirichlet process priors. J Mach Learn Res 8(1)

    Google ScholarĀ 

  108. Yeganeh H, Rostami M, Wang Z (2015) Objective quality assessment of interpolated natural images. IEEE Trans Image Process 24(11):4651ā€“4663

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  109. Yin W , Hay J, Roth D (2019) Benchmarking zero-shot text classification: datasets, evaluation and entailment approach. In: Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (EMNLP-IJCNLP), pp 3914ā€“3923

    Google ScholarĀ 

  110. Zhang D, Shen D, Initiative ADN et al (2012) Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in alzheimerā€™s disease. Neuroimage 59(2):895ā€“907

    ArticleĀ  Google ScholarĀ 

  111. Zhang L, Xiang T, Gong S (2017) Learning a deep embedding model for zero-shot learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2021ā€“2030

    Google ScholarĀ 

  112. Zhang Y, Barzilay R, Jaakkola T (2017) Aspect-augmented adversarial networks for domain adaptation. Trans Assoc Comput Linguist 5:515ā€“528

    ArticleĀ  Google ScholarĀ 

  113. Zhang Z, Saligrama V (2015) Zero-shot learning via semantic similarity embedding. In: International conference on computer vision, pp 4166ā€“4174

    Google ScholarĀ 

  114. Zhang Z, Luo P, Loy CC, Tang X (2014) Facial landmark detection by deep multi-task learning. In: European conference on computer vision. Springer, pp 94ā€“108

    Google ScholarĀ 

  115. Zhao H, Zhang S, Wu G, Moura MFJ, Costeira JP, Gordon GJ (2018) Adversarial multiple source domain adaptation. Proc Neural Inf Process Syst 31:8559ā€“8570

    Google ScholarĀ 

  116. Zhao S, Li B, Xu P, Yue X, Ding G, Keutzer K (2021) Madan: multi-source adversarial domain aggregation network for domain adaptation. Int J Comput Vis 1ā€“26

    Google ScholarĀ 

  117. Zhou B, Khashabi D, Tsai C-T, Roth D (2018) Zero-shot open entity typing as type-compatible grounding. In: Proceedings of the 2018 conference on empirical methods in natural language processing, pp 2065ā€“2076

    Google ScholarĀ 

  118. Zhou J, Liu J, Narayan VA, Ye J (2013) Alzheimerā€™s diseaseĀ neuroimaging initiative, etĀ al. modeling disease progression via multi-task learning. NeuroImage 78:233ā€“248

    Google ScholarĀ 

  119. Zhu J, Park T, Isola P, Efros A (2017) Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2223ā€“2232

    Google ScholarĀ 

  120. Zhuang F, Qi Z, Duan K, Xi D, Zhu Y, Zhu H, Xiong H, He Q (2020) A comprehensive survey on transfer learning. Proc IEEE 109(1):43ā€“76

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Rostami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rostami, M., He, H., Chen, M., Roth, D. (2023). Transfer Learning via Representation Learning. In: Razavi-Far, R., Wang, B., Taylor, M.E., Yang, Q. (eds) Federated and Transfer Learning. Adaptation, Learning, and Optimization, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-031-11748-0_10

Download citation

Publish with us

Policies and ethics