Skip to main content

The Emerging Importance of Regenerating Forests for Primates in Anthropogenic Landscapes

  • Chapter
  • First Online:
Primates in Anthropogenic Landscapes

Abstract

Habitat loss is the greatest threat to primate survival. However, land altered for logging or agricultural developments is often abandoned and can regenerate after use. These regenerating forests are critical for the future of primate conservation as they provide habitats and connectivity between mature forest fragments. They can also contribute to climate change mitigation. In this chapter, we introduce what constitutes a regenerating forest, how widespread they are, and how secondary succession varies depending on disturbance history and ecological characteristics. We also examine the role primate seed-dispersal plays in forest regeneration: from the transportation of seeds to changes that occur within a primate’s gut that facilitate germination and impacts on plant communities. We consider how primates might cope with living in a regenerating forest, in terms of behavioral plasticity, from changes in diet to ranging patterns or group cohesion. We argue that the study of primates in regenerating forests is currently lacking and will be pivotal for future primate conservation planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aide, M. T., Zimmerman, J. K., Pascarella, J. B., Rivera, L., & Marcano-Vega, H. (2000). Forest regeneration in a chronosequence of tropical abandoned pastures: Implications for restoration ecology. Restoration Ecology, 8, 328–338.

    Google Scholar 

  • Albert, A., Auffret, A. G., Cosyns, E., Cousins, S. A., D’hondt, B., Eichberg, C., Eycott, A. E., Heinken, T., Hoffmann, M., Jaroszewicz, B., & Malo, J. E. (2015). Seed dispersal by ungulates as an ecological filter: A trait-based meta-analysis. Oikos, 124, 1109–1120.

    Google Scholar 

  • Alvarez-Buylla, E. R., & Martínez-Ramos, M. (1990). Seed bank versus seed rain in the regeneration of a tropical pioneer tree. Oecologia, 84, 314–325.

    Google Scholar 

  • Anderson, J., Rowcliffe, J. M., & Cowlishaw, G. (2007). Does the matrix matter? A forest primate in a complex agricultural landscape. Biological Conservation, 135, 212–222.

    Google Scholar 

  • Arroyo-Rodríguez, V., Melo, F. P. L., Martínez-Ramos, M., Bongers, F., Chazdon, R. L., Meave, J. A., Norden, N., Santos, B. A., Leal, I. R., & Tabarelli, M. (2017a). Multiple successional pathways in human-modified tropical landscapes: New insights from forest succession, forest fragmentation and landscape ecology research. Biological Reviews, 92, 326–340.

    Google Scholar 

  • Arroyo-Rodríguez, V., Pérez-Elissetche, G. K., Ordoñez-Gómez, J. D., González-Zamora, A., Chaves, O. M., Sánchez-López, S., Chapman, C. A., Morales-Hernández, K., Pablo-Rodríguez, M., & Ramos-Fernández, G. (2017b). Spider monkeys in human-modified landscapes: The importance of the matrix. Tropical Conservation Science, 10, 1–13.

    Google Scholar 

  • Asensio, N., Arroyo-Rodríguez, V., Dunn, J. C., & Cristóbal-Azkarate, J. (2009). Conservation value of landscape supplementation for howler monkeys living in forest patches. Biotropica, 41, 768–773.

    Google Scholar 

  • Baguette, M., & Van Dyck, H. (2007). Landscape connectivity and animal behavior: Functional grain as a key determinant for dispersal. Landscape Ecology, 22, 1117–1129.

    Google Scholar 

  • Balcomb, S. R., & Chapman, C. A. (2003). Bridging the gap: Influence of seed deposition on seedling recruitment in a primate-tree interaction. Ecological Monographs, 73, 625–642.

    Google Scholar 

  • Barlow, J., Gardner, T. A., Araujo, I. S., Ávila-Pires, T. C., Bonaldo, A. B., Costa, J. E., Esposito, M. C., Ferreira, L. V., Hawes, J., Hernandez, M. I., & Hoogmoed, M. S. (2007). Quantifying the biodiversity value of tropical primary , secondary , and plantation forests. PNAS, 104, 18555–18560.

    CAS  Google Scholar 

  • Bicca-Marques, J. C. (2003). How do howler monkeys cope with habitat fragmentation? In L. K. Marsh (Ed.), Primates in fragments (pp. 283–303). Springer.

    Google Scholar 

  • Bersacola, E., Sastramidjaja, W. J., Rayadin, Y., Macdonald, D. W., & Cheyne, S. M. (2019). Occupancy patterns of ungulates and pig-tailed macaques across regenerating and anthropogenic forests on Borneo. Hystrix. https://doi.org/10.4404/hystrix-00177-2019

  • Bryson-Morrison, N., Matsuzawa, T., & Humle, T. (2016). Chimpanzees in an anthropogenic landscape: Examining food resources across habitat type at Bossou, Guinea, West Africa. American Journal of Primatology, 78, 1237–1249.

    Google Scholar 

  • Chapman, C. A., Bortolamiol, S., Matsuda, I., Omeja, P. A., Paim, F. P., Reyna-Hurtado, R., Sengupta, R., & Valenta, K. (2017). Primate population dynamics: Variation in abundance over space and time. Biodiversity and Conservation, 27, 1221–1238.

    Google Scholar 

  • Chapman, C. A., & Dunham, A. E. (2018). Primate seed dispersal and forest restoration: An African perspective for a brighter future. International Journal of Primatology, 39, 427–442.

    Google Scholar 

  • Chapman, C. A., Bicca-Marques, J. C., Dunham, A. E., Fan, P., Fashing, P. J., Gogarten, J. F., Guo, S., Huffman, M. A., Kalbitzer, U., Li, B., & Ma, C. (2020). Primates can be a rallying symbol to promote tropical forest restoration. Folia Primatologica, 91, 669–687.

    Google Scholar 

  • Chaves, Ó. M., Stoner, K. E., Arroyo-Rodríguez, V., & Estrada, A. (2011). Effectiveness of spider monkeys (Ateles geoffroyi vellerosus) as seed dispersers in continuous and fragmented rain forests in Southern Mexico. International Journal of Primatology, 32, 177–192.

    Google Scholar 

  • Chazdon, R. L. (2014). Second growth: The promise of tropical forest regeneration in an age of deforestation. University of Chicago Press.

    Google Scholar 

  • Chazdon, R. L., & Guariguata, M. R. (2016). Natural regeneration as a tool for large-scale forest restoration in the tropics: Prospects and challenges. Biotropica, 48, 716–730.

    Google Scholar 

  • Chazdon, R. L., Harvey, C. A., Komar, O., Griffith, D. M., Ferguson, B. G., Martínez-Ramos, M., Morales, H., Nigh, R., Soto‐Pinto, L., Van Breugel, M., & Philpott, S. M. (2009a). Beyond reserves: A research agenda for conserving biodiversity in human-modified tropical landscapes. Biotropica, 41, 142–153.

    Google Scholar 

  • Chazdon, R. L., Peres, C. A., Dent, D., Sheil, D., Lugo, A. E., Lamb, D., Stork, N. E., & Miller, S. E. (2009b). The potential for species conservation in tropical secondary forests. Conservation Biology, 23, 1406–1417.

    Google Scholar 

  • Chokkalingam, U., & de Jong, W. (2003). Secondary forest: A working definition and typology. International Forest Reviews, 3, 19–26.

    Google Scholar 

  • Clark, D. B. (1996). Abolishing virginity. Journal of Tropical Ecology, 12, 735–739.

    Google Scholar 

  • Coomes, O. T. (1995). A century of rain forest use in western Amazonia: Lessons for extraction-based conservation of tropical forest resources. Forest & Conservation History, 39, 108–120.

    Google Scholar 

  • Corbin, J. D., & Holl, K. D. (2012). Applied nucleation as a forest restoration strategy. Forest Ecology and Management, 265, 37–46.

    Google Scholar 

  • Cordeiro, N. J., & Howe, H. F. (2001). Low recruitment of trees dispersed by animals in African forest fragments. Conservation Biology, 15, 1733–1741.

    Google Scholar 

  • DeClerck, F. A., Chazdon, R., Holl, K. D., Milder, J. C., Finegan, B., Martinez-Salinas, A., Imbach, P., Canet, L., & Ramos, Z. (2010). Biodiversity conservation in human-modified landscapes of Mesoamerica: Past, present and future. Biological Conservation, 143, 2301–2313.

    Google Scholar 

  • Dent, D. H., & Wright, J. S. (2009). The future of tropical species in secondary forests: A quantitative review. Biological Conservation, 142, 2833–2843.

    Google Scholar 

  • Dew, J. L., & Wright, P. (1998). Frugivory and seed dispersal by four species of primates in Madagascar’s eastern rain forest. Biotropica, 30, 425–437.

    Google Scholar 

  • Diaz, S., Joseph, F., Chapin, F. S., III, & Tilman, D. (2006). Biodiversity loss threatens human well-being. PLoS Biology, 4, 1300–1305.

    CAS  Google Scholar 

  • Duncan, R. S., & Chapman, C. A. (1999). Seed dispersal and potential forest succession in abandoned agriculture in tropical Africa. Ecological Applications, 9, 998–1008.

    Google Scholar 

  • Effiom, E. O., Nuñez-Iturri, G., Smith, H. G., Ottosson, U., & Olsson, O. (2013). Bushmeat hunting changes regeneration of African rainforests. Proceedings of the Royal Society B: Biological Sciences, 280, 20130246.

    Google Scholar 

  • Estrada, A. (2013). Socioeconomic contexts of primate conservation: Population, poverty, global economic demand, and sustainable land use. American Journal of Primatology, 75, 30–45.

    Google Scholar 

  • Estrada, A., Garber, P. A., Rylands, A. B., Roos, C., Fernandez-Duque, E., Di Fiore, A., Nekaris, K. A. I., Nijman, V., Heymann, E. W., Lambert, J. E., & Rovero, F. (2017). Impending extinction crisis of the world’s primates: Why primates matter. Science Advances, 3, e1600946.

    Google Scholar 

  • Estrada, A., Garber, P. A., Mittermeier, R. A., Serge, W., Gouveia, S., Dobrovolski, R., Nekaris, K. A. I., Nijman, V., Rylands, A. B., Maisels, F., & Williamson, E. A. (2018). Primates in peril: The significance of Brazil, Madagascar, Indonesia and the Democratic Republic of the Congo for global primate conservation. PeerJ, 6, 4869.

    Google Scholar 

  • FAO. (2020). Global forest resources assessment 2020.

    Google Scholar 

  • Farwig, N., & Berens, D. G. (2012). Imagine a world without seed dispersers: A review of threats, consequences and future directions. Basic and Applied Ecology, 13, 109–115.

    Google Scholar 

  • Fedigan, L. M., & Jack, K. (2001). Neotropical primates in a regenerating Costa Rican dry forest: A comparison of howler and capuchin population patterns. International Journal of Primatology, 22, 689–713.

    Google Scholar 

  • Fuzessy, L. F., Cornelissen, T. G., Janson, C., & Silveira, F. A. (2016). How do primates affect seed germination? A meta-analysis of gut passage effects on Neotropical plants. Oikos, 125, 1069–1080.

    Google Scholar 

  • Galán-Acedo, C., Arroyo-Rodríguez, V., Andresen, E., & Arasa-Gisbert, R. (2019a). Ecological traits of the world’s primates. Scientific Data, 6(1), 1–5.

    Google Scholar 

  • Galán-Acedo, C., Arroyo-Rodríguez, V., Andresen, E., Verde Arregoitia, L., Vega, E., Peres, C. A., & Ewers, R. M. (2019b). The conservation value of human-modified landscapes for the world’s primates. Nature Communications, 10, 1–8.

    Google Scholar 

  • Galán-Acedo, C., Arroyo-Rodríguez, V., Cudney-Valenzuela, S. J., & Fahrig, L. (2019c). A global assessment of primate responses to landscape structure. Biological Reviews, 94, 1605–1618.

    Google Scholar 

  • Ganzhorn, J. U. (1987). Possible role of plantations for primate conservation in Madagascar. American Journal of Primatology, 12, 205–215.

    Google Scholar 

  • Ganzhorn, J. U., Fietz, J., Rakotovao, E., Schwab, D., & Zinner, D. (1999). Lemurs and the regeneration of dry deciduous forest in Madagascar. Conservation Biology, 13, 794–804.

    Google Scholar 

  • Gascon, C., Lovejoy, T. E., Bierregaard, R. O., Jr., Malcolm, J. R., Stouffer, P. C., Vasconcelos, H. L., Laurance, W. F., Zimmerman, B., Tocher, M., & Borges, S. (1999). Matrix habitat and species richness in tropical forest remnants. Biological Conservation, 91, 223–229.

    Google Scholar 

  • George, L. O., & Bazzaz, F. A. (1999). The fern understory as an ecological filter: Emergence and establishment of canopy-tree seedlings. Ecology, 80, 833–845.

    Google Scholar 

  • Guariguata, M. R., & Ostertag, R. (2001). Neotropical secondary forest succession: Changes in structural and functional characteristics. Forest Ecology and Management, 148, 185–206.

    Google Scholar 

  • Hansen, M. F., Nawangsari, V. A., van Beest, F. M., Schmidt, N. M., Stelvig, M., Dabelsteen, T., & Nijman, V. (2020). Habitat suitability analysis reveals high ecological flexibility in a “strict” forest primate. Frontiers in Zoology, 17, 1–13.

    Google Scholar 

  • Harris, T. R., & Chapman, C. A. (2007). Variation in diet and ranging of black and white colobus monkeys in Kibale National Park, Uganda. Primates, 48(3), 208–221.

    Google Scholar 

  • Heiduck, S. (2002). The use of disturbed and undisturbed forest by masked titi monkeys Callicebus personatus melanochir is proportional to food availability. Oryx, 36, 133–139.

    Google Scholar 

  • Heymann, E. W., Culot, L., Knogge, C., Smith, A. C., Tirado Herrera, E. R., Müller, B., Stojan-Dolar, M., Ferrer, Y. L., Kubisch, P., Kupsch, D., Slana, D., Koopmann, M. L., Ziegenhagen, B., Bialozyt, R., Mengel, C., Hambuckers, J., & Heer, K. (2019). Small Neotropical primates promote the natural regeneration of anthropogenically disturbed areas. Scientific Reports, 9, 1–9.

    CAS  Google Scholar 

  • Holl, K. D., & Aide, T. M. (2011). When and where to actively restore ecosystems? Forest Ecology and Management, 261, 1558–1563.

    Google Scholar 

  • Holloway, L. (2000). Catalysing rainforest restoration in Madagascar. Diversité et endémisme à Madagascar, 115–124.

    Google Scholar 

  • Holloway, L. (2004). Ecosystem restoration and rehabilitation in Madagascar. Ecological Restoration, 22, 113–119.

    Google Scholar 

  • Howe, H. F. (2016). Making dispersal syndromes and networks useful in tropical conservation and restoration. Global Ecology and Conservation, 6, 152–178.

    Google Scholar 

  • Howe, H. F., & Smallwood, J. (1982). Ecology of seed dispersal. Annual Review of Ecology and Systematics, 13, 201–228.

    Google Scholar 

  • Howe, H. F., & Miriti, M. N. (2004). When seed dispersal matters. BioScience, 54, 651–660.

    Google Scholar 

  • Isabirye-Basuta, G. M., & Lwanga, J. S. (2008). Primate populations and their interactions with changing habitats. International Journal of Primatology, 29, 35–48.

    Google Scholar 

  • Kalbitzer, U., & Chapman, C. A. (2018). Primate responses to changing environments in the Anthropocene. In U. Kalbitzer & K. M. Jack (Eds.), Primate life histories, sex roles, and adaptability. Developments in primatology: Progress and prospects (pp. 283–310). Springer Nature.

    Google Scholar 

  • Kaplin, B. A., & Lambert, J. E. (2002). Effectiveness of seed dispersal by Cercopithecus Monkeys: Implications for seed input into degraded areas. In D. J. Levey, W. R. Silva, & M. Galetti (Eds.), Seed dispersal and frugivory: Ecology and conservation (pp. 351–364). CABI.

    Google Scholar 

  • Kitamura, S., Yumoto, T., Poonswad, P., Chuailua, P., Plongmai, K., Maruhashi, T., & Noma, N. (2002). Interactions between fleshy fruits and frugivores in a tropical seasonal forest in Thailand. Oecologia, 133, 559–572.

    Google Scholar 

  • Lambert, J. E. (2007). Primate nutritional ecology: Feeding biology and diet at ecological and evolutionary scales. In C. J. Campbell, A. Fuentes, K. C. MacKinnon, M. Panger, & S. K. Bearder (Eds.), Primates in perspective (pp. 482–495). Oxford University Press.

    Google Scholar 

  • Lambert, J. E., & Garber, P. A. (1998). Evolutionary and ecological implications of primate seed dispersal. American Journal of Primatology, 45, 9–28.

    CAS  Google Scholar 

  • Lazos-Chavero, E., Zinda, K., Bennett‐Curry, A., Balvanera, P., Bloomfield, G., Lindell, C., & Negra, C. (2016). Stakeholders and tropical reforestation: Challenges, trade-offs, and strategies in dynamic environments. Biotropica, 48, 900–914.

    Google Scholar 

  • Luckett, J., Danforth, E., Linsenbardt, K., & Pruetz, J. (2004). Planted trees as corridors for primates at El Zota Biological Field Station, Costa Rica. Neotropical Primates, 12, 143–146.

    Google Scholar 

  • Martinez, B. T., & Razafindratsima, O. H. (2014). Frugivory and seed dispersal patterns of the red-ruffed lemur, Varecia rubra, at a forest restoration site in Masoala National Park, Madagascar. Folia Primatologica, 85, 228–243.

    Google Scholar 

  • McKinney, T. (2019). Ecological and behavioural flexibility of mantled howlers (Alouatta palliata) in response to anthropogenic habitat disturbance. Folia Primatologica, 90, 456–469.

    Google Scholar 

  • McLennan, M. R., Spagnoletti, N., & Hockings, K. J. (2017). The implications of primate behavioral flexibility for sustainable human-primate coexistence in anthropogenic habitats. International Journal of Primatology, 38, 105–121.

    Google Scholar 

  • Myers, J. A., & Harms, K. E. (2011). Seed arrival and ecological filters interact to assemble high-diversity plant communities. Ecology, 92, 676–686.

    Google Scholar 

  • Nekaris, K. A. I., Poindexter, S., Reinhardt, K. D., Sigaud, M., Cabana, F., Wirdateti, W., & Nijman, V. (2017). Coexistence between Javan slow lorises (Nycticebus javanicus) and humans in a dynamic agroforestry landscape in West Java, Indonesia. International Journal of Primatology, 38, 303–320.

    Google Scholar 

  • Nowak, K., & Lee, P. C. (2013). “Specialist” primates can be flexible in response to habitat alteration. In L. K. Marsh & C. A. Chapman (Eds.), Primates in fragments: Complexity and resilience. Developments in primatology: Progress and prospects (pp. 199–211). Springer.

    Google Scholar 

  • Peres, C. A., Emilio, T., Schietti, J., Desmoulière, S. J. M., & Levi, T. (2016). Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proceedings of the National Academy of Sciences, 113, 892–897.

    CAS  Google Scholar 

  • Raboy, B. E., Christman, M. C., & Dietz, J. M. (2004). The use of degraded and shade cocoa forests by endangered golden-headed lion tamarins Leontopithecus chrysomelas. Oryx, 38, 75–83.

    Google Scholar 

  • Ramananjato, V., Rakotomalala, Z., Park, D. S., DeSisto, C. M., Raoelinjanakolona, N. N., Guthrie, N. K., Fenosoa, Z. E., Jonhson, S. E., & Razafindratsima, O. H. (2020). The role of nocturnal omnivorous lemurs as seed dispersers in Malagasy rain forests. Biotropica, 52, 758–765.

    Google Scholar 

  • Ramos-Fernández, G., & Ayala-Orozco, B. (2003). Population size and habitat use of spider monkeys at Punta Laguna, Mexico. In L. D. Marsh (Ed.), Primates in fragments: Ecology and conservation (pp. 191–209). Kluwer Academic/Plenum Publishers.

    Google Scholar 

  • Ramos-Fernandez, G. Smith Aguilar, S. E., Schaffner, C. M., Vic, L.G., Aureli, F. (2013). Site Fidelity in Space Use by Spider Monkeys (Ateles geoffroyi) in the Yucatan Peninsula, Mexico. PLoS ONE, 8(5), e62813.

    Google Scholar 

  • Razafindratsima, O. H., & Dunham, A. E. (2015). Assessing the impacts of nonrandom seed dispersal by multiple frugivore partners on plant recruitment. Ecology, 96, 24–30.

    Google Scholar 

  • Razafindratsima, O. H., & Dunham, A. E. (2016). Frugivores bias seed-adult tree associations through non-random seed dispersal: A phylogenetic approach. Ecology, 97, 2094–2102.

    Google Scholar 

  • Razafindratsima, O. H., & Martinez, B. T. (2012). Seed dispersal by red-ruffed lemurs: Seed size, viability, and beneficial effect on seedling growth. Ecotropica, 18, 15–26.

    Google Scholar 

  • Razafindratsima, O. H., Sato, H., Tsuji, Y., & Culot, L. (2018). Advances and frontiers in primate seed dispersal. International Journal of Primatology, 39, 315–320.

    Google Scholar 

  • Reid, J. L., Holl, K. D., & Zahawi, R. A. (2015). Seed dispersal limitations shift over time in tropical forest restoration. Ecological Applications, 25, 1072–1082.

    Google Scholar 

  • Rodrigues, M. A. (2017). Female spider monkeys (Ateles geoffroyi) cope with anthropogenic disturbance through fission–fusion dynamics. International Journal of Primatology, 38, 838–855.

    Google Scholar 

  • Sales, L., Culot, L., & Pires, M. M. (2020). Climate niche mismatch and the collapse of primate seed dispersal services in the Amazon. Biological Conservation, 247, 108628.

    Google Scholar 

  • Schupp, E. W., & Fuentes, M. (1995). Spatial patterns of seed dispersal and the unification of plant population ecology. Ecoscience, 2, 267–275.

    Google Scholar 

  • Singh, M., Kumara, H. N., Kumar, M. A., & Sharma, A. K. (2001). Behavioural responses of Lion-Tailed Macaques (Macaca silenus) to a changing habitat in a tropical rain forest fragment in the Western Ghats, India. Folia Primatologica, 75, 278–291.

    Google Scholar 

  • Sorensen, T. C., & Fedigan, L. M. (2000). Distribution of three monkey species along a gradient of regenerating tropical dry forest. Biological Conservation, 92, 227–240.

    Google Scholar 

  • Sussman, R. W. (1991). Primate origins and the evolution of angiosperms. American Journal of Primatology, 23, 209–223.

    Google Scholar 

  • Traveset, A., Robertson, W., & Rodriguez-Perez, J. (2007). A review of the role of endozoochory on seed germination. In A. J. Dennis, R. J. Green, E. W. Schupp, & D. Westcott (Eds.), Seed dispersal: Theory and its application in a changing world (pp. 78–103). CABI.

    Google Scholar 

  • Wang, B. C., & Smith, T. B. (2002). Closing the seed dispersal loop. Trends in Ecology and Evolution, 17, 379–385.

    Google Scholar 

  • Wheeler, C. E., Omeja, P. A., Chapman, C. A., Glipin, M., Tumwesigye, C., & Lewis, S. L. (2016). Carbon sequestration and biodiversity following 18 years of active tropical forest restoration. Forest Ecology and Management, 373, 44–55.

    Google Scholar 

  • White, L. J. T., & Oates, J. F. (1999). New data on the history of the plateau forest of Okomu, southern Nigeria: An insight into how human disturbance has shaped the African rain forest. Global Ecology and Biogeography, 8, 355–361.

    Google Scholar 

  • Whitmore, T. C. (1989). Canopy gaps and the two major groups of forest trees. Ecology, 70, 536–538.

    Google Scholar 

  • Wotton, D. M., & Kelly, D. (2011). Frugivore loss limits recruitment of large-seeded trees. Proceedings of the Royal Society B: Biological Sciences, 278, 3345–3354.

    Google Scholar 

  • Wunderle, J. M., Jr. (1997). The role of animal seed dispersal in accelerating native forest regeneration on degraded tropical lands. Forest Ecology and Management, 99, 223–235.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucy Millington .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Millington, L., Razafindratsima, O.H., McKinney, T., Spaan, D. (2023). The Emerging Importance of Regenerating Forests for Primates in Anthropogenic Landscapes. In: McKinney, T., Waters, S., Rodrigues, M.A. (eds) Primates in Anthropogenic Landscapes. Developments in Primatology: Progress and Prospects. Springer, Cham. https://doi.org/10.1007/978-3-031-11736-7_3

Download citation

Publish with us

Policies and ethics