Skip to main content

A Framework for Ranking Cloud Services Based on an Integrated BWM-Entropy-TOPSIS Method

  • Conference paper
  • First Online:
Meta Heuristic Techniques in Software Engineering and Its Applications (METASOFT 2022)

Abstract

Cloud computing has grown as a computing paradigm in the last few years. Due to the explosive increase in the number of cloud services, QoS (quality of service) becomes an important factor in service filtering. Moreover, it becomes a non-trivial problem when comparing the functionality of cloud services with different performance metrics. Therefore, optimal cloud service selection is quite challenging and extremely important for users. In the existing approaches of cloud service selection, the user’s preferences are offered by the user in a quantitative form. With fuzziness and subjectivity, it is a hurdle task for users to express clear preferences. To address this challenge, in this paper, we proposed a hybrid Multi-Criteria Decision Making (MCDM) methodology to aid the decision maker to evaluate different cloud services based on subjective and objective assessments. To do that, we introduced a novel Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method that combines subjective and objective aspects. We used the entropy weight method to do an objective assessment in order to reduce the influence of erroneous or fraudulent Quality of Service (QoS) information. For subjective assessment, we employed a systematic MCDM method called Best Worst Method (BWM). In the end, a numerical example is shown to validate the effectiveness and feasibility of the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mell, P., Grance, T., et al.: The NIST Definition of Cloud Computing (2011)

    Google Scholar 

  2. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging it platforms: Vision, hype, and reality for delivering computing as the 5th utility. Futur. Gener. Comput. Syst. 25(6), 599–616 (2009)

    Article  Google Scholar 

  3. Armbrust, M., et al.: A view of cloud computing. Commun. ACM 53(4), 50–58 (2010)

    Article  Google Scholar 

  4. Buyya, R., Yeo, C.S., Venugopal, S.: Market-oriented cloud computing: Vision, hype, and reality for delivering it services as computing utilities. In: Proceedings of the 10th IEEE International Conference on High Performance Computing and Communications, 2008. HPCC 2008, pp. 5–13. IEEE (2008)

    Google Scholar 

  5. Garg, S.K., Versteeg, S., Buyya, R.: A framework for ranking of cloud computing services. Futur. Gener. Comput. Syst. 29(4), 1012–1023 (2013)

    Article  Google Scholar 

  6. Saaty, T.L.: Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 1(1), 83–98 (2008)

    Google Scholar 

  7. Satty, T.L., Vargas, L.G.: Models, methods, concepts and applications of the analytic hierarchy process. Int. Ser. Oper. Res. Manage. Sci 34, 1–352 (2001)

    Google Scholar 

  8. Sirisawat, P., Kiatcharoenpol, T.: Fuzzy ahp-topsis approaches to prioritizing solutions for reverse logistics barriers. Comput. Ind. Eng. 117, 303–318 (2018)

    Article  Google Scholar 

  9. Rezaei, J.: Best-worst multi-criteria decision-making method. Omega 53, 49–57 (2015)

    Article  Google Scholar 

  10. De Leeneer, I., Pastijn, H.: Selecting land mine detection strategies by means of outranking MCDM techniques. Eur. J. Oper. Res. 139(2), 327–338 (2002)

    Article  Google Scholar 

  11. Jatoth, C., Gangadharan, G.R., Fiore, U.: Evaluating the efficiency of cloud services using modified data envelopment analysis and modified super-efficiency data envelopment analysis. Soft. Comput. 21(23), 7221–7234 (2016). https://doi.org/10.1007/s00500-016-2267-y

    Article  Google Scholar 

  12. Sun, L., Ma, J., Zhang, Y., Dong, H., Hussain, F.K.: Cloud-fuser: Fuzzy ontology and MCDM based cloud service selection. Futur. Gener. Comput. Syst. 57, 42–55 (2016)

    Article  Google Scholar 

  13. Lang, M., Wiesche, M., Krcmar, H.: Criteria for selecting cloud service providers: A delphi study of quality-of-service attributes. Inf. Manage. 55(6), 746–758 (2018)

    Article  Google Scholar 

  14. Tang, M., Dai, X., Liu, J., Chen, J.: Towards a trust evaluation middleware for cloud service selection. Futur. Gener. Comput. Syst. 74, 302–312 (2017)

    Article  Google Scholar 

  15. Sundareswaran, S., Squicciarini, A., Lin, D.: A brokerage-based approach for cloud service selection. In: Proceedings of the 2012 IEEE Fifth International Conference on Cloud Computing, pp. 558–565. IEEE (2012)

    Google Scholar 

  16. Ding, S., Li, Y., Wu, D., Zhang, Y., Yang, S.: Time-aware cloud service recommendation using similarity-enhanced collaborative filtering and arima model. Decis. Support Syst. 107, 103–115 (2018)

    Article  Google Scholar 

  17. Kumar, R.R., Kumar, C.: Designing an efficient methodology based on entropy- topsis for evaluating efficiency of cloud services. In: Proceedings of the 7th International Conference on Computer and Communication Technology, pp. 117–122 (2017)

    Google Scholar 

  18. Saaty, T.L.: How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 48(1), 9–26 (1990)

    Article  Google Scholar 

  19. Kumar, R.R., Kumari, B., Kumar, C.: CCS-OSSR: A framework based on hybrid MCDM for optimal service selection and ranking of cloud computing services. Clust. Comput. 24(2), 867–883 (2021)

    Article  Google Scholar 

  20. Hwang, C.-L., Yoon, K.: Multiple attribute decision making: Methods and applications a state-of-the-art survey, vol. 186. Springer Science & Business Media (2012)

    Google Scholar 

  21. Kumar, R.R., Shameem, M., Khanam, R., Kumar, C.: A hybrid evaluation framework for qos based service selection and ranking in cloud environment. In: Proceedings of the 2018 15th IEEE India Council International Conference (INDICON), pp. 1–6. IEEE (2018)

    Google Scholar 

  22. Cloud Harmony Reports. http://static.lindsberget.se/state-of-the-cloud-compute-0714.pdf. Accessed 12 Mar 2017

  23. Kumar, R.R., Mishra, S., Kumar, C.: A novel framework for cloud service evaluation and selection using hybrid MCDM methods. Arab. J. Sci. Eng. 43(12), 7015–7030 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumya Snigdha Mohapatra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mohapatra, S.S., Kumar, R.R. (2022). A Framework for Ranking Cloud Services Based on an Integrated BWM-Entropy-TOPSIS Method. In: Mohanty, M.N., Das, S., Ray, M., Patra, B. (eds) Meta Heuristic Techniques in Software Engineering and Its Applications. METASOFT 2022. Artificial Intelligence-Enhanced Software and Systems Engineering, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-031-11713-8_29

Download citation

Publish with us

Policies and ethics