Skip to main content

Management of Hemodialysis in Children

  • Chapter
  • First Online:
Pediatric Kidney Disease

Abstract

Hemodialysis (HD) was introduced as a treatment for uremia at the end of World War II [1]. A decade later, Mateer et al. reported the first experience using HD to treat five uremic adolescents using 15 meter cellophane tubing and a 32 liter dialysis bath. Each dialysis procedure was 13 h, and although the metabolic and fluid status of their patients improved, there were challenges related to anticoagulation of the circuit and achieving normal plasma calcium and potassium concentrations [2]. Maintenance HD was not practical because vascular access required cannulae placed in the radial artery and saphenous vein prior to each session. This problem was overcome by the development of silastic arteriovenous cannula by Scribner et al [3] which were inserted in the forearm vessels and could be used for repeated blood access. What followed was the report by Fine et al [4] describing the use of HD for maintenance treatment of end-stage kidney disease (ESKD) in five adolescents who were dialyzed three times weekly for 7–8 h per session using a concentrated dialysis solution mixed with tap water. A urea clearance of 45 ml/min resulted in a urea reduction rate (URR) of 48% during each 7–8 h treatment. While maintenance HD was now a realistic option for children with ESKD, technical difficulties persisted in small children and the need for 20 h of treatment per week required long periods of time in the hospital.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAMI:

Association for the Advancement of Medical Instrumentation

ACE:

Angiotensin converting enzyme

ARB:

Angiotensin II receptor antagonists

BMI:

Body mass index

BP:

Blood pressure

BUN:

Blood urea nitrogen

BVM:

The Blood Volume Monitor ™

cIMT:

Carotid intima-media thickness

CKD:

Chronic kidney disease

CRP:

C-reactive protein

DDS:

Dialysis disequilibrium syndrome

DOPPS:

Dialysis Outcomes and Practice Patterns Study

ECV:

Extracellular volume

eKt/V:

Equilibrated Kt/V

ESA:

Erythropoiesis stimulating agent

ESKD:

End-stage kidney disease

G:

Urea generation rate

HD:

hemodialysis

HDF:

Hemodiafiltration

IVC:

Inferior vena cava

IVC:

Intracellular volume

K:

Urea clearance

KDOQI:

National Kidney Foundation Dialysis Outcomes Quality Initiative

KoA:

Mass transfer coefficient of urea

Kuf:

Ultrafiltration coefficient

LAVI:

Left atrial volume indexed to height

L-carnitine:

Levocarnitine

LMWH:

Low molecular weight heparin

LV:

Left ventricular

LVH:

Left ventricular hypertrophy

NCDS:

National Cooperative Dialysis Study

NIVM:

Non-invasive blood volume monitoring

nPCR:

Normalized protein catabolic rate

PTH:

Parathyroid hormone

RBV:

Relative blood volume

spKt/v:

Single pool method

TAC-urea:

Timed-average-concentration of urea

TBV:

Total blood volume

TBW:

Total body water

UF:

Ultrafilter/ultrafiltration

UFH:

Unfractionated heparin

URR:

Urea reduction rate

USRDS:

United States Renal Data System

V:

Volume of distribution unless otherwise specified

References

  1. Kolff WJ BH. Artificial kidney: dialyzer with great area. Acta Medica Scandinav1944.

    Google Scholar 

  2. Mateer FMGL, Danowski TS. Hemodialysis of the uremic child. AMA Am J Dis Child. 1995;89(6):645–55.

    Google Scholar 

  3. Scribner BH, Buri R, Caner JE, Hegstrom R, Burnell JM. The treatment of chronic uremia by means of intermittent hemodialysis: a preliminary report. Trans Am Soc Artif Intern Organs. 1960;10-11(6):114–22.

    Google Scholar 

  4. Fine RNDPJ, Lieberman E, Donnell GN, Gordon A, Maxwell MH. Hemodialysis in children with chronic renal failure. Pediatrics. 1985;73(5):705–13.

    Google Scholar 

  5. Kjellstrand CM, Shideman JR, Santiago EA, Mauer M, Simmons RL, Buselmeier TJ. Technical advances in hemodialysis of very small pediatric patients. Proc Clin Dial Transplant Forum. 1971;1:124–32.

    CAS  PubMed  Google Scholar 

  6. Sousa CN, Gama M, Andrade M, Faria MS, Pereira E. Haemodialysis for children under the age of two years. J Ren Care. 2008;34(1):9–13.

    Article  PubMed  Google Scholar 

  7. Mahan JDMM, Nevins TE. The Hickman catheter: a new hemodialysis access device for infants and small children. Kidney Int. 1983;24(5):694–7.

    Article  PubMed  Google Scholar 

  8. Fadrowski JJ, Hwang W, Neu AM, Fivush BA, Furth SL. Patterns of use of vascular catheters for hemodialysis in children in the United States. Am J Kidney Dis. 2009;53(1):91–8.

    Article  PubMed  Google Scholar 

  9. Mitsnefes MM, Laskin BL, Dahhou M, Zhang X, Foster BJ. Mortality risk among children initially treated with dialysis for end-stage kidney disease, 1990–2010. JAMA. 2013;309(18):1921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fischbach M, Edefonti A, Schroder C, Watson A. European pediatric dialysis working G. hemodialysis in children: general practical guidelines. Pediatr Nephrol. 2005;20(8):1054–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lowrie EG, Lew NL. Commonly measured laboratory variables in hemodialysis patients: relationships among them and to death risk. Semin Nephrol. 1992;12(3):276–83.

    CAS  PubMed  Google Scholar 

  12. Lowrie EG, Laird NM, Parker TF, Sargent JA. Effect of the hemodialysis prescription of patient morbidity: report from the National Cooperative Dialysis Study. N Engl J Med. 1981;305(20):1176–81.

    Article  CAS  PubMed  Google Scholar 

  13. Gotch FA, Sargent JA. A mechanistic analysis of the National Cooperative Dialysis Study (NCDS). Kidney Int. 1985;28(3):526–34.

    Article  CAS  PubMed  Google Scholar 

  14. Daugirdas JT. Simplified equations for monitoring kt/V, PCRn, eKt/V, and ePCRn. Adv Ren Replace Ther. 1995;2(4):295–304.

    Article  CAS  PubMed  Google Scholar 

  15. Geddes CC, Traynor J, Walbaum D, Fox JG, Mactier RA. A new method of post-dialysis blood urea sampling: the ‘stop dialysate flow’ method. Nephrol Dial Transplant. 2000;15(4):517–23.

    Article  CAS  PubMed  Google Scholar 

  16. Nguyen C, Bednarz D, Brier ME, Imam A, Chand DH. A comparison of laboratory values in pediatric hemodialysis patients: does day of the week matter? Nephrol Dial Transplant. 2012;27(2):816–9.

    Article  PubMed  Google Scholar 

  17. Goldstein SL, Sorof JM, Brewer ED. Natural logarithmic estimates of kt/V in the pediatric hemodialysis population. Am J Kidney Dis. 1999;33(3):518–22.

    Article  CAS  PubMed  Google Scholar 

  18. Daugirdas JT, Hanna MG, Becker-Cohen R, Langman CB. Dose of dialysis based on body surface area is markedly less in younger children than in older adolescents. Clin J Am Soc Nephrol. 2010;5(5):821–7.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Daugirdas JT. Second generation logarithmic estimates of single-pool variable volume Kt/V: an analysis of error. J Am Soc Nephrol. 1993;4(5):1205–13.

    Article  CAS  PubMed  Google Scholar 

  20. Leypoldt JK. Urea standard kt/V(urea) for assessing dialysis treatment adequacy. Hemodial Int. 2004;8(2):193–7.

    Article  PubMed  Google Scholar 

  21. Owen WF Jr, Lew NL, Liu Y, Lowrie EG, Lazarus JM. The urea reduction ratio and serum albumin concentration as predictors of mortality in patients undergoing hemodialysis. N Engl J Med. 1993;329(14):1001–6.

    Article  PubMed  Google Scholar 

  22. Eknoyan G, Beck GJ, Cheung AK, Daugirdas JT, Greene T, Kusek JW, et al. Effect of dialysis dose and membrane flux in maintenance hemodialysis. N Engl J Med. 2002;347(25):2010–9.

    Article  PubMed  Google Scholar 

  23. Port FK, Ashby VB, Dhingra RK, Roys EC, Wolfe RA. Dialysis dose and body mass index are strongly associated with survival in hemodialysis patients. J Am Soc Nephrol. 2002;13(4):1061–6.

    Article  PubMed  Google Scholar 

  24. Saran R, Bragg-Gresham JL, Levin NW, Twardowski ZJ, Wizemann V, Saito A, et al. Longer treatment time and slower ultrafiltration in hemodialysis: associations with reduced mortality in the DOPPS. Kidney Int. 2006;69(7):1222–8.

    Article  CAS  PubMed  Google Scholar 

  25. Flythe JE, Curhan GC, Brunelli SM. Disentangling the ultrafiltration rate-mortality association: the respective roles of session length and weight gain. Clin J Am Soc Nephrol. 2013;8(7):1151–61.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Marshall MR, Byrne BG, Kerr PG, McDonald SP. Associations of hemodialysis dose and session length with mortality risk in Australian and New Zealand patients. Kidney Int. 2006;69(7):1229–36.

    Article  CAS  PubMed  Google Scholar 

  27. European best practices guidelines for hemodialysis [part I]. Nephrol Dial Transplant. 2002;17(suppl7):17–20.

    Google Scholar 

  28. Buur T, Bradbury MG, Smye SW, Brocklebank JT. Reliability of haemodialysis urea kinetic modelling in children. Pediatr Nephrol. 1994;8(5):574–8.

    Article  CAS  PubMed  Google Scholar 

  29. Van Hoeck KJ, Lilien MR, Brinkman DC, Schroeder CH. Comparing a urea kinetic monitor with Daugirdas formula and dietary records in children. Pediatr Nephrol. 2000;14(4):280–3.

    Article  PubMed  Google Scholar 

  30. Goldstein SL. Adequacy of dialysis in children: does small solute clearance really matter? Pediatr Nephrol. 2004;19(1):1–5.

    Article  PubMed  Google Scholar 

  31. Ishibe SPA. Methods of assessment of volume status and intercompartmental fluid shifts in hemodialysis patients: implications in clinical practice. Semin Dial. 2004;17(1):37–43.

    Article  PubMed  Google Scholar 

  32. Kouw PMKJ, Cheriex EC, Olthof CG, de Vries PM, Leunissen KM. Assessment of postdialysis dry weight: a comparison of techniques. J Am Soc Nephrol. 1993;4:98–104.

    Article  CAS  PubMed  Google Scholar 

  33. Nishikimi TFY, Tamano K, Takahashi M, Suzuki T, Minami J, et al. Plasma brain natriuretic peptide levels in chronic hemodialysis patients: influence of coronary artery disease. Am J Kidney Dis. 2001;37:1201–8.

    Article  CAS  PubMed  Google Scholar 

  34. Krause I, Birk E, Davidovits M, Cleper R, Blieden L, Pinhas L, et al. Inferior vena cava diameter: a useful method for estimation of fluid status in children on haemodialysis. Nephrol Dial Transplant. 2001;16(6):1203–6.

    Article  CAS  PubMed  Google Scholar 

  35. Chamney PWKM, Rode C, Kleinekofort W, Wizemann V. A new technique for establishing dry weight in hemodialysis patients via whole body bioimpedance. Kidney Int. 2002;61(6):2250–8.

    Article  PubMed  Google Scholar 

  36. Piccoli ARB, Pillon L, Bucciante G. New method for montoring body fluid variation by bioimpedance analysis: the RXc graph. Kidney Int. 1994;46(2):534–9.

    Article  CAS  PubMed  Google Scholar 

  37. Zhu FKM, Sarkar S, Kaitwatcharachai C, Khilnani R, Leonard EF, et al. Adjustment of dry weight in hemodialysis patients using intradialytic continuous multifrequency bioimpedance of the calf. Int J Artif Organs. 2004;27(2):104–9.

    Article  CAS  PubMed  Google Scholar 

  38. Moissl U, Arias-Guillen M, Wabel P, Fontsere N, Carrera M, Campistol JM, et al. Bioimpedance-guided fluid management in hemodialysis patients. Clin J Am Soc Nephrol. 2013;8(9):1575–82.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Marsenic O, Booker K, Studnicka K, Wilson D, Beck A, Swanson T, et al. Use of ionic dialysance to calculate kt/V in pediatric hemodialysis. Hemodial Int. 2011;15(Suppl 1):S2–8.

    Article  PubMed  Google Scholar 

  40. Steuer RR, Leypoldt JK, Cheung AK, Harris DH, Conis JM. Hematocrit as an indicator of blood volume and a predictor of intradialytic morbid events. ASAIO J. 1994;40(3):M691–6.

    Article  CAS  PubMed  Google Scholar 

  41. Schneditz D, Roob JM, Vaclavik M, Holzer H, Kenner T. Noninvasive measurement of blood volume in hemodialysis patients. J Am Soc Nephrol. 1996;7(8):1241–4.

    Article  CAS  PubMed  Google Scholar 

  42. Jain SR, Smith L, Brewer ED, Goldstein SL. Non-invasive intravascular monitoring in the pediatric hemodialysis population. Pediatr Nephrol. 2001;16(1):15–8.

    Article  CAS  PubMed  Google Scholar 

  43. Michael MBE, Goldstein SL. Blood volume monitoring to achieve target weight in pediatric hemodialysis patients. Pediatr Nephrol. 2004;19(4):432–7.

    Article  PubMed  Google Scholar 

  44. Hothi DK, Harvey E, Goia CM, Geary D. Blood-volume monitoring in paediatric haemodialysis. Pediatr Nephrol. 2008;23(5):813–20.

    Article  PubMed  Google Scholar 

  45. Vanholder RCRS. Adequacy of dialysis: a critical analysis. Kidney Int. 1997;42(3):540–58.

    Article  Google Scholar 

  46. Lacour F, Maheut H. AN 69 membrane and conversion enzyme inhibitors: prevention of anaphylactic shock by alkaline rinsing? Nephrologie. 1992;13(3):135–6.

    CAS  PubMed  Google Scholar 

  47. Kammerl MC, Schaefer RM, Schweda F, Schreiber M, Riegger GA, Kramer BK. Extracorporal therapy with AN69 membranes in combination with ACE inhibition causing severe anaphylactoid reactions: still a current problem? Clin Nephrol. 2000;53(6):486–8.

    CAS  PubMed  Google Scholar 

  48. John B, Anijeet HK, Ahmad R. Anaphylactic reaction during haemodialysis on AN69 membrane in a patient receiving angiotensin II receptor antagonist. Nephrol Dial Transplant. 2001;16(9):1955–6.

    Article  CAS  PubMed  Google Scholar 

  49. Clark WR, Macias WL, Molitoris BA, Wang NH. Plasma protein adsorption to highly permeable hemodialysis membranes. Kidney Int. 1995;48(2):481–8.

    Article  CAS  PubMed  Google Scholar 

  50. Henderson L. Biophysics of ultrafiltration and hemofiltration. Replacement of renal function by dialysis. 4th ed. Dordrecht: Kluwer Academic Publishers; 1996. p. 114–45.

    Book  Google Scholar 

  51. Bloembergen WE, Hakim RM, Stannard DC, Held PJ, Wolfe RA, Agodoa LY, et al. Relationship of dialysis membrane and cause-specific mortality. Am J Kidney Dis. 1999;33(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  52. Woods HF, Nandakumar M. Improved outcome for haemodialysis patients treated with high-flux membranes. Nephrol Dial Transplant. 2000;15(Suppl 1):36–42.

    Article  PubMed  Google Scholar 

  53. Coppo R, Amore A, Cirina P, Scelfo B, Giacchino F, Comune L, et al. Bradykinin and nitric oxide generation by dialysis membranes can be blunted by alkaline rinsing solutions. Kidney Int. 2000;58(2):881–8.

    Article  CAS  PubMed  Google Scholar 

  54. Polaschegg HD. Hemodialysis machine technology: a global overview. Expert Rev Med Devices. 2010;7(6):793–810.

    Article  PubMed  Google Scholar 

  55. Ward RA. Ultrapure dialysate. Semin Dial. 2004;17(6):489–97.

    Article  PubMed  Google Scholar 

  56. Laude-Sharp M, Caroff M, Simard L, Pusineri C, Kazatchkine MD, Haeffner-Cavaillon N. Induction of IL-1 during hemodialysis: transmembrane passage of intact endotoxins (LPS). Kidney Int. 1990;38(6):1089–94.

    Article  CAS  PubMed  Google Scholar 

  57. Urena P, Herbelin A, Zingraff J, Lair M, Man NK, Descamps-Latscha B, et al. Permeability of cellulosic and non-cellulosic membranes to endotoxin subunits and cytokine production during in-vitro haemodialysis. Nephrol Dial Transplant. 1992;7(1):16–28.

    CAS  PubMed  Google Scholar 

  58. Lonnemann G, Sereni L, Lemke HD, Tetta C. Pyrogen retention by highly permeable synthetic membranes during in vitro dialysis. Artif Organs. 2001;25(12):951–60.

    Article  CAS  PubMed  Google Scholar 

  59. Jaber BL, Gonski JA, Cendoroglo M, Balakrishnan VS, Razeghi P, Dinarello CA, et al. New polyether sulfone dialyzers attenuate passage of cytokine-inducing substances from pseudomonas aeruginosa contaminated dialysate. Blood Purif. 1998;16(4):210–9.

    Article  CAS  PubMed  Google Scholar 

  60. Lonnemann G, Behme TC, Lenzner B, Floege J, Schulze M, Colton CK, et al. Permeability of dialyzer membranes to TNF alpha-inducing substances derived from water bacteria. Kidney Int. 1992;42(1):61–8.

    Article  CAS  PubMed  Google Scholar 

  61. Schindler R, Krautzig S, Lufft V, Lonnemann G, Mahiout A, Marra MN, et al. Induction of interleukin-1 and interleukin-1 receptor antagonist during contaminated in-vitro dialysis with whole blood. Nephrol Dial Transplant. 1996;11(1):101–8.

    Article  CAS  PubMed  Google Scholar 

  62. Boccato C, Evans D, Lucena R, Vienken J. Good Dialysis Practice., vol. 8. Lengerich: Pabst Science Publishers; 2015.

    Google Scholar 

  63. European Directorate for the Quality of Medicines. Purified water. In: European Pharmacopoeia 9.4; 2018: 5665-5667. https://www.edqm.eu/sites/default/files/institutional-brochure-edqm.pdf. Accessed 7 July 2019

  64. Moret K, Aalten J, van den Wall BW, Gerlag P, Beerenhout C, van der Sande F, et al. The effect of sodium profiling and feedback technologies on plasma conductivity and ionic mass balance: a study in hypotension-prone dialysis patients. Nephrol Dial Transplant. 2006;21(1):138–44.

    Article  CAS  PubMed  Google Scholar 

  65. Sadowski RH, Allred EN, Jabs K. Sodium modeling ameliorates intradialytic and interdialytic symptoms in young hemodialysis patients. J Am Soc Nephrol. 1993;4(5):1192–8.

    Article  CAS  PubMed  Google Scholar 

  66. Song JH, Lee SW, Suh CK, Kim MJ. Time-averaged concentration of dialysate sodium relates with sodium load and interdialytic weight gain during sodium-profiling hemodialysis. Am J Kidney Dis. 2002;40(2):291–301.

    Article  CAS  PubMed  Google Scholar 

  67. de Paula FM, Peixoto AJ, Pinto LV, Dorigo D, Patricio PJ, Santos SF. Clinical consequences of an individualized dialysate sodium prescription in hemodialysis patients. Kidney Int. 2004;66(3):1232–8.

    Article  PubMed  Google Scholar 

  68. Song JH, Park GH, Lee SY, Lee SW, Lee SW, Kim MJ. Effect of sodium balance and the combination of ultrafiltration profile during sodium profiling hemodialysis on the maintenance of the quality of dialysis and sodium and fluid balances. J Am Soc Nephrol. 2005;16(1):237–46.

    Article  PubMed  Google Scholar 

  69. Covic A, Diaconita M, Gusbeth-Tatomir P, Covic M, Botezan A, Ungureanu G, et al. Haemodialysis increases QT(c) interval but not QT(c) dispersion in ESKD patients without manifest cardiac disease. Nephrol Dial Transplant. 2002;17(12):2170–7.

    Article  CAS  PubMed  Google Scholar 

  70. Ichikawa H, Nagake Y, Makino H. Signal averaged electrocardiography (SAECG) in patients on hemodialysis. J Med. 1997;28(3–4):229–43.

    CAS  PubMed  Google Scholar 

  71. Blumberg A, Roser HW, Zehnder C, Müller-Brand J. Plasma potassium in patients with terminal renal failure during and after haemodialysis; relationship with dialytic potassium removal and total body potassium. Nephrol Dial Transplant. 1997;12:1629–34.

    Article  CAS  PubMed  Google Scholar 

  72. Zehnder C, Gutzwiller JP, Huber A, Schindler C, Schneditz D. Low-potassium and glucose free dialysis maintains urea but enhances potassium removal. Nephrol Dial Transplant. 2001;16:78–84.

    Article  CAS  PubMed  Google Scholar 

  73. Basile C, Libutti P, Lisi P, Teutonico A, Vernaglione L, Casucci F, Lomonte C. Ranking of factors determining potassium mass balance in bicarbonate haemodialysis. Nephrol Dial Transplant. 2015;30:505–13.

    Article  CAS  PubMed  Google Scholar 

  74. Dolan MJ, Whipp BJ, Davidson WD, Weitzman RE, Wasserman K. Hypopnea associated with acetate hemodialysis: carbon dioxide-flow-dependent ventilation. N Engl J Med. 1981;305(2):72–5.

    Article  CAS  PubMed  Google Scholar 

  75. Kraut JA. Disturbances of acid-base balance and bone disease in end-stage renal disease. Semin Dial. 2000;13(4):261–6.

    Article  CAS  PubMed  Google Scholar 

  76. Mehrotra R, Kopple JD, Wolfson M. Metabolic acidosis in maintenance dialysis patients: clinical considerations. Kidney Int Suppl. 2003;88:S13–25.

    Article  CAS  Google Scholar 

  77. Sonikian M, Gogusev J, Zingraff J, Loric S, Quednau B, Bessou G, et al. Potential effect of metabolic acidosis on beta 2-microglobulin generation: in vivo and in vitro studies. J Am Soc Nephrol. 1996;7(2):350–6.

    Article  CAS  PubMed  Google Scholar 

  78. Uribarri J, Levin NW, Delmez J, Depner TA, Ornt D, Owen W, et al. Association of acidosis and nutritional parameters in hemodialysis patients. Am J Kidney Dis. 1999;34(3):493–9.

    Article  CAS  PubMed  Google Scholar 

  79. Heguilen RM, Sciurano C, Bellusci AD, Fried P, Mittelman G, Rosa Diez G, et al. The faster potassium-lowering effect of high dialysate bicarbonate concentrations in chronic haemodialysis patients. Nephrol Dial Transplant. 2005;20(3):591–7.

    Article  CAS  PubMed  Google Scholar 

  80. Ahmad S, Callan R, Cole JJ, Blagg CR. Dialysate made from dry chemicals using citric acid increases dialysis dose. Am J Kidney Dis. 2000;35(3):493–9.

    Article  CAS  PubMed  Google Scholar 

  81. Fernandez E, Borras M, Pais B, Montoliu J. Low-calcium dialysate stimulates parathormone secretion and its long-term use worsens secondary hyperparathyroidism. J Am Soc Nephrol. 1995;6(1):132–5.

    Article  CAS  PubMed  Google Scholar 

  82. Fellner SK, Lang RM, Neumann A, Spencer KT, Bushinsky DA, Borow KM. Physiological mechanisms for calcium-induced changes in systemic arterial pressure in stable dialysis patients. Hypertension. 1989;13(3):213–8.

    Article  CAS  PubMed  Google Scholar 

  83. Hothi DK, Harvey E, Piva E, Keating L, Secker D, Geary DF. Calcium and phosphate balance in adolescents on home nocturnal haemodialysis. Pediatr Nephrol. 2006;21(6):835–41.

    Article  PubMed  Google Scholar 

  84. Fischbach M, Boudailliez B, Foulard M. Phosphate end dialysis value: a misleading parameter of hemodialysis efficiency. French Society for Pediatric Nephrology. Pediatr Nephrol. 1997;11(2):193–5.

    Article  CAS  PubMed  Google Scholar 

  85. Pogglitsch H, Estelberger W, Petek W, Zitta S, Ziak E. Relationship between generation and plasma concentration of anorganic phosphorus. In vivo studies on dialysis patients and in vitro studies on erythrocytes. Int J Artif Organs. 1989;12(8):524–32.

    Article  CAS  PubMed  Google Scholar 

  86. Spalding EM, Chamney PW, Farrington K. Phosphate kinetics during hemodialysis: evidence for biphasic regulation. Kidney Int. 2002;61(2):655–67.

    Article  CAS  PubMed  Google Scholar 

  87. Leypoldt JK, Cheung AK, Agodoa LY, Daugirdas JT, Greene T, Keshaviah PR. Hemodialyzer mass transfer-area coefficients for urea increase at high dialysate flow rates. The hemodialysis (HEMO) study. Kidney Int. 1997;51(6):2013–7.

    Article  CAS  PubMed  Google Scholar 

  88. Schneditz D, Kaufman AM, Polaschegg HD, Levin NW, Daugirdas JT. Cardiopulmonary recirculation during hemodialysis. Kidney Int. 1992;42(6):1450–6.

    Article  CAS  PubMed  Google Scholar 

  89. Van Someren EJ, Raymann RJ, Scherder EJ, Daanen HA, Swaab DF. Circadian and age-related modulation of thermoreception and temperature regulation: mechanisms and functional implications. Ageing Res Rev. 2002;1(4):721–78.

    Article  PubMed  Google Scholar 

  90. Bennett LA, Johnson JM, Stephens DP, Saad AR, Kellogg DL Jr. Evidence for a role for vasoactive intestinal peptide in active vasodilatation in the cutaneous vasculature of humans. J Physiol. 2003;552(Pt 1):223–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Johnson JMPD. Section 4: environmental physiology. In: Fregly MJ, Blatteis CM, editors. Handbook of physiology. New York: Oxford University Press; 1996. p. 215–43.

    Google Scholar 

  92. Fine A, Penner B. The protective effect of cool dialysate is dependent on patients’ predialysis temperature. Am J Kidney Dis. 1996;28(2):262–5.

    Article  CAS  PubMed  Google Scholar 

  93. Ikizler TA, Wingard RL, Sun M, Harvell J, Parker RA, Hakim RM. Increased energy expenditure in hemodialysis patients. J Am Soc Nephrol. 1996;7(12):2646–53.

    Article  CAS  PubMed  Google Scholar 

  94. Rosales LM, Schneditz D, Chmielnicki H, Shaw K, Levin NW. Exercise and extracorporeal blood cooling during hemodialysis. ASAIO J. 1998;44(5):M574–8.

    Article  CAS  PubMed  Google Scholar 

  95. Maggiore Q, Dattolo P, Piacenti M, Morales MA, Pelosi G, Pizzarelli F, et al. Thermal balance and dialysis hypotension. Int J Artif Organs. 1995;18(9):518–25.

    Article  CAS  PubMed  Google Scholar 

  96. Nelson-Piercy C. Hazards of heparin: allergy, heparin-induced thrombocytopenia and osteoporosis. Baillieres Clin Obstet Gynaecol. 1997;11(3):489–509.

    Article  CAS  PubMed  Google Scholar 

  97. Greer IA. Exploring the role of low-molecular-weight heparins in pregnancy. Semin Thromb Hemost. 2002;28(Suppl 3):25–31.

    Article  CAS  PubMed  Google Scholar 

  98. Geary DF, Gajaria M, Fryer-Keene S, Willumsen J. Low-dose and heparin-free hemodialysis in children. Pediatr Nephrol. 1991;5(2):220–4.

    Article  CAS  PubMed  Google Scholar 

  99. Bohler J, Schollmeyer P, Dressel B, Dobos G, Horl WH. Reduction of granulocyte activation during hemodialysis with regional citrate anticoagulation: dissociation of complement activation and neutropenia from neutrophil degranulation. J Am Soc Nephrol. 1996;7(2):234–41.

    Article  CAS  PubMed  Google Scholar 

  100. Ljungberg B, Jacobson SH, Lins LE, Pejler G. Effective anticoagulation by a low molecular weight heparin (Fragmin) in hemodialysis with a highly permeable polysulfone membrane. Clin Nephrol. 1992;38(2):97–100.

    CAS  PubMed  Google Scholar 

  101. Klingel R, Schwarting A, Lotz J, Eckert M, Hohmann V, Hafner G. Safety and efficacy of single bolus anticoagulation with enoxaparin for chronic hemodialysis. Results of an open-label post-certification study. Kidney Blood Press Res. 2004;27(4):211–7.

    Article  CAS  PubMed  Google Scholar 

  102. Bianchetti MG, Speck S, Muller R, Oetliker OH. Simple coagulation prophylaxis using low-molecular heparin enoxaparin in pediatric hemodialysis. Schweiz Rundsch Med Prax. 1990;79(23):730–1.

    CAS  PubMed  Google Scholar 

  103. Davenport A. Alternatives to standard unfractionated heparin for pediatric hemodialysis treatments. Pediatr Nephrol. 2012;27(10):1869–79.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Evenepoel P, Maes B, Vanwalleghem J, Kuypers D, Messiaen T, Vanrenterghem Y. Regional citrate anticoagulation for hemodialysis using a conventional calcium-containing dialysate. Am J Kidney Dis. 2002;39(2):315–23.

    Article  CAS  PubMed  Google Scholar 

  105. Koster A, Meyer O, Hausmann H, Kuppe H, Hetzer R, Mertzlufft F. In vitro cross-reactivity of danaparoid sodium in patients with heparin-induced thrombocytopenia type II undergoing cardiovascular surgery. J Clin Anesth. 2000;12(4):324–7.

    Article  CAS  PubMed  Google Scholar 

  106. Fischer KG. Hirudin in renal insufficiency. Semin Thromb Hemost. 2002;28(5):467–82.

    Article  CAS  PubMed  Google Scholar 

  107. Greinacher A, Lubenow N, Eichler P. Anaphylactic and anaphylactoid reactions associated with lepirudin in patients with heparin-induced thrombocytopenia. Circulation. 2003;108(17):2062–5.

    Article  CAS  PubMed  Google Scholar 

  108. Lim W, Cook DJ, Crowther MA. Safety and efficacy of low molecular weight heparins for hemodialysis in patients with end-stage renal failure: a meta-analysis of randomized trials. J Am Soc Nephrol. 2004;15(12):3192–206.

    Article  PubMed  Google Scholar 

  109. Woolliscroft JO, Fox IH. Increased body fluid purine levels during hypotensive events. Evidence for ATP degradation. Am J Med. 1986;81(3):472–8.

    Article  CAS  PubMed  Google Scholar 

  110. Converse RL Jr, Jacobsen TN, Jost CM, Toto RD, Grayburn PA, Obregon TM, et al. Paradoxical withdrawal of reflex vasoconstriction as a cause of hemodialysis-induced hypotension. J Clin Invest. 1992;90(5):1657–65.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Ligtenberg G, Barnas MG, Koomans HA. Intradialytic hypotension: new insights into the mechanism of vasovagal syncope. Nephrol Dial Transplant. 1998;13(11):2745–7.

    Article  CAS  PubMed  Google Scholar 

  112. Shinzato T, Miwa M, Nakai S, Morita H, Odani H, Inoue I, et al. Role of adenosine in dialysis-induced hypotension. J Am Soc Nephrol. 1994;4(12):1987–94.

    Article  CAS  PubMed  Google Scholar 

  113. Prakash S, Garg AX, Heidenheim AP, House AA. Midodrine appears to be safe and effective for dialysis-induced hypotension: a systematic review. Nephrol Dial Transplant. 2004;19(10):2553–8.

    Article  CAS  PubMed  Google Scholar 

  114. Donauer J, Kolblin D, Bek M, Krause A, Bohler J. Ultrafiltration profiling and measurement of relative blood volume as strategies to reduce hemodialysis-related side effects. Am J Kidney Dis. 2000;36(1):115–23.

    Article  CAS  PubMed  Google Scholar 

  115. Ronco C, Feriani M, Chiaramonte S, Conz P, Brendolan A, Bragantini L, et al. Impact of high blood flows on vascular stability in haemodialysis. Nephrol Dial Transplant. 1990;5(Suppl 1):109–14.

    Article  PubMed  Google Scholar 

  116. Port S, Garfinkel A, Boyle N. There is a non-linear relationship between mortality and blood pressure. Eur Heart J. 2000;21(20):1635–8.

    Article  CAS  PubMed  Google Scholar 

  117. Foley RN, Parfrey PS, Harnett JD, Kent GM, Murray DC, Barre PE. Impact of hypertension on cardiomyopathy, morbidity and mortality in end-stage renal disease. Kidney Int. 1996;49(5):1379–85.

    Article  CAS  PubMed  Google Scholar 

  118. Zager PG, Nikolic J, Brown RH, Campbell MA, Hunt WC, Peterson D, et al. “U” curve association of blood pressure and mortality in hemodialysis patients. Medical directors of dialysis clinic. Inc Kidney Int. 1998;54(2):561–9.

    Article  CAS  PubMed  Google Scholar 

  119. Conlon PJ, Krucoff MW, Minda S, Schumm D, Schwab SJ. Incidence and long-term significance of transient ST segment deviation in hemodialysis patients. Clin Nephrol. 1998;49(4):236–9.

    CAS  PubMed  Google Scholar 

  120. Foley RN, Parfrey PS, Kent GM, Harnett JD, Murray DC, Barre PE. Serial change in echocardiographic parameters and cardiac failure in end-stage renal disease. J Am Soc Nephrol. 2000;11(5):912–6.

    Article  PubMed  Google Scholar 

  121. Tarakcioglu M, Erbagci A, Cekmen M, Usalan C, Cicek H, Ozaslan J, et al. Acute effect of haemodialysis on serum markers of myocardial damage. Int J Clin Pract. 2002;56(5):328–32.

    CAS  PubMed  Google Scholar 

  122. Wayand D, Baum H, Schatzle G, Scharf J, Neumeier D. Cardiac troponin T and I in end-stage renal failure. Clin Chem. 2000;46(9):1345–50.

    Article  CAS  PubMed  Google Scholar 

  123. Lipshultz SE, Somers MJ, Lipsitz SR, Colan SD, Jabs K, Rifai N. Serum cardiac troponin and subclinical cardiac status in pediatric chronic renal failure. Pediatrics. 2003;112(1 Pt 1):79–86.

    Article  PubMed  Google Scholar 

  124. McIntyre CW, Burton JO, Selby NM, Leccisotti L, Korsheed S, Baker CS, et al. Hemodialysis-induced cardiac dysfunction is associated with an acute reduction in global and segmental myocardial blood flow. Clin J Am Soc Nephrol. 2008;3(1):19–26.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Burton JO, Jefferies HJ, Selby NM, McIntyre CW. Hemodialysis-induced cardiac injury: determinants and associated outcomes. Clin J Am Soc Nephrol. 2009;4(5):914–20.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Braunwald E, Kloner RA. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation. 1982;66(6):1146–9.

    Article  CAS  PubMed  Google Scholar 

  127. Wijns W, Vatner SF, Camici PG. Hibernating myocardium. N Engl J Med. 1998;339(3):173–81.

    Article  CAS  PubMed  Google Scholar 

  128. Burton JO, Korsheed S, Grundy BJ, McIntyre CW. Hemodialysis-induced left ventricular dysfunction is associated with an increase in ventricular arrhythmias. Ren Fail. 2008;30(7):701–9.

    Article  PubMed  Google Scholar 

  129. Burton JO, Jefferies HJ, Selby NM, McIntyre CW. Hemodialysis-induced repetitive myocardial injury results in global and segmental reduction in systolic cardiac function. Clin J Am Soc Nephrol. 2009;4(12):1925–31.

    Article  PubMed  PubMed Central  Google Scholar 

  130. U.S. Renal Data System. USRDS 2007 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States. Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases. p. 2007.

    Google Scholar 

  131. Haq IJH, Burton JO, Mcintyre RCW. Left atrial volume is associated with hemodialysis-induced ischaemic cardiac injury (myocardial stunning) and reduced survival. Am Soc Nephrol. 2009:F-PO1431.

    Google Scholar 

  132. Hothi DK, Rees L, McIntyre CW, Marek J. Hemodialysis-induced acute myocardial dyssynchronous impairment in children. Nephron Clin Pract. 2013;123(1–2):83–92.

    Article  PubMed  Google Scholar 

  133. Hothi DK, Rees L, Marek J, Burton J, McIntyre CW. Pediatric myocardial stunning underscores the cardiac toxicity of conventional hemodialysis treatments. Clin J Am Soc Nephrol. 2009;4(4):790–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Selby NM, McIntyre CW. Peritoneal dialysis is not associated with myocardial stunning. Perit Dial Int. 2011;31(1):27–33.

    Article  PubMed  Google Scholar 

  135. McIntyre CW, Harrison LE, Eldehni MT, Jefferies HJ, Szeto CC, John SG, et al. Circulating endotoxemia: a novel factor in systemic inflammation and cardiovascular disease in chronic kidney disease. Clin J Am Soc Nephrol. 2011;6(1):133–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dubin RF, Teerlink JR, Schiller NB, Alokozai D, Peralta CA, Johansen KL. Association of segmental wall motion abnormalities occurring during hemodialysis with post-dialysis fatigue. Nephrol Dial Transplant. 2013;28(10):2580–5.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Jefferies HJ, Burton JO, McIntyre CW. Individualised dialysate temperature improves intradialytic haemodynamics and abrogates haemodialysis-induced myocardial stunning, without compromising tolerability. Blood Purif. 2011;32(1):63–8.

    Article  PubMed  Google Scholar 

  138. Jefferies HJ, Virk B, Schiller B, Moran J, McIntyre CW. Frequent hemodialysis schedules are associated with reduced levels of dialysis-induced cardiac injury (myocardial stunning). Clin J Am Soc Nephrol. 2011;6(6):1326–32.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Selby NM, Lambie SH, Camici PG, Baker CS, McIntyre CW. Occurrence of regional left ventricular dysfunction in patients undergoing standard and biofeedback dialysis. Am J Kidney Dis. 2006;47(5):830–41.

    Article  PubMed  Google Scholar 

  140. Kramer AM, van Stralen KJ, Jager KJ, Schaefer F, Verrina E, Seeman T, et al. Demographics of blood pressure and hypertension in children on renal replacement therapy in Europe. Kidney Int. 2011;80(10):1092–8.

    Article  PubMed  Google Scholar 

  141. Lin JJ, Mitsnefes MM, Smoyer WE, Valentini RP. Antihypertensive prescription in pediatric dialysis: a practitioner survey by the Midwest pediatric nephrology consortium study. Hemodial Int. 2009;13(3):307–15.

    Article  PubMed  Google Scholar 

  142. Chen J, Gul A, Sarnak MJ. Management of intradialytic hypertension: the ongoing challenge. Semin Dial. 2006;19(2):141–5.

    Article  PubMed  Google Scholar 

  143. Dolson GM, Ellis KJ, Bernardo MV, Prakash R, Adrogue HJ. Acute decreases in serum potassium augment blood pressure. Am J Kidney Dis. 1995;26(2):321–6.

    Article  CAS  PubMed  Google Scholar 

  144. Cirit M, Akcicek F, Terzioglu E, Soydas C, Ok E, Ozbasli CF, et al. ‘Paradoxical’ rise in blood pressure during ultrafiltration in dialysis patients. Nephrol Dial Transplant. 1995;10(8):1417–20.

    CAS  PubMed  Google Scholar 

  145. Klein IH, Ligtenberg G, Oey PL, Koomans HA, Blankestijn PJ. Enalapril and losartan reduce sympathetic hyperactivity in patients with chronic renal failure. J Am Soc Nephrol. 2003;14(2):425–30.

    Article  CAS  PubMed  Google Scholar 

  146. Blankestijn PJ. Sympathetic hyperactivity in chronic kidney disease. Nephrol Dial Transplant. 2004;19(6):1354–7.

    Article  PubMed  Google Scholar 

  147. Hansen J, Victor RG. Direct measurement of sympathetic activity: new insights into disordered blood pressure regulation in chronic renal failure. Curr Opin Nephrol Hypertens. 1994;3(6):636–43.

    Article  CAS  PubMed  Google Scholar 

  148. Koomans HA, Blankestijn PJ, Joles JA. Sympathetic hyperactivity in chronic renal failure: a wake-up call. J Am Soc Nephrol. 2004;15(3):524–37.

    Article  PubMed  Google Scholar 

  149. Neumann J, Ligtenberg G, Klein II, Koomans HA, Blankestijn PJ. Sympathetic hyperactivity in chronic kidney disease: pathogenesis, clinical relevance, and treatment. Kidney Int. 2004;65(5):1568–76.

    Article  PubMed  Google Scholar 

  150. El-Shafey EM, El-Nagar GF, Selim MF, El-Sorogy HA, Sabry AA. Is there a role for endothelin-1 in the hemodynamic changes during hemodialysis? Clin Exp Nephrol. 2008;12(5):370–5.

    Article  CAS  PubMed  Google Scholar 

  151. Raj DS, Vincent B, Simpson K, Sato E, Jones KL, Welbourne TC, et al. Hemodynamic changes during hemodialysis: role of nitric oxide and endothelin. Kidney Int. 2002;61(2):697–704.

    Article  CAS  PubMed  Google Scholar 

  152. Surdacki A, Sulowicz W, Wieczorek-Surdacka E, Herman ZS. Effect of a hemodialysis session on plasma levels of endothelin-1 in hypertensive and normotensive subjects with end-stage renal failure. Nephron. 1999;81(1):31–6.

    Article  CAS  PubMed  Google Scholar 

  153. Chou KJ, Lee PT, Chen CL, Chiou CW, Hsu CY, Chung HM, et al. Physiological changes during hemodialysis in patients with intradialysis hypertension. Kidney Int. 2006;69(10):1833–8.

    Article  CAS  PubMed  Google Scholar 

  154. Pearl RJ, Papageorgiou PC, Goldman M, Amfilochiadis AA, Boomsma F, Rojkjaer R, et al. Possible role of new pressor protein in hypertensive anephric hemodialysis patients. Pediatr Nephrol. 2003;18(10):1025–31.

    Article  PubMed  Google Scholar 

  155. Mitsnefes MM, Daniels SR, Schwartz SM, Khoury P, Strife CF. Changes in left ventricular mass in children and adolescents during chronic dialysis. Pediatr Nephrol. 2001;16(4):318–23.

    Article  CAS  PubMed  Google Scholar 

  156. Ulinski T, Genty J, Viau C, Tillous-Borde I, Deschenes G. Reduction of left ventricular hypertrophy in children undergoing hemodialysis. Pediatr Nephrol. 2006;21(8):1171–8.

    Article  PubMed  Google Scholar 

  157. Mitsnefes MM, Kimball TR, Kartal J, Witt SA, Glascock BJ, Khoury PR, et al. Progression of left ventricular hypertrophy in children with early chronic kidney disease: 2-year follow-up study. J Pediatr. 2006;149(5):671–5.

    Article  PubMed  Google Scholar 

  158. Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, et al. FGF23 induces left ventricular hypertrophy. J Clin Invest. 2011;121(11):4393–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Colan SD, Sanders SP, Ingelfinger JR, Harmon W. Left ventricular mechanics and contractile state in children and young adults with end-stage renal disease: effect of dialysis and renal transplantation. J Am Coll Cardiol. 1987;10(5):1085–94.

    Article  CAS  PubMed  Google Scholar 

  160. Boulanger CM, Amabile N, Guerin AP, Pannier B, Leroyer AS, Mallat CN, et al. In vivo shear stress determines circulating levels of endothelial microparticles in end-stage renal disease. Hypertension. 2007;49(4):902–8.

    Article  CAS  PubMed  Google Scholar 

  161. Choi JH, Kim KL, Huh W, Kim B, Byun J, Suh W, et al. Decreased number and impaired angiogenic function of endothelial progenitor cells in patients with chronic renal failure. Arterioscler Thromb Vasc Biol. 2004;24(7):1246–52.

    Article  CAS  PubMed  Google Scholar 

  162. Herbrig K, Pistrosch F, Oelschlaegel U, Wichmann G, Wagner A, Foerster S, et al. Increased total number but impaired migratory activity and adhesion of endothelial progenitor cells in patients on long-term hemodialysis. Am J Kidney Dis. 2004;44(5):840–9.

    Article  PubMed  Google Scholar 

  163. Westerweel PE, Hoefer IE, Blankestijn PJ, de Bree P, Groeneveld D, van Oostrom O, et al. End-stage renal disease causes an imbalance between endothelial and smooth muscle progenitor cells. Am J Physiol Renal Physiol. 2007;292(4):F1132–40.

    Article  CAS  PubMed  Google Scholar 

  164. Kari JA, Donald AE, Vallance DT, Bruckdorfer KR, Leone A, Mullen MJ, et al. Physiology and biochemistry of endothelial function in children with chronic renal failure. Kidney Int. 1997;52(2):468–72.

    Article  CAS  PubMed  Google Scholar 

  165. Lilien MR, Koomans HA, Schroder CH. Hemodialysis acutely impairs endothelial function in children. Pediatr Nephrol. 2005;20(2):200–4.

    Article  PubMed  Google Scholar 

  166. Chan CT, Li SH, Verma S. Nocturnal hemodialysis is associated with restoration of impaired endothelial progenitor cell biology in end-stage renal disease. Am J Physiol Renal Physiol. 2005;289(4):F679–84.

    Article  CAS  PubMed  Google Scholar 

  167. Ramirez R, Carracedo J, Merino A, Nogueras S, Alvarez-Lara MA, Rodriguez M, et al. Microinflammation induces endothelial damage in hemodialysis patients: the role of convective transport. Kidney Int. 2007;72(1):108–13.

    Article  CAS  PubMed  Google Scholar 

  168. Bleyer AJ, Hartman J, Brannon PC, Reeves-Daniel A, Satko SG, Russell G. Characteristics of sudden death in hemodialysis patients. Kidney Int. 2006;69(12):2268–73.

    Article  CAS  PubMed  Google Scholar 

  169. Herzog CA, Mangrum JM, Passman R. Sudden cardiac death and dialysis patients. Semin Dial. 2008;21(4):300–7.

    Article  PubMed  Google Scholar 

  170. Karnik JA, Young BS, Lew NL, Herget M, Dubinsky C, Lazarus JM, et al. Cardiac arrest and sudden death in dialysis units. Kidney Int. 2001;60(1):350–7.

    Article  CAS  PubMed  Google Scholar 

  171. Kovesdy CP, Regidor DL, Mehrotra R, Jing J, McAllister CJ, Greenland S, et al. Serum and dialysate potassium concentrations and survival in hemodialysis patients. Clin J Am Soc Nephrol. 2007;2(5):999–1007.

    Article  CAS  PubMed  Google Scholar 

  172. Ganesh SK, Stack AG, Levin NW, Hulbert-Shearon T, Port FK. Association of elevated serum PO(4), ca × PO(4) product, and parathyroid hormone with cardiac mortality risk in chronic hemodialysis patients. J Am Soc Nephrol. 2001;12(10):2131–8.

    Article  CAS  PubMed  Google Scholar 

  173. Oh J, Wunsch R, Turzer M, Bahner M, Raggi P, Querfeld U, et al. Advanced coronary and carotid arteriopathy in young adults with childhood-onset chronic renal failure. Circulation. 2002;106(1):100–5.

    Article  PubMed  Google Scholar 

  174. Shroff RC, Donald AE, Hiorns MP, Watson A, Feather S, Milford D, et al. Mineral metabolism and vascular damage in children on dialysis. J Am Soc Nephrol. 2007;18(11):2996–3003.

    Article  CAS  PubMed  Google Scholar 

  175. Shroff R, Egerton M, Bridel M, Shah V, Donald AE, Cole TJ, et al. A bimodal association of vitamin D levels and vascular disease in children on dialysis. J Am Soc Nephrol. 2008;19(6):1239–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Litwin M, Wuhl E, Jourdan C, Trelewicz J, Niemirska A, Fahr K, et al. Altered morphologic properties of large arteries in children with chronic renal failure and after renal transplantation. J Am Soc Nephrol. 2005;16(5):1494–500.

    Article  PubMed  Google Scholar 

  177. Charitaki E, Davenport A. Do higher dialysate calcium concentrations increase vascular stiffness in haemodialysis patients as measured by aortic pulse wave velocity? BMC Nephrol. 2013;14(1):189.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Calabro P, Willerson JT, Yeh ET. Inflammatory cytokines stimulated C-reactive protein production by human coronary artery smooth muscle cells. Circulation. 2003;108(16):1930–2.

    Article  CAS  PubMed  Google Scholar 

  179. Docci D, Bilancioni R, Buscaroli A, Baldrati L, Capponcini C, Mengozzi S, et al. Elevated serum levels of C-reactive protein in hemodialysis patients. Nephron. 1990;56(4):364–7.

    Article  CAS  PubMed  Google Scholar 

  180. Panichi V, Migliori M, De Pietro S, Taccola D, Bianchi AM, Giovannini L, et al. C-reactive protein and interleukin-6 levels are related to renal function in predialytic chronic renal failure. Nephron. 2002;91(4):594–600.

    Article  CAS  PubMed  Google Scholar 

  181. McIntyre C, Harper I, Macdougall IC, Raine AE, Williams A, Baker LR. Serum C-reactive protein as a marker for infection and inflammation in regular dialysis patients. Clin Nephrol. 1997;48(6):371–4.

    CAS  PubMed  Google Scholar 

  182. Sezer S, Kulah E, Ozdemir FN, Tutal E, Arat Z, Haberal M. Clinical consequences of intermittent elevation of C-reactive protein levels in hemodialysis patients. Transplant Proc. 2004;36(1):38–40.

    Article  CAS  PubMed  Google Scholar 

  183. Youssef DM, Elshal AS, Abo Elazem AA. Assessment of immune status in relation to vitamin D levels in children on regular hemodialysis. Saudi J Kidney Dis Transpl. 2012;23(2):267–73.

    PubMed  Google Scholar 

  184. Chang JW, Yang WS, Min WK, Lee SK, Park JS, Kim SB. Effects of simvastatin on high-sensitivity C-reactive protein and serum albumin in hemodialysis patients. Am J Kidney Dis. 2002;39(6):1213–7.

    Article  CAS  PubMed  Google Scholar 

  185. Vernaglione L, Cristofano C, Muscogiuri P, Chimienti S. Does atorvastatin influence serum C-reactive protein levels in patients on long-term hemodialysis? Am J Kidney Dis. 2004;43(3):471–8.

    Article  CAS  PubMed  Google Scholar 

  186. Hyun HS, Paik KH, Cho HY. P-Cresyl sulfate and indoxyl sulfate in pediatric patients on chronic dialysis. Korean J Pediatr. 2013;56(4):159–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Srivaths PR, Wong C, Goldstein SL. Nutrition aspects in children receiving maintenance hemodialysis: impact on outcome. Pediatr Nephrol. 2009;24(5):951–7.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Franke D, Winkel S, Gellermann J, Querfeld U, Pape L, Ehrich JH, et al. Growth and maturation improvement in children on renal replacement therapy over the past 20 years. Pediatr Nephrol. 2013;28(10):2043–51.

    Article  PubMed  Google Scholar 

  189. Srivaths PR, Sutherland S, Alexander S, Goldstein SL. Two-point normalized protein catabolic rate overestimates nPCR in pediatric hemodialysis patients. Pediatr Nephrol. 2013;28(5):797–801.

    Article  PubMed  Google Scholar 

  190. Goldstein SL, Baronette S, Gambrell TV, Currier H, Brewer ED. nPCR assessment and IDPN treatment of malnutrition in pediatric hemodialysis patients. Pediatr Nephrol. 2002;17(7):531–4.

    Article  PubMed  Google Scholar 

  191. Grupe WE, Harmon WE, Spinozzi NS. Protein and energy requirements in children receiving chronic hemodialysis. Kidney Int Suppl. 1983;15:S6–10.

    CAS  PubMed  Google Scholar 

  192. Youssef DM. Results of recombinant growth hormone treatment in children with end-stage renal disease on regular hemodialysis. Saudi J Kidney Dis Transpl. 2012;23(4):755–64.

    Article  PubMed  Google Scholar 

  193. Evans AM, Faull RJ, Nation RL, Prasad S, Elias T, Reuter SE, et al. Impact of hemodialysis on endogenous plasma and muscle carnitine levels in patients with end-stage renal disease. Kidney Int. 2004;66(4):1527–34.

    Article  CAS  PubMed  Google Scholar 

  194. Evans A. Dialysis-related carnitine disorder and levocarnitine pharmacology. Am J Kidney Dis. 2003;41(4 Suppl 4):S13–26.

    Article  CAS  PubMed  Google Scholar 

  195. Miller B, Ahmad S. A review of the impact of L-carnitine therapy on patient functionality in maintenance hemodialysis. Am J Kidney Dis. 2003;41(4 Suppl 4):S44–8.

    Article  CAS  PubMed  Google Scholar 

  196. Eknoyan G, Latos DL, Lindberg J. National Kidney Foundation carnitine consensus C. practice recommendations for the use of L-carnitine in dialysis-related carnitine disorder. National Kidney Foundation carnitine consensus conference. Am J Kidney Dis. 2003;41(4):868–76.

    Article  PubMed  Google Scholar 

  197. Wald DS, Law M, Morris JK. Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ. 2002;325(7374):1202.

    Article  PubMed  PubMed Central  Google Scholar 

  198. van Guldener C. Why is homocysteine elevated in renal failure and what can be expected from homocysteine-lowering? Nephrol Dial Transplant. 2006;21(5):1161–6.

    Article  PubMed  Google Scholar 

  199. Scholze A, Rinder C, Beige J, Riezler R, Zidek W, Tepel M. Acetylcysteine reduces plasma homocysteine concentration and improves pulse pressure and endothelial function in patients with end-stage renal failure. Circulation. 2004;109(3):369–74.

    Article  CAS  PubMed  Google Scholar 

  200. House AA, Wells GA, Donnelly JG, Nadler SP, Hebert PC. Randomized trial of high-flux vs low-flux haemodialysis: effects on homocysteine and lipids. Nephrol Dial Transplant. 2000;15(7):1029–34.

    Article  CAS  PubMed  Google Scholar 

  201. Henderson LW, Colton CK, Ford CA. Kinetics of hemodiafiltration. II. Clinical characterization of a new blood cleansing modality. J Lab Clin Med. 1975;85:372–91.

    CAS  PubMed  Google Scholar 

  202. Blankestijn PJ, Ledebo I, Canaud B. Hemodiafiltration: clinical evidence and remaining questions. Kidney Int. 2010;77:581–7.

    Article  PubMed  Google Scholar 

  203. Tattersall JE, Ward RA. Online haemodiafiltration: definition, dose quantification and safety revisited. Nephrol Dial Transplant. 2013;28:542–50.

    Article  CAS  PubMed  Google Scholar 

  204. Eknoyan G, Beck GJ, Cheung AK, Daugirdas JT, Greene T, Kusek JW, Allon M, Bailey J, Delmez JA, Depner TA, Dwyer JT, Levey AS, Levin NW, Milford E, Ornt DB, Rocco MV, Schulman G, Schwab SJ, Teehan BP, Toto R. Effect of dialysis dose and membrane flux in maintenance hemodialysis. N Engl J Med. 2002;347:2010–9.

    Article  PubMed  Google Scholar 

  205. Grooteman MP, van den Dorpel MA, Bots ML, Penne EL, van der Weerd NC, Mazairac AH, den Hoedt CH, van der Tweel I, Levesque R, Nube MJ, Ter Wee PM, Blankestijn PJ. Effect of online hemodiafiltration on all-cause mortality and cardiovascular outcomes. J Am Soc Nephrol. 2012;23:1087–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Maduell F, Moreso F, Pons M, Ramos R, Mora-Macia J, Carreras J, Soler J, Torres F, Campistol JM, Martinez-Castelao A. High-efficiency postdilution online hemodiafiltration reduces all-cause mortality in hemodialysis patients. J Am Soc Nephrol. 2013;24:487–97.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Ok E, Asci G, Toz H, Ok ES, Kircelli F, Yilmaz M, Hur E, Demirci MS, Demirci C, Duman S, Basci A, Adam SM, Isik IO, Zengin M, Suleymanlar G, Yilmaz ME, Ozkahya M. Mortality and cardiovascular events in online haemodiafiltration (OL-HDF) compared with high-flux dialysis: results from the Turkish OL-HDF study. Nephrol Dial Transplant. 2013;28:192–202.

    Article  PubMed  Google Scholar 

  208. Peters SA, Bots ML, Canaud B, Davenport A, Grooteman MP, Kircelli F, Locatelli F, Maduell F, Morena M, Nube MJ, Ok E, Torres F, Woodward M, Blankestijn PJ. Haemodiafiltration and mortality in end-stage kidney disease patients: a pooled individual participant data analysis from four randomized controlled trials. Nephrol Dial Transplant. 2016;31:978–84.

    Article  PubMed  Google Scholar 

  209. Ronco C. Backfiltration: a controversial issue in modern dialysis. Int J Artif Organs. 1988;11:69–74.

    Article  CAS  PubMed  Google Scholar 

  210. Ward RA, Beck W, Bernardo AA, Alves FC, Stenvinkel P, Lindholm B. Hypoalbuminemia: a price worth paying for improved dialytic removal of middle-molecular-weight uremic toxins? Nephrol Dial Transplant. 2019;34(6):901–7.

    Article  CAS  PubMed  Google Scholar 

  211. Boure T, Vanholder R. Which dialyser membrane to choose? Nephrol Dial Transplant. 2004;19:293–6.

    Article  CAS  PubMed  Google Scholar 

  212. Ronco C, Clark WR. Haemodialysis membranes. Nat Rev Nephrol. 2018;14:394–410.

    Article  CAS  PubMed  Google Scholar 

  213. Canaud B, Kooman J, Selby NM, Taal M, Francis S, Kopperschmidt P, Maierhofer A, Kotanko P, Titze J. Sodium and water handling during hemodialysis: new pathophysiologic insights and management approaches for improving outcomes in end-stage kidney disease. Kidney Int. 2019;95:296–309.

    Article  CAS  PubMed  Google Scholar 

  214. Chapdelaine I, de Roij van Zuijdewijn CL, Mostovaya IM, Levesque R, Davenport A, Blankestijn PJ, Wanner C, Nube MJ, Grooteman MP, Blankestijn PJ, Davenport A, Basile C, Locatelli F, Maduell F, Mitra S, Ronco C, Shroff R, Tattersall J, Wanner C. Optimization of the convection volume in online post-dilution haemodiafiltration: practical and technical issues. Clin Kidney J. 2015;8:191–8.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Mostovaya IM, Grooteman MP, Basile C, Davenport A, de Roij van Zuijdewijn CL, Wanner C, Nube MJ, Blankestijn PJ. High convection volume in online post-dilution haemodiafiltration: relevance, safety and costs. Clin Kidney J. 2015;8:368–73.

    Article  PubMed  PubMed Central  Google Scholar 

  216. Penne EL, van Berkel T, van der Weerd NC, Grooteman MP, Blankestijn PJ. Optimizing haemodiafiltration: tools, strategy and remaining questions. Nephrol Dial Transplant. 2009;24:3579–81.

    Article  PubMed  Google Scholar 

  217. Shroff R, Bayazit A, Stefanidis CJ, Askiti V, Azukaitis K, Canpolat N, Agbas A, Anarat A, Aoun B, Bakkaloglu S, Bhowruth D, Borzych-Duzalka D, Bulut IK, Buscher R, Dempster C, Duzova A, Habbig S, Hayes W, Hegde S, Krid S, Licht C, Litwin M, Mayes M, Mir S, Nemec R, Obrycki L, Paglialonga F, Picca S, Ranchin B, Samaille C, Shenoy M, Sinha M, Smith C, Spasojevic B, Vidal E, Vondrak K, Yilmaz A, Zaloszyc A, Fischbach M, Schaefer F, Schmitt CP. Effect of haemodiafiltration vs conventional haemodialysis on growth and cardiovascular outcomes in children - the HDF, heart and height (3H) study. BMC Nephrol. 2018;19:199.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Cheung AK, Rocco MV, Yan G, Leypoldt JK, Levin NW, Greene T, Agodoa L, Bailey J, Beck GJ, Clark W, Levey AS, Ornt DB, Schulman G, Schwab S, Teehan B, Eknoyan G. Serum beta-2 microglobulin levels predict mortality in dialysis patients: results of the HEMO study. J Am Soc Nephrol. 2006;17:546–55.

    Article  CAS  PubMed  Google Scholar 

  219. Agbas A, Canpolat N, Caliskan S, Yilmaz A, Ekmekci H, Mayes M, Aitkenhead H, Schaefer F, Sever L, Shroff R. Hemodiafiltration is associated with reduced inflammation, oxidative stress and improved endothelial risk profile compared to high-flux hemodialysis in children. PLoS One. 2018;13:e0198320.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Locatelli F, Altieri P, Andrulli S, Bolasco P, Sau G, Pedrini LA, Basile C, David S, Feriani M, Montagna G, Di Iorio BR, Memoli B, Cravero R, Battaglia G, Zoccali C. Hemofiltration and hemodiafiltration reduce intradialytic hypotension in ESRD. J Am Soc Nephrol. 2010;21:1798–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Morena M, Jaussent A, Chalabi L, Leray-Moragues H, Chenine L, Debure A, Thibaudin D, Azzouz L, Patrier L, Maurice F, Nicoud P, Durand C, Seigneuric B, Dupuy AM, Picot MC, Cristol JP, Canaud B. Treatment tolerance and patient-reported outcomes favor online hemodiafiltration compared to high-flux hemodialysis in the elderly. Kidney Int. 2017;91:1495–509.

    Article  PubMed  Google Scholar 

  222. Shroff R, Smith C, Ranchin B, Bayazit AK, Stefanidis CJ, Askiti V, Azukaitis K, Canpolat N, Agbas A, Aitkenhead H, Anarat A, Aoun B, Aofolaju D, Bakkaloglu SA, Bhowruth D, Borzych-Duzalka D, Bulut IK, Buscher R, Deanfield J, Dempster C, Duzova A, Habbig S, Hayes W, Hegde S, Krid S, Licht C, Litwin M, Mayes M, Mir S, Nemec R, Obrycki L, Paglialonga F, Picca S, Samaille C, Shenoy M, Sinha MD, Spasojevic B, Stronach L, Vidal E, Vondrak K, Yilmaz A, Zaloszyc A, Fischbach M, Schmitt CP, Schaefer F. Effects of hemodiafiltration versus conventional hemodialysis in children with ESKD: the HDF, heart and height study. J Am Soc Nephrol. 2019;30:678–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Nistor I, Palmer SC, Craig JC, Saglimbene V, Vecchio M, Covic A, Strippoli GF. Haemodiafiltration, haemofiltration and haemodialysis for end-stage kidney disease. Cochrane Database Syst Rev. 2015:CD006258.

    Google Scholar 

  224. Fischbach M, Terzic J, Menouer S, Dheu C, Seuge L, Zalosczic A. Daily on line haemodiafiltration promotes catch-up growth in children on chronic dialysis. Nephrol Dial Transplant. 2010;25:867–73.

    Article  CAS  PubMed  Google Scholar 

  225. Fischbach M, Fothergill H, Seuge L, Zaloszyc A. Dialysis strategies to improve growth in children with chronic kidney disease. J Ren Nutr. 2011;21:43–6.

    Article  PubMed  Google Scholar 

  226. Fischbach M, Attal Y, Geisert J. Hemodiafiltration versus hemodialysis in children. Int J Pediatr Nephrol. 1984;5:151–4.

    CAS  PubMed  Google Scholar 

  227. Fischbach M, Terzic J, Menouer S, Dheu C, Soskin S, Helmstetter A, Burger MC. Intensified and daily hemodialysis in children might improve statural growth. Pediatr Nephrol. 2006;21:1746–52.

    Article  PubMed  Google Scholar 

  228. Bacchetta J, Sellier-Leclerc AL, Bertholet-Thomas A, Carlier MC, Cartier R, Cochat P, Ranchin B. Calcium balance in pediatric online hemodiafiltration: beware of sodium and bicarbonate in the dialysate. Nephrol Ther. 2015;11:483–6.

    Article  PubMed  Google Scholar 

  229. Fadel FI, Makar SH, Zekri H, Ahmed DH, Aon AH. The effect of on-line hemodiafiltration on improving the cardiovascular function parameters in children on regular dialysis. Saudi J Kidney Dis Transpl. 2015;26:39–46.

    Article  PubMed  Google Scholar 

  230. Paglialonga F, Vidal E, Pecoraro C, Guzzo I, Giordano M, Gianoglio B, Corrado C, Roperto R, Ratsch I, Luzio S, Murer L, Consolo S, Pieri G, Montini G, Edefonti A, Verrina E. Haemodiafiltration use in children: data from the Italian pediatric dialysis registry. Pediatr Nephrol. 2019;34:1057–63.

    Article  PubMed  Google Scholar 

  231. De Zan F, Smith C, Duzova A, Bayazit A, Stefanidis CJ, Askiti V, Azukaitis K, Canpolat N, Agbas A, Anarat A, Aoun B, Bakkaloglu SA, Borzych-Dużałka D, Bulut IK, Habbig S, Krid S, Licht C, Litwin M, Obrycki L, Paglialonga F, Ranchin B, Samaille C, Shenoy M, Sinha MD, Spasojevic B, Yilmaz A, Fischbach M, Schmitt CP, Schaefer F, Vidal E, Shroff R. Hemodiafiltration maintains a sustained improvement in blood pressure compared to conventional hemodialysis in children-the HDF, heart and height (3H) study. Pediatr Nephrol. 2021. Epub ahead of print. PMID: 33629141

    Google Scholar 

  232. Scribner BH, Cole JJ, Ahmad S, Blagg CR. Why thrice weekly dialysis? Hemodial Int. 2004;8(2):188–92.

    Article  PubMed  Google Scholar 

  233. Rocco MV, Lockridge RS Jr, Beck GJ, Eggers PW, Gassman JJ, Greene T, et al. The effects of frequent nocturnal home hemodialysis: the frequent hemodialysis network nocturnal trial. Kidney Int. 2011;80(10):1080–91.

    Article  PubMed  PubMed Central  Google Scholar 

  234. Fischbach M, Dheu C, Seuge L, Menouer S, Terzic J. In-center daily on-line hemodiafiltration: a 4-year experience in children. Clin Nephrol. 2008;69(4):279–84.

    Article  CAS  PubMed  Google Scholar 

  235. Fischbach M, Terzic J, Laugel V, Dheu C, Menouer S, Helms P, et al. Daily on-line haemodiafiltration: a pilot trial in children. Nephrol Dial Transplant. 2004;19(9):2360–7.

    Article  PubMed  Google Scholar 

  236. Tom A, McCauley L, Bell L, Rodd C, Espinosa P, Yu G, et al. Growth during maintenance hemodialysis: impact of enhanced nutrition and clearance. J Pediatr. 1999;134(4):464–71.

    Article  CAS  PubMed  Google Scholar 

  237. Geary DF, Piva E, Tyrrell J, Gajaria MJ, Picone G, Keating LE, et al. Home nocturnal hemodialysis in children. J Pediatr. 2005;147(3):383–7.

    Article  PubMed  Google Scholar 

  238. Geary DF, Piva E, Gajaria M, Tyrrel J, Picone G, Harvey E. Development of a nocturnal home hemodialysis (NHHD) program for children. Semin Dial. 2004;17(2):115–7.

    Article  PubMed  Google Scholar 

  239. Warady BA, Fischbach M, Geary D, Goldstein SL. Frequent hemodialysis in children. Adv Chronic Kidney Dis. 2007;14(3):297–303.

    Article  PubMed  Google Scholar 

  240. Goldstein SL, Silverstein DM, Leung JC, Feig DI, Soletsky B, Knight C, et al. Frequent hemodialysis with NxStage system in pediatric patients receiving maintenance hemodialysis. Pediatr Nephrol. 2008;23(1):129–35.

    Article  PubMed  Google Scholar 

  241. Hothi DK, Stronach L, Harvey E. Home haemodialysis. Pediatr Nephrol. 2013;28(5):721–30.

    Article  PubMed  Google Scholar 

  242. Hothi DK, Fenton M. The impact of home hemodialysis in children with severe cardiac failure. Hemodial Int. 2020;24(4):E61–6.

    Article  PubMed  Google Scholar 

  243. Hoppe A, von Puttkamer C, Linke U, Kahler C, Booss M, Braunauer-Kolberg R, et al. A hospital-based intermittent nocturnal hemodialysis program for children and adolescents. J Pediatr. 2011;158(1):95–9, 9 e1

    Article  PubMed  Google Scholar 

  244. Muller D, Zimmering M, Chan CT, McFarlane PA, Pierratos A, Querfeld U. Intensified hemodialysis regimens: neglected treatment options for children and adolescents. Pediatr Nephrol. 2008;23(10):1729–36.

    Article  PubMed  Google Scholar 

  245. Kilis-Pstrusinska K, Medynska A, Chmielewska IB, Grenda R, Kluska-Jozwiak A, Leszczynska B, et al. Perception of health-related quality of life in children with chronic kidney disease by the patients and their caregivers: multicentre national study results. Qual Life Res. 2013;22(10):2889–97.

    Article  PubMed  PubMed Central  Google Scholar 

  246. Ishibe S, Peixoto AJ. Methods of assessment of volume status and intercompartmental fluid shifts in hemodialysis patients: implications in clinical practice. Semin Dial. 2004;17(1):37–43.

    Article  PubMed  Google Scholar 

  247. Clark WR, Ronco C. Determinants of haemodialyser performance and the potential effect on clinical outcome. Nephrol Dial Transplant. 2001;16(Suppl 5):56–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Taylor Moatz and Denis Geary for their assistance with the prior versions of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daljit K. Hothi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hothi, D.K., Shroff, R.C., Laskin, B. (2023). Management of Hemodialysis in Children. In: Schaefer, F., Greenbaum, L.A. (eds) Pediatric Kidney Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-11665-0_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11665-0_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11664-3

  • Online ISBN: 978-3-031-11665-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics