Skip to main content

Steroid Resistant Nephrotic Syndrome

  • Chapter
  • First Online:
Pediatric Kidney Disease

Abstract

Nephrotic syndrome is among the most common forms of kidney disease seen in children. Steroid resistant nephrotic syndrome (SRNS), which accounts for up to 20% of all cases of childhood NS, is the most common glomerular cause of end stage kidney disease (ESKD) in children. The pathogenesis of FSGS has not been completely delineated; however, there is growing evidence to suggest that it is a primary defect of the podocyte. Up to 30% of cases are caused by monogenic hereditary podocyte disorders. A role for circulating factors has also been implicated in disease pathogenesis. Histopathological changes vary; focal segmental glomerulosclerosis (FSGS) and minimal change disease (MCD) are the most common findings. The treatment of SRNS is challenging, as only about 30–60% of all cases will respond completely or partially to currently available therapies, yet response to therapy is the most important determinant of future progression to end-stage kidney disease (ESKD). The poorest long-term prognosis is associated with genetic disease forms (80% ESKD 15 years after disease onset), followed by patients without a genetic cause who show resistance to intensified immunosuppressive therapeutic attempts (multidrug resistant nephrotic syndrome, 60% 15-year ESKD risk), whereas patients achieving full disease remission upon intensified immunosuppression rarely develop ESKD (<10% at 15 years). The risk of SRNS recurrence in kidney transplant is estimated at 30%, with a lower risk (0–5%) in patients with monogenic SRNS and close to 80% in patients with secondary steroid resistance and progression to ESKD. Further studies of familial and non-familial forms of SRNS are needed in order to elucidate disease mechanisms, develop a robust pathogenesis based classification, develop personalized approach to therapy, and identify specific non-toxic therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trautmann A, Vivarelli M, Samuel S, et al. IPNA clinical practice recommendations for the diagnosis and management of children with steroid-resistant nephrotic syndrome. Pediatr Nephrol. 2020;35(8):1529–61.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Kidney Disease: Improving Global Outcomes (KDIGO) Glomerular Diseases Work Group. KDIGO 2021 clinical practice guideline for the management of glomerular diseases. Kidney Int. 2021;100(4S):S1–S276.

    Google Scholar 

  3. ISKDC. The primary nephrotic syndrome in children. Identification of patients with minimal change nephrotic syndrome from initial response to prednisone. J Pediatr. 1981;98(4):561–4.

    Article  Google Scholar 

  4. Niaudet P. Steroid-resistant idiopathic nephrotic syndrome in children. In: Avner ED, Harmon WE, Niaudet P, editors. Pediatric nephrology. Philadelphia: Lippincott Williams & Wilkins; 2004. p. 557–73.

    Google Scholar 

  5. International Study of Kidney Disease in Children. Primary nephrotic syndrome in children: clinical significances of histopathologic variants of minimal change. Kidney Int. 1981;20(6):765–71.

    Article  Google Scholar 

  6. Niaudet P, Gagnadoux MF, Broyer M. Treatment of childhood steroid-resistant idiopathic nephrotic syndrome. Adv Nephrol Necker Hosp. 1998;28:43–61.

    CAS  PubMed  Google Scholar 

  7. Straatmann C, Ayoob R, Gbadegesin R, et al. Treatment outcome of late steroid-resistant nephrotic syndrome: a study by the Midwest Pediatric Nephrology Consortium. Pediatr Nephrol. 2013;28(8):1235–41.

    Article  PubMed  Google Scholar 

  8. Ding WY, Koziell A, McCarthy HJ, et al. Initial steroid sensitivity in children with steroid-resistant nephrotic syndrome predicts post-transplant recurrence. J Am Soc Nephrol. 2014;25(6):1342–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Pelletier JH, Kumar KR, Engen R, et al. Recurrence of nephrotic syndrome following kidney transplantation is associated with initial native kidney biopsy findings. Pediatr Nephrol. 2018;33(10):1773–80.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Nash MA, et al. The nephrotic syndrome. In: Edelmann CMJ, editor. Pediatric kidney disease. Boston: Little, Brown, and Company; 1992. p. 1247–66.

    Google Scholar 

  11. Srivastava T, Simon SD, Alon US. High incidence of focal segmental glomerulosclerosis in nephrotic syndrome of childhood. Pediatr Nephrol. 1999;13(1):13–8.

    Article  CAS  PubMed  Google Scholar 

  12. Hogg RJ, et al. Evaluation and management of proteinuria and nephrotic syndrome in children: recommendations from a pediatric nephrology panel established at the National Kidney Foundation Conference on Proteinuria, Albuminuria, Risk, Assessment, Detection, and Elimination (PARADE). Pediatrics. 2000;105(6):1242–9.

    Article  CAS  PubMed  Google Scholar 

  13. McEnery PT, Strife CF. Nephrotic syndrome in childhood. Management and treatment in patients with minimal change disease, mesangial proliferation, or focal glomerulosclerosis. Pediat Clin North Am. 1982;29(4):875–94.

    Article  CAS  Google Scholar 

  14. Noone DG, Iijima K, Parekh R. Idiopathic nephrotic syndrome in children. Lancet. 2018;392(10141):61–74.

    Article  PubMed  Google Scholar 

  15. Bonilla-Felix M, et al. Changing patterns in the histopathology of idiopathic nephrotic syndrome in children. Kidney Int. 1999;55(5):1885–90.

    Article  CAS  PubMed  Google Scholar 

  16. Eddy AA, Symons JM. Nephrotic syndrome in childhood. Lancet. 2003;362(9384):629–39.

    Article  PubMed  Google Scholar 

  17. Filler G, et al. Is there really an increase in non-minimal change nephrotic syndrome in children? Am J Kidney Dis. 2003;42(6):1107–13.

    Article  PubMed  Google Scholar 

  18. Kari JA. Changing trends of histopathology in childhood nephrotic syndrome in western Saudi Arabia. Saudi Med J. 2002;23(3):317–21.

    PubMed  Google Scholar 

  19. Sharples PM, Poulton J, White RH. Steroid responsive nephrotic syndrome is more common in Asians. Arch Dis Child. 1985;60(11):1014–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Banh TH, Hussain-Shamsy N, Patel V, Vasilevska-Ristovska J, Borges K, Sibbald C, Lipszyc D, Brooke J, Geary D, Langlois V, Reddon M, Pearl R, Levin L, Piekut M, Licht CP, Radhakrishnan S, Aitken-Menezes K, Harvey E, Hebert D, Piscione TD, Parekh RS. Ethnic differences in incidence and outcomes of childhood nephrotic syndrome. Clin J Am Soc Nephrol. 2016;11(10):1760–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Coovadia HM, Adhikari M, Morel-Maroger L. Clinico-pathological features of the nephrotic syndrome in South African children. Q J Med. 1979;48(189):77–91.

    CAS  PubMed  Google Scholar 

  22. Hendrickse RG, et al. Quartan malarial nephrotic syndrome. Collaborative clinicopathological study in Nigerian children. Lancet. 1972;1(1761):1143–9.

    Article  CAS  PubMed  Google Scholar 

  23. Abdurrahman MB. Clinicopathological features of childhood nephrotic syndrome in northern Nigeria. Q J Med. 1990;75(278):563–76.

    CAS  PubMed  Google Scholar 

  24. Genovese G, Friedman DJ, Ross MD, et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science. 2010;329(5993):841–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Nephrotic syndrome in children: prediction of histopathology from clinical and laboratory characteristics at time of diagnosis. A report of the International Study of Kidney Disease in Children. Kidney Int. 1978;13:159–65.

    Google Scholar 

  26. Sorof JM, et al. Age and ethnicity affect the risk and outcome of focal segmental glomerulosclerosis. Pediatr Nephrol. 1998;12(9):764–8.

    Article  CAS  PubMed  Google Scholar 

  27. Bhimma R, Coovadia HM, Adhikari M. Nephrotic syndrome in South African children: changing perspectives over 20 years. Pediatr Nephrol. 1997;11(4):429–34.

    Article  CAS  PubMed  Google Scholar 

  28. Doe JY, et al. Nephrotic syndrome in African children: lack of evidence for ‘tropical nephrotic syndrome’? Nephrol Dial Trans. 2006;21(3):672–6.

    Article  Google Scholar 

  29. Esezobor CI, Solarin AU, Gbadegesin R. Changing epidemiology of nephrotic syndrome in Nigerian children: a cross-sectional study. PLoS One. 2020;15(9):e0239300.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. The Southwest Pediatric Nephrology Study Group. Focal segmental glomerulosclerosis in children with idiopathic nephrotic syndrome: a report of the Southwest Pediatric Nephrology Study Group. Kidney Int. 1985;27:442–9.

    Article  Google Scholar 

  31. Mubarak M, Lanewala A, Kazi JI, Akhter F, Sher A, Fayyaz A, Bhatti S. Histopathological spectrum of childhood nephrotic syndrome in Pakistan. Clin Exp Nephrol. 2009;13:589–93.

    Article  PubMed  Google Scholar 

  32. Nammalwar BR, Vijayakumar M, Prahlad N. Experience of renal biopsy in children with nephrotic syndrome. Pediatr Nephrol. 2006;21(2):286–8.

    Article  PubMed  Google Scholar 

  33. Banaszak B, Banaszak P. The increasing incidence of initial steroid resistance in childhood nephrotic syndrome. Pediatr Nephrol. 2012;27(6):927–32.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Bhimma R, Adhikari M, Asharam K. Steroid-resistant nephrotic syndrome: the influence of race on cyclophosphamide sensitivity. Pediatr Nephrol. 2006;21(12):1847–53.

    Article  PubMed  Google Scholar 

  35. Churg J, Habib R, White RH. Pathology of the nephrotic syndrome in children: a report for the International Study of Kidney Disease in Children. Lancet. 1970;760:1299–302.

    Article  CAS  PubMed  Google Scholar 

  36. Cameron JS. Focal segmental glomerulosclerosis in adults. Nephrol Dial Transplant. 2003;18:vi45-51.

    Article  PubMed  Google Scholar 

  37. Rich AR. A hitherto undescribed vulnerability of the juxtamedullary glomeruli in lipoid nephrosis. Bull Johns Hopkins Hosp. 1957;100:173–86.

    CAS  PubMed  Google Scholar 

  38. Kitiyakara C, Kopp JB, Eggers P. Trends in the epidemiology of focal segmental glomerulosclerosis. Semin Nephrol. 2003;23:172–82.

    Article  PubMed  Google Scholar 

  39. Kitiyakara C, Eggers P, Kopp JB. Twenty-one-year trend in ESRD due to focal segmental glomerulosclerosis in the United States. Am J Kidney Dis. 2004;44:815–25.

    Article  PubMed  Google Scholar 

  40. Swaminathan S, Leung N, Lager DJ, Melton LJ 3rd, Bergstralh EJ, Rohlinger A, Fervenza FC. Changing incidence of glomerular disease in Olmsted County, Minnesota: a 30-year renal biopsy study. Clin J Am Soc Nephrol. 2006;1:483–7.

    Article  PubMed  Google Scholar 

  41. Borges FF, Shiraichi L, da Silva MP, Nishimoto EI, Nogueira PC. Is focal segmental glomerulosclerosis increasing in patients with nephrotic syndrome? Pediatr Nephrol. 2007;22:1309–13.

    Article  PubMed  Google Scholar 

  42. Izzedine H, Brocheriou I, Arzouk N, et al. COVID-19-associated collapsing glomerulopathy: a report of two cases and literature review. Intern Med J. 2020;50(12):1551–8.

    Article  CAS  PubMed  Google Scholar 

  43. Gbadegesin RA, Winn MP, Smoyer WE. Genetic testing in nephrotic syndrome—challenges and opportunities. Nat Rev Nephrol. 2013;9:179–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. D’Agati VD, Fogo AB, Bruijn JA, Jennette JC. Pathologic classification of focal segmental glomerulosclerosis: a working proposal. Am J Kidney Dis. 2004;43:368–82.

    Article  PubMed  Google Scholar 

  45. Stokes MB, Valeri AM, Markowitz GS, D’Agati VD. Cellular focal segmental glomerulosclerosis: clinical and pathologic features. Kidney Int. 2006;70:1783–92.

    Article  CAS  PubMed  Google Scholar 

  46. D’Agati VD, Alster JM, Jennette JC, Thomas DB, Pullman J, Savino DA, Cohen AH, Gipson DS, Gassman JJ, Radeva MK, Moxey-Mims MM, Friedman AL, Kaskel FJ, Trachtman H, Alpers CE, Fogo AB, Greene TH, Nast CC. Association of histologic variants in FSGS clinical trial with presenting features and outcomes. Clin J Am Soc Nephrol. 2013;8:399–406.

    Article  PubMed  Google Scholar 

  47. Tsuchimoto A, Matsukuma Y, Ueki K, et al. Utility of Columbia classification in focal segmental glomerulosclerosis: renal prognosis and treatment response among the pathological variants. Nephrol Dial Transplant. 2020;35(7):1219–27.

    Article  PubMed  Google Scholar 

  48. Kopp JB, Anders HJ, Susztak K, et al. Podocytopathies. Nat Rev Dis Primers. 2020;6(1):68. Published 2020 Aug 13.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Wiggins RC. The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int. 2007;71:1205–14.

    Article  CAS  PubMed  Google Scholar 

  50. Smoyer WE, Mundel P. Regulation of podocyte structure during the development of nephrotic syndrome. J Mol Med. 1998;76:172–83.

    Article  CAS  PubMed  Google Scholar 

  51. Partanen TA, Arola J, Saaristo A, Jussila L, Ora A, Miettinen M, Stacker SA, Achen MG, Alitalo K. VEGF-C and VEGF-D expression in neuroendocrine cells and their receptor, VEGFR-3, in fenestrated blood vessels in human tissues. FASEB J. 2000;14:2087–96.

    Article  CAS  PubMed  Google Scholar 

  52. Rostgaard J, Qvortrup K. Sieve plugs in fenestrae of glomerular capillaries—site of the filtration barrier? Cells Tissues Organs. 2002;170:132–8.

    Article  PubMed  Google Scholar 

  53. Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed. 2007;9:121–67.

    Article  CAS  Google Scholar 

  54. Ballermann BJ, Stan RV. Resolved: capillary endothelium is a major contributor to the glomerular filtration barrier. J Am Soc Nephrol. 2007;18:2432–8.

    Article  PubMed  Google Scholar 

  55. Vaughan MR, Quaggin SE. How do mesangial and endothelial cells form the glomerular tuft? J Am Soc Nephrol. 2008;19:24–33.

    Article  PubMed  Google Scholar 

  56. Kestilä M, Lenkkeri U, Männikkö M, Lamerdin J, McCready P, Putaala H, Ruotsalainen V, Morita T, Nissinen M, Herva R, Kashtan CE, Peltonen L, Holmberg C, Olsen A. Tryggvason K (1998) Positionally cloned gene for a novel glomerular protein—nephrin—is mutated in congenital nephrotic syndrome. Mol Cell. 1998;1:575–82.

    Article  PubMed  Google Scholar 

  57. Shih NY, et al. Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science. 1999;286(5438):312–5.

    Article  CAS  PubMed  Google Scholar 

  58. Boute N, Gribouval O, Roselli S, Benessy F, Lee H, Fuchshuber A, Dahan K, Gubler MC, Niaudet P, Antignac C. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet. 2000;24:349–54.

    Article  CAS  PubMed  Google Scholar 

  59. Kaplan JM, et al. Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Nat Genet. 2000;24(3):251–6.

    Article  CAS  PubMed  Google Scholar 

  60. Boerkoel CF, Takashima H, John J, Yan J, Stankiewicz P, Rosenbarker L, André JL, Bogdanovic R, Burguet A, Cockfield S, Cordeiro I, Fründ S, Illies F, Joseph M, Kaitila I, Lama G, Loirat C, McLeod DR, Milford DV, Petty EM, Rodrigo F, Saraiva JM, Schmidt B, Smith GC, Spranger J, Stein A, Thiele H, Tizard J, Weksberg R, Lupski JR, Stockton DW. Mutant chromatin remodeling protein SMARCAL1 causes Schimke immuno-osseous dysplasia. Nat Genet. 2002;30:215–20.

    Article  CAS  PubMed  Google Scholar 

  61. Zenker M, Aigner T, Wendler O, Tralau T, Müntefering H, Fenski R, Pitz S, Schumacher V, Royer-Pokora B, Wühl E, Cochat P, Bouvier R, Kraus C, Mark K, Madlon H, Dötsch J, Rascher W, Maruniak-Chudek I, Lennert T, Neumann LM, Reis A. Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum Mol Genet. 2004;13:2625–32.

    Article  CAS  PubMed  Google Scholar 

  62. Winn MP, et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science. 2005;308(5729):1801–4.

    Article  CAS  PubMed  Google Scholar 

  63. Niaudet P, Gubler MC. WT1 and glomerular diseases. Pediatr Nephrol. 2006;21:1653–60.

    Article  PubMed  Google Scholar 

  64. Hinkes B, Wiggins RC, Gbadegesin R, et al. Positional cloning uncovers mutations in plce1 responsible for a nephrotic syndrome variant that may be reversible. Nat Genet. 2006;38:1397–405.

    Article  CAS  PubMed  Google Scholar 

  65. Berkovic SF, et al. Array-based gene discovery with three unrelated subjects shows SCARB2/LIMP-2 deficiency causes myoclonus epilepsy and glomerulosclerosis. Am J Hum Genet. 2008;82:673–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Brown EJ, et al. Mutations in the formin gene INF2 cause focal segmental glomerulosclerosis. Nat Genet. 2010;42:72–6.

    Article  CAS  PubMed  Google Scholar 

  67. Heeringa SF, et al. COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J Clin Invest. 2011;121:2013–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Akilesh S, et al. Arhgap24 inactivates Rac1 in mouse podocytes, and a mutant form is associated with familial focal segmental glomerulosclerosis. J Clin Invest. 2011;121:4127–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Mele C, et al. MYO1E mutations and childhood familial focal segmental glomerulosclerosis. N Engl J Med. 2011;365:295–306.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Ozaltin F, et al. Disruption of PTPRO causes childhood-onset nephrotic syndrome. Am J Hum Genet. 2011;89:139–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Has C, Spartà G, Kiritsi D, Weibel L, Moeller A, Vega-Warner V, Waters A, He Y, Anikster Y, Esser P, Straub BK, Hausser I, Bockenhauer D, Dekel B, Hildebrandt F, Bruckner-Tuderman L, Laube GF. Integrin α3 mutations with kidney, lung, and skin disease. N Engl J Med. 2012;366(16):1508–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Gupta IR, Baldwin C, Auguste D, Ha KC, El Andalousi J, Fahiminiya S, Bitzan M, Bernard C, Akbari MR, Narod SA, Rosenblatt DS, Majewski J, Takano T. ARHGDIA: a novel gene implicated in nephrotic syndrome. J Med Genet. 2013;50(5):330–8.

    Article  CAS  PubMed  Google Scholar 

  73. Kriz W. The pathogenesis of ‘classic’ focal segmental glomerulosclerosis-lessons from rat models. Nephrol Dial Transplant. 2003;Suppl 6:vi39-44.

    Google Scholar 

  74. Wharram BL, Goyal M, Wiggins JE, Sanden SK, Hussain S, Filipiak WE, Saunders TL, Dysko RC, Kohno K, Holzman LB, Wiggins RC. Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J Am Soc Nephrol. 2005;16:2941–52.

    Article  CAS  PubMed  Google Scholar 

  75. Carrie BJ, Salyer WR, Myers BD. Minimal change nephropathy: an electrochemical disorder of the glomerular membrane. Am J Med. 1981;70(2):262–8.

    Article  CAS  PubMed  Google Scholar 

  76. Shalhoub RJ. Pathogenesis of lipoid nephrosis: a disorder of T-cell function. Lancet. 1974;2(7880):556–60.

    Article  CAS  PubMed  Google Scholar 

  77. Kemper MJ, Wolf G, Muller-Wiefel DE. Transmission of glomerular permeability factor from a mother to her child. N Engl J Med. 2001;344(5):386–7.

    Article  CAS  PubMed  Google Scholar 

  78. Meyrier A. Mechanisms of Disease: focal segmental glomerulosclerosis. Nat Clin Pract Nephrol. 2005;1(1):44–54.

    Article  CAS  PubMed  Google Scholar 

  79. Sasdelli M, et al. Cell mediated immunity in idiopathic glomerulonephritis. Clin Exp Immunol. 1984;46(1):27–34.

    Google Scholar 

  80. Dantal J, et al. Effect of plasma protein adsorption on protein excretion in kidney-transplant recipients with recurrent nephrotic syndrome. N Engl J Med. 1994;330(1):7–14.

    Article  CAS  PubMed  Google Scholar 

  81. Savin VJ, et al. Circulating factor associated with increased glomerular permeability to albumin in recurrent focal segmental glomerulosclerosis. N Engl J Med. 1996;334(14):878–83.

    Article  CAS  PubMed  Google Scholar 

  82. Candiano G, et al. Inhibition of renal permeability towards albumin: a new function of apolipoproteins with possible pathogenetic relevance in focal glomerulosclerosis. Electrophoresis. 2001;22(9):1819–25.

    Article  CAS  PubMed  Google Scholar 

  83. Savin VJ, McCarthy ET, Sharma R, Charba D, Sharma M. Galactose binds to focal segmental glomerulosclerosis permeability factor and inhibits its activity. Transl Res. 2008;151(6):288–92.

    Article  CAS  PubMed  Google Scholar 

  84. Savin VJ, McCarthy ET, Sharma R, Reddy S, Dong J, Hess S, Kopp J. cardiotrophin-like cytokine-1: candidate for the focal segmental glomerulosclerosis permeability factor. J Am Soc Nephrol. 2008;19.

    Google Scholar 

  85. De Smet E, Rioux JP, Ammann H, Déziel C, Quérin S. FSGS permeability factor-associated nephrotic syndrome: remission after oral galactose therapy. Nephrol Dial Transplant. 2009;24(9):2938–40.

    Article  PubMed  Google Scholar 

  86. Kopač M, Meglič A, Rus RR. Partial remission of resistant nephrotic syndrome after oral galactose therapy. Ther Apher Dial. 2011;15(3):269–72.

    Article  PubMed  Google Scholar 

  87. Sgambat K, Banks M, Moudgil A. Effect of galactose on glomerular permeability and proteinuria in steroid-resistant nephrotic syndrome. Pediatr Nephrol. 2013;28(11):2131–5.

    Article  PubMed  Google Scholar 

  88. Wei C, El Hindi S, Li J, Fornoni A, Goes N, Sageshima J, Maiguel D, Karumanchi SA, Yap HK, Saleem M, Zhang Q, Nikolic B, Chaudhuri A, Daftarian P, Salido E, Torres A, Salifu M, Sarwal MM, Schaefer F, Morath C, Schwenger V, Zeier M, Gupta V, Roth D, Rastaldi MP, Burke G, Ruiz P, Reiser J. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat Med. 2011;17(8):952–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Behrendt N, Rønne E, Ploug M, Petri T, Løber D, Nielsen LS, Schleuning WD, Blasi F, Appella E, Danø K. The human receptor for urokinase plasminogen activator. NH2-terminal amino acid sequence and glycosylation variants. J Biol Chem. 1990;265(11):6453–60.

    Article  CAS  PubMed  Google Scholar 

  90. Sidenius N, Sier CF, Blasi F. Shedding and cleavage of the urokinase receptor (uPAR): identification and characterisation of uPAR fragments in vitro and in vivo. FEBS Lett. 2000;475(1):52–6.

    Article  CAS  PubMed  Google Scholar 

  91. Wei C, Trachtman H, Li J, Dong C, Friedman AL, Gassman JJ, JL MM, Radeva M, Heil KM, Trautmann A, Anarat A, Emre S, Ghiggeri GM, Ozaltin F, Haffner D, Gipson DS, Kaskel F, Fischer DC, Schaefer F, Reiser J, PodoNet and FSGS CT Study Consortia. Circulating suPAR in two cohorts of primary FSGS. J Am Soc Nephrol. 2012;23(12):2051–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Huang J, Liu G, Zhang YM, Cui Z, Wang F, Liu XJ, Chu R, Chen Y, Zhao MH. Plasma soluble urokinase receptor levels are increased but do not distinguish primary from secondary focal segmental glomerulosclerosis. Kidney Int. 2013;84(2):366–72.

    Article  CAS  PubMed  Google Scholar 

  93. Maas RJ, Wetzels JF, Deegens JK. Serum-soluble urokinase receptor concentration in primary FSGS. Kidney Int. 2012;81(10):1043–4.

    Article  CAS  PubMed  Google Scholar 

  94. Bock ME, Price HE, Gallon L, Langman CB. Serum soluble urokinase-type plasminogen activator receptor levels and idiopathic FSGS in children: a single-center report. Clin J Am Soc Nephrol. 2013;8(8):1304–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Maas RJ, Deegens JK, Wetzels JF. Serum suPAR in patients with FSGS: trash or treasure? Pediatr Nephrol. 2013;28(7):1041–8.

    Article  PubMed  Google Scholar 

  96. Sever S, Trachtman H, Wei C, Reiser J. Is there clinical value in measuring suPAR levels in FSGS? Clin J Am Soc Nephrol. 2013;8(8):1273–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Reiser J. Circulating permeability factor suPAR: from concept to discovery to clinic. Trans Am Clin Climatol Assoc. 2013;124:133–8.

    PubMed Central  PubMed  Google Scholar 

  98. Ruf RG, Lichtenberger A, Karle SM, Haas JP, Anacleto FE, Schultheiss M, Zalewski I, Imm A, Ruf EM, Mucha B, Bagga A, Neuhaus T, Fuchshuber A, Bakkaloglu A, Hildebrandt F. Arbeitsgemeinschaft Für Pädiatrische Nephrologie Study Group. Patients with mutations in NPHS2 (podocin) do not respond to standard steroid treatment of nephrotic syndrome. J Am Soc Nephrol. 2004;15:722–32.

    Article  PubMed  Google Scholar 

  99. Gbadegesin R, Hinkes BG, Hoskins BE, Vlangos CN, Heeringa SF, Liu J, Loirat C, Ozaltin F, Hashmi S, Ulmer F, Cleper R, Ettenger R, Antignac C, Wiggins RC, Zenker M, Hildebrandt F. Mutations in PLCE1 are a major cause of isolated diffuse mesangial sclerosis (IDMS). Nephrol Dial Transplant. 2008;23:1291–7.

    Article  CAS  PubMed  Google Scholar 

  100. Wing MR, Bourdon DM, Harden TK. PLC-epsilon: a shared effector protein in Ras-, Rho-, and G alpha beta gamma-mediated signaling. Mol Interv. 2003;3:273–80.

    Article  CAS  PubMed  Google Scholar 

  101. Boyer O, Benoit G, Gribouval O, Nevo F, Tête MJ, Dantal J, Gilbert-Dussardier B, Touchard G, Karras A, Presne C, Grunfeld JP, Legendre C, Joly D, Rieu P, Mohsin N, Hannedouche T, Moal V, Gubler MC, Broutin I, Mollet G, Antignac C. Mutations in INF2 are a major cause of autosomal dominant focal segmental glomerulosclerosis. J Am Soc Nephrol. 2011;22(2):239–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Gbadegesin RA, Lavin PJ, Hall G, Bartkowiak B, Homstad A, Jiang R, Wu G, Byrd A, Lynn K, Wolfish N, Ottati C, Stevens P, Howell D, Conlon P, Winn MP. Inverted formin 2 mutations with variable expression in patients with sporadic and hereditary focal and segmental glomerulosclerosis. Kidney Int. 2012;81(1):94–9.

    Article  CAS  PubMed  Google Scholar 

  103. Barua M, Brown EJ, Charoonratana VT, Genovese G, Sun H, Pollak MR. Mutations in the INF2 gene account for a significant proportion of familial but not sporadic focal and segmental glomerulosclerosis. Kidney Int. 2013;83(2):316–22.

    Article  CAS  PubMed  Google Scholar 

  104. Kopp JB, Smith MW, Nelson GW, Johnson RC, Freedman BI, Bowden DW, Oleksyk T, McKenzie LM, Kajiyama H, Ahuja TS, Berns JS, Briggs W, Cho ME, Dart RA, Kimmel PL, Korbet SM, Michel DM, Mokrzycki MH, Schelling JR, Simon E, Trachtman H, Vlahov D, Winkler CA. MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat Genet. 2008;40:1175–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Kao WH, Klag MJ, Meoni LA, et al. Family Investigation of Nephropathy and Diabetes Research Group. MYH9 is associated with nondiabetic end-stage renal disease in African Americans. Nat Genet. 2008;40:1185–92.

    Article  CAS  PubMed  Google Scholar 

  106. Okamoto K, Tokunaga K, Doi K, et al. Common variation in GPC5 is associated with acquired nephrotic syndrome. Nat Genet. 2011;43:459–63.

    Article  CAS  PubMed  Google Scholar 

  107. Ly J, Alexander M, Quaggin SE. A podocentric view of nephrology. Curr Opin Nephrol Hypertens. 2004;13(3):299–305.

    Article  PubMed  Google Scholar 

  108. Miner JH. Glomerular basement membrane composition and the filtration barrier. Pediatr Nephrol. 2011;26(9):1413–7.

    Article  PubMed Central  PubMed  Google Scholar 

  109. Rheault MN, Gbadegesin RA. The genetics of nephrotic syndrome. J Pediatr Genet. 2016;5(1):15–24.

    CAS  PubMed  Google Scholar 

  110. Akchurin O, Reidy KJ. Genetic causes of proteinuria and nephrotic syndrome: impact on podocyte pathobiology. Pediatr Nephrol. 2015;30(2):221–33.

    Article  PubMed  Google Scholar 

  111. Shankland SJ, Pippin JW, Duffield JS. Progenitor cells and podocyte regeneration. Semin Nephrol. 2014;34(4):418–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Warejko JK, Tan W, Daga A, et al. Whole exome sequencing of patients with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol. 2018;13(1):53–62.

    Article  CAS  PubMed  Google Scholar 

  113. Sadowski CE, Lovric S, Ashraf S, et al. A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J Am Soc Nephrol. 2015;26(6):1279–89.

    Article  CAS  PubMed  Google Scholar 

  114. Klämbt V, Mao Y, Schneider R, et al. Generation of monogenic candidate genes for human nephrotic syndrome using 3 independent approaches. Kidney Int Rep. 2020;6(2):460–71.

    Article  PubMed Central  PubMed  Google Scholar 

  115. Varner JD, Chryst-Stangl M, Esezobor CI, et al. Genetic testing for steroid-resistant-nephrotic syndrome in an outbred population. Front Pediatr. 2018;6:307.

    Article  PubMed Central  PubMed  Google Scholar 

  116. Feng D, Notbohm J, Benjamin A, et al. Disease-causing mutation in α-actinin-4 promotes podocyte detachment through maladaptation to periodic stretch. Proc Natl Acad Sci U S A. 2018;115(7):1517–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Gbadegesin RA, Hall G, Adeyemo A, et al. Mutations in the gene that encodes the F-actin binding protein anillin cause FSGS. J Am Soc Nephrol. 2014;25(9):1991–2002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Hall G, Lane BM, Khan K, et al. The human FSGS-causing ANLN R431C mutation induces dysregulated PI3K/AKT/mTOR/Rac1 signaling in podocytes. J Am Soc Nephrol. 2018;29(8):2110–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Malone AF, Phelan PJ, Hall G, et al. Rare hereditary COL4A3/COL4A4 variants may be mistaken for familial focal segmental glomerulosclerosis. Kidney Int. 2014;86(6):1253–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Gast C, Pengelly RJ, Lyon M, et al. Collagen (COL4A) mutations are the most frequent mutations underlying adult focal segmental glomerulosclerosis. Nephrol Dial Transplant. 2016;31(6):961–70.

    Article  CAS  PubMed  Google Scholar 

  121. Trautmann A, Lipska-Ziętkiewicz BS, Schaefer F. Exploring the clinical and genetic spectrum of steroid resistant nephrotic syndrome: the podonet registry. Front Pediatr. 2018;6:200.

    Article  PubMed Central  PubMed  Google Scholar 

  122. Kopp JB, Nelson GW, Sampath K, et al. APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol. 2011;22(11):2129–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Reidy KJ, Hjorten R, Parekh RS. Genetic risk of APOL1 and kidney disease in children and young adults of African ancestry. Curr Opin Pediatr. 2018;30(2):252–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Adeyemo A, Esezobor C, Solarin A, et al. HLA-DQA1 and APOL1 as risk loci for childhood-onset steroid-sensitive and steroid-resistant nephrotic syndrome. Am J Kidney Dis. 2018;71(3):399–406.

    Article  CAS  PubMed  Google Scholar 

  125. Ng DK, Robertson CC, Woroniecki RP, et al. APOL1-associated glomerular disease among African-American children: a collaboration of the Chronic Kidney Disease in Children (CKiD) and Nephrotic Syndrome Study Network (NEPTUNE) cohorts. Nephrol Dial Transplant. 2017;32(6):983–90.

    PubMed  Google Scholar 

  126. Datta S, Kataria R, Zhang JY, Moore S, Petitpas K, Mohamed A, Zahler N, Pollak MR, Olabisi OA. Kidney disease-associated APOL1 variants have dose-dependent, dominant toxic gain-of-function. J Am Soc Nephrol. 2020;31(9):2083–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  127. Olabisi OA, Heneghan JF. APOL1 nephrotoxicity: what does ion transport have to do with it? Semin Nephrol. 2017;37(6):546–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Ge M, Molina J, Ducasa GM, et al. APOL1 risk variants affect podocyte lipid homeostasis and energy production in focal segmental glomerulosclerosis. Hum Mol Genet. 2021. Epub ahead of print.

    Google Scholar 

  129. Ma L, Ainsworth HC, Snipes JA, et al. APOL1 kidney-risk variants induce mitochondrial fission. Kidney Int Rep. 2020;5(6):891–904.

    Article  PubMed Central  PubMed  Google Scholar 

  130. Wu H, Larsen CP, Hernandez-Arroyo CF, et al. AKI and collapsing glomerulopathy associated with COVID-19 and APOL1 high-risk genotype. J Am Soc Nephrol. 2020;31(8):1688–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  131. Ekulu PM, Nkoy AB, Betukumesu DK, et al. APOL1 risk genotypes are associated with early kidney damage in children in Sub-Saharan Africa. Kidney Int Rep. 2019;4(7):930–8.

    Article  PubMed Central  PubMed  Google Scholar 

  132. Savin VJ, Sharma M, Zhou J, et al. Multiple targets for novel therapy of FSGS associated with circulating permeability factor. Biomed Res Int. 2017;2017:6232616.

    Article  PubMed Central  PubMed  Google Scholar 

  133. Shoji J, Mii A, Terasaki M, Shimizu A. Update on recurrent focal segmental glomerulosclerosis in kidney transplantation. Nephron. 2020;144(Suppl 1):65–70.

    Article  CAS  PubMed  Google Scholar 

  134. den Braanker DJW, Maas RJ, Deegens JK, et al. Novel in vitro assays to detect circulating permeability factor(s) in idiopathic focal segmental glomerulosclerosis. Nephrol Dial Transplant. 2021;36(2):247–56.

    Article  Google Scholar 

  135. Wei C, El Hindi S, Li J, et al. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat Med. 2011;17(8):952–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  136. Delville M, Sigdel TK, Wei C, et al. A circulating antibody panel for pretransplant prediction of FSGS recurrence after kidney transplantation. Sci Transl Med. 2014;6(256):256ra136.

    Article  PubMed Central  PubMed  Google Scholar 

  137. Jacobs-Cachá C, Puig-Gay N, Helm D, et al. A misprocessed form of apolipoprotein A-I is specifically associated with recurrent Focal Segmental Glomerulosclerosis. Sci Rep. 2020;10(1):1159.

    Article  PubMed Central  PubMed  Google Scholar 

  138. Zhong J, Whitman JB, Yang HC, et al. Mechanisms of scarring in focal segmental glomerulosclerosis. J Histochem Cytochem. 2019;67(9):623–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  139. Bensimhon AR, Williams AE, Gbadegesin RA. Treatment of steroid-resistant nephrotic syndrome in the genomic era. Pediatr Nephrol. 2019;34(11):2279–93.

    Article  PubMed  Google Scholar 

  140. Lombel RM, Hodson EM, Gipson DS, Kidney Disease: Improving Global Outcomes. Treatment of steroid-resistant nephrotic syndrome in children: new guidelines from KDIGO. Pediatr Nephrol. 2013;28(3):409–14.

    Article  PubMed  Google Scholar 

  141. Trautmann A, Bodria M, Ozaltin F, et al. Spectrum of steroid-resistant and congenital nephrotic syndrome in children: the PodoNet registry cohort. Clin J Am Soc Nephrol. 2015;10:592–600.

    Article  PubMed Central  PubMed  Google Scholar 

  142. Trachtman H, Gauthier B. Effect of angiotensin-converting enzyme inhibitor therapy on proteinuria in children with renal disease. J Pediatr. 1988;112(2):295–8.

    Article  CAS  PubMed  Google Scholar 

  143. Milliner DS, Morgenstern BZ. Angiotensin converting enzyme inhibitors for reduction of proteinuria in children with steroid-resistant nephrotic syndrome. Pediatr Nephrol. 1991;5(5):587–90.

    Article  CAS  PubMed  Google Scholar 

  144. Delucchi A, Cano F, Rodriguez E, Wolff E, Gonzalez X, Cumsille MA. Enalapril and prednisone in children with nephrotic-range proteinuria. Pediatr Nephrol. 2000;14(12):1088–91.

    Article  CAS  PubMed  Google Scholar 

  145. Prasher PK, Varma PP, Baliga KV. Efficacy of enalapril in the treatment of steroid resistant idiopathic nephrotic syndrome. J Assoc Physicians India. 1999;47(2):180–2.

    CAS  PubMed  Google Scholar 

  146. Lama G, Luongo I, Piscitelli A, Salsano ME. Enalapril: antiproteinuric effect in children with nephrotic syndrome. Clin Nephrol. 2000;53(6):432–6.

    CAS  PubMed  Google Scholar 

  147. Ellis D, Vats A, Moritz ML, Reitz S, Grosso MJ, Janosky JE. Long-term antiproteinuric and renoprotective efficacy and safety of losartan in children with proteinuria. J Pediatr. 2003;143(1):89–97.

    Article  CAS  PubMed  Google Scholar 

  148. McCaffrey J, Lennon R, Webb NJ. The non-immunosuppressive management of childhood nephrotic syndrome. Pediatr Nephrol. 2016;31(9):1383–402.

    Article  PubMed  Google Scholar 

  149. Bagga A, Mudigoudar BD, Hari P, Vasudev V. Enalapril dosage in steroid-resistant nephrotic syndrome. Pediatr Nephrol. 2005;19:45–50.

    Article  Google Scholar 

  150. Yi Z, Li Z, Wu XC, He QN, Dang XQ, He XJ. Effect of fosinopril in children with steroid-resistant idiopathic nephrotic syndrome. Pediatr Nephrol. 2006;21(7):967–72.

    Article  PubMed  Google Scholar 

  151. Tullus K. Safety concerns of angiotensin II receptor blockers in preschool children. Arch Dis Child. 2011;96(9):881–2.

    Article  PubMed  Google Scholar 

  152. Stotter BR, Ferguson MA. Should ACE inhibitors and ARBs be used in combination in children? Pediatr Nephrol. 2019;34(9):1521–32.

    Article  PubMed  Google Scholar 

  153. Boesby L, Elung-Jensen T, Klausen TW, Strandgaard S, Kamper AL. Moderate antiproteinuric effect of add-on aldosterone blockade with eplerenone in non-diabetic chronic kidney disease. A randomized cross-over study. PLoS One. 2011;6(11):e26904.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  154. Garin EH, Orak JK, Hiott KL, Sutherland SE. Cyclosporine therapy for steroid-resistant nephrotic syndrome. A controlled study. Am J Dis Children. 1988;142(9):985–8.

    Article  CAS  Google Scholar 

  155. Ponticelli C, Rizzoni G, Edefonti A, Altieri P, Rivolta E, Rinaldi S, Ghio L, Lusvarghi E, Gusmano R, Locatelli F, et al. A randomized trial of cyclosporine in steroid-resistant idiopathic nephrotic syndrome. Kidney Int. 1993;43(6):1377–84.

    Article  CAS  PubMed  Google Scholar 

  156. Lieberman KV, Tejani A. A randomized double-blind placebo-controlled trial of cyclosporine in steroid-resistant idiopathic focal segmental glomerulosclerosis in children. J Am Soc Nephrol. 1996;7:56–63.

    Article  CAS  PubMed  Google Scholar 

  157. Cattran DC, Appel GB, Hebert LA, Hunsicker LG, Pohl MA, Hoy WE, Maxwell DR, Kunis CL. A randomized trial of cyclosporine in patients with steroid-resistant focal segmental glomerulosclerosis. North America Nephrotic Syndrome Study Group. Kidney Int. 1999;56(6):2220–6.

    Article  CAS  PubMed  Google Scholar 

  158. Bhaumik SKMA, Barman SK. Comparison of pulse methylprednisolone vs. cyclosporine based therapy in steroid resistant focal segmental glomerulosclerosis (abstract). Indian J Nephrol. 2002;12(4):190.

    Google Scholar 

  159. Trautmann A, Schnaidt S, Lipska-Zietkiewicz BS, et al. Long-term outcome of steroid-resistant nephrotic syndrome in children. J Am Soc Nephrol. 2017;28(10):3055–65.

    Article  PubMed Central  PubMed  Google Scholar 

  160. Valverde S. Efficacy of prednison-tacrolimus vs. prednisone-cyclosporine in steroid-resistant nephrotic syndrome [abstract]. Pediatr Nephrol. 2010;25(9):1804.

    Google Scholar 

  161. Murray BM, Paller MS, Ferris TF. Effect of cyclosporine administration on renal hemodynamics in conscious rats. Kidney Int. 1985;28(5):767–74.

    Article  CAS  PubMed  Google Scholar 

  162. Cattran DC, Alexopoulos E, Heering P, Hoyer PF, Johnston A, Meyrier A, Ponticelli C, Saito T, Choukroun G, Nachman P, Praga M, Yoshikawa N. Cyclosporin in idiopathic glomerular disease associated with the nephrotic syndrome: workshop recommendations. Kidney Int. 2007;72(12):1429–47.

    Article  CAS  PubMed  Google Scholar 

  163. Gipson DS, Trachtman H, Kaskel FJ, Greene TH, Radeva MK, Gassman JJ, Moxey-Mims MM, Hogg RJ, Watkins SL, Fine RN, Hogan SL, Middleton JP, Vehaskari VM, Flynn PA, Powell LM, Vento SM, McMahan JL, Siegel N, D’Agati VD, Friedman AL. Clinical trial of focal segmental glomerulosclerosis in children and young adults. Kidney Int. 2011;80(8):868–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  164. Sinha A, Gupta A, Kalaivani M, Hari P, Dinda AK, Bagga A. Mycophenolate mofetil is inferior to tacrolimus in sustaining remission in children with idiopathic steroid-resistant nephrotic syndrome. Pediatr Nephrol. 2017;92(1):248–57.

    CAS  Google Scholar 

  165. Fornoni A, Sageshima J, Wei C, Merscher-Gomez S, Aguillon-Prada R, Jauregui AN, Li J, Mattiazzi A, Ciancio G, Chen L, Zilleruelo G, Abitbol C, Chandar J, Seeherunvong W, Ricordi C, Ikehata M, Rastaldi MP, Reiser J, Burke GW 3rd. Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci Transl Med. 2011;3(85):85ra46.

    Article  PubMed Central  PubMed  Google Scholar 

  166. Gulati A, Sinha A, Jordan SC, Hari P, Dinda AK, Sharma S, Srivastava RN, Moudgil A, Bagga A. Efficacy and safety of treatment with rituximab for difficult steroid-resistant and -dependent nephrotic syndrome: multicentric report. Clin J Am Soc Nephrol. 2010;5(12):2207–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  167. Ahn YH, Kim SH, Han KH, et al. Efficacy and safety of rituximab in childhood-onset, difficult-to-treat nephrotic syndrome: a multicenter open-label trial in Korea. Medicine (Baltimore). 2018;97(46):e13157.

    Article  CAS  PubMed  Google Scholar 

  168. Magnasco A, Ravani P, Edefonti A, Murer L, Ghio L, Belingheri M, Benetti E, Murtas C, Messina G, Massella L, Porcellini MG, Montagna M, Regazzi M, Scolari F, Ghiggeri GM. Rituximab in children with resistant idiopathic nephrotic syndrome. J Am Soc Nephrol. 2012;23(6):1117–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  169. Wang CS, Liverman RS, Garro R, et al. Ofatumumab for the treatment of childhood nephrotic syndrome. Pediatr Nephrol. 2017;32(5):835–41.

    Article  PubMed Central  PubMed  Google Scholar 

  170. Vivarelli M, Colucci M, Bonanni A, et al. Ofatumumab in two pediatric nephrotic syndrome patients allergic to rituximab. Pediatr Nephrol. 2017;32(1):181–4.

    Article  PubMed  Google Scholar 

  171. Ravani P, Pisani I, Bodria M, Caridi G, Degl’Innocenti ML, Ghiggeri GM. Low-dose ofatumumab for multidrug-resistant nephrotic syndrome in children: a randomized placebo-controlled trial. Pediatr Nephrol. 2020;35(6):997–1003.

    Article  PubMed  Google Scholar 

  172. Trachtman H, Vento S, Gipson D, Wickman L, Gassman J, Joy M, Savin V, Somers M, Pinsk M, Greene T. Novel therapies for resistant focal segmental glomerulosclerosis (FONT) phase II clinical trial: study design. BMC Nephrol. 2011;12:8.

    Article  PubMed Central  PubMed  Google Scholar 

  173. Trachtman H, Vento S, Herreshoff E, et al. Efficacy of galactose and adalimumab in patients with resistant focal segmental glomerulosclerosis: report of the font clinical trial group. BMC Nephrol. 2015;16:111.

    Article  PubMed Central  PubMed  Google Scholar 

  174. Rapoport M, McCrory WW, Michie AJ, Barbero G, Barnett HL, Forman CW, McNamara H. Effects of corticotrophin on children with nephrotic syndrome: clinical observations on 34 children; the effect of cortisone in 4. Am J Dis Child. 1951;82(2):248–53.

    CAS  Google Scholar 

  175. Barnett HL. Effect of ACTH in children with the nephrotic syndrome. Pediatrics. 1952;9(3):341.

    CAS  PubMed  Google Scholar 

  176. Hogan J, Bomback AS, Mehta K, Canetta PA, Rao MK, Appel GB, Radhakrishnan J, Lafayette RA. Treatment of idiopathic FSGS with adrenocorticotropic hormone gel. Clin J Am Soc Nephrol. 2013;8(12):2072–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  177. Chakraborty R, Mehta A, Nair N, et al. ACTH treatment for management of nephrotic syndrome: a systematic review and reappraisal. Int J Nephrol. 2020;2020:2597079.

    Article  PubMed Central  PubMed  Google Scholar 

  178. Trachtman H, Nelson P, Adler S, et al. DUET: a phase 2 study evaluating the efficacy and safety of Sparsentan in patients with FSGS. J Am Soc Nephrol. 2018;29(11):2745–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  179. Raina R, Krishnappa V, Sanchez-Kazi C, et al. Dextran-sulfate plasma adsorption lipoprotein apheresis in drug resistant primary focal segmental glomerulosclerosis patients: results from a prospective, multicenter, single-arm intervention study. Front Pediatr. 2019;7:454.

    Article  PubMed Central  PubMed  Google Scholar 

  180. Parsa A, Kao WH, Xie D, et al. APOL1 risk variants, race, and progression of chronic kidney disease. N Engl J Med. 2013;369(23):2183–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  181. Limou S, Nelson GW, Kopp JB, Winkler CA. APOL1 kidney risk alleles: population genetics and disease associations. Adv Chronic Kidney Dis. 2014;21(5):426–33.

    Article  PubMed Central  PubMed  Google Scholar 

  182. Sabnis RW. Novel APOL1 inhibitors for treating kidney diseases. ACS Med Chem Lett. 2020;11(12):2352–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  183. Bennett CF. Therapeutic antisense oligonucleotides are coming of age. Annu Rev Med. 2019;70:307–21.

    Article  CAS  PubMed  Google Scholar 

  184. Aghajan M, Booten SL, Althage M, et al. Antisense oligonucleotide treatment ameliorates IFN-γ-induced proteinuria in APOL1-transgenic mice. JCI Insight. 2019;4(12):e126124.

    Article  PubMed Central  PubMed  Google Scholar 

  185. Mason AE, Sen ES, Bierzynska A, et al. Response to first course of intensified immunosuppression in genetically stratified steroid resistant nephrotic syndrome. Clin J Am Soc Nephrol. 2020;15(7):983–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  186. Saleem MA. Molecular stratification of idiopathic nephrotic syndrome. Nat Rev Nephrol. 2019;15(12):750–65.

    Article  PubMed  Google Scholar 

  187. Gellermann J, Stefanidis CJ, Mitsioni A, Querfeld U. Successful treatment of steroid-resistant nephrotic syndrome associated with WT1 mutations. Pediatr Nephrol. 2010;25(7):1285–9.

    Article  PubMed  Google Scholar 

  188. Atmaca M, Gulhan B, Korkmaz E, et al. Follow-up results of patients with ADCK4 mutations and the efficacy of CoQ10 treatment. Pediatr Nephrol. 2017;32(8):1369–75.

    Article  PubMed  Google Scholar 

  189. Saleem MA, Welsh GI. Podocyte RhoGTPases: new therapeutic targets for nephrotic syndrome? F1000Res. 2019;8:F1000. Faculty Rev-1847.

    Article  PubMed Central  PubMed  Google Scholar 

  190. Zhou Y, Castonguay P, Sidhom EH, et al. A small-molecule inhibitor of TRPC5 ion channels suppresses progressive kidney disease in animal models. Science. 2017;358(6368):1332–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  191. Martinelli R, Okumura AS, Pereira LJ, Rocha H. Primary focal segmental glomerulosclerosis in children: prognostic factors. Pediatr Nephrol. 2001;16(8):658–61.

    Article  CAS  PubMed  Google Scholar 

  192. Gipson DS, Chin H, Presler TP, Jennette C, Ferris ME, Massengill S, Gibson K, Thomas DB. Differential risk of remission and ESRD in childhood FSGS. Pediatr Nephrol. 2006;21:344–9.

    Article  PubMed  Google Scholar 

  193. Querfeld U. Should hyperlipidemia in children with the nephrotic syndrome be treated? Pediatr Nephrol. 1999;13(1):77–84.

    Article  CAS  PubMed  Google Scholar 

  194. Querfeld U, Lang M, Friedrich JB, Kohl B, Fiehn W, Schärer K. Lipoprotein(a) serum levels and apolipoprotein(a) phenotypes in children with chronic renal disease. Pediatr Res. 1993;34(6):772–6.

    Article  CAS  PubMed  Google Scholar 

  195. Keane WF. Lipids and the kidney. Kidney Int. 1994;46(3):910–20.

    Article  CAS  PubMed  Google Scholar 

  196. Moorhead JF, Wheeler DC, Varghese Z. Glomerular structures and lipids in progressive renal disease. Am J Med. 1989;87(5N):12N–20N.

    CAS  PubMed  Google Scholar 

  197. Samuelsson O, Mulec H, Knight-Gibson C, Attman PO, Kron B, Larsson R, Weiss L, Wedel H, Alaupovic P. Lipoprotein abnormalities are associated with increased rate of progression of human chronic renal insufficiency. Nephrol Dial Transplant. 1997;12(9):1908–15.

    Article  CAS  PubMed  Google Scholar 

  198. Taal MW. Slowing the progression of adult chronic kidney disease: therapeutic advances. Drugs. 2004;64(20):2273–89.

    Article  CAS  PubMed  Google Scholar 

  199. Veverka A, Jolly JL. Recent advances in the secondary prevention of coronary heart disease. Expert Rev Cardiovasc Ther. 2004;2(6):877–89.

    Article  CAS  PubMed  Google Scholar 

  200. Coleman JE, Watson AR. Hyperlipidaemia, diet and simvastatin therapy in steroid-resistant nephrotic syndrome of childhood. Pediatr Nephrol. 1996;10(2):171–4.

    Article  CAS  PubMed  Google Scholar 

  201. Sanjad SA, al-Abbad A, al-Shorafa S. Management of hyperlipidemia in children with refractory nephrotic syndrome: the effect of statin therapy. J Pediatr. 1997;130(3):470–4.

    Article  CAS  PubMed  Google Scholar 

  202. Olbricht CJ, Wanner C, Thiery J, Basten A. Simvastatin in nephrotic syndrome. Simvastatin in Nephrotic Syndrome Study Group. Kidney Int Suppl. 1999;71:S113–6.

    Article  CAS  PubMed  Google Scholar 

  203. Citak A, Emre S, Sâirin A, Bilge I, Nayir A. Hemostatic problems and thromboembolic complications in nephrotic children. Pediatr Nephrol. 2000;14(2):138–42.

    Article  CAS  PubMed  Google Scholar 

  204. Lilova MI, Velkovski IG, Topalov IB. Thromboembolic complications in children with nephrotic syndrome in Bulgaria (1974-1996). Pediatr Nephrol. 2000;15(1–2):74–8.

    Article  CAS  PubMed  Google Scholar 

  205. Gangakhedkar A, Wong W, Pitcher LA. Cerebral thrombosis in childhood nephrosis. J Paediatr Child Health. 2005;41(4):221–4.

    Article  PubMed  Google Scholar 

  206. Sedman A, Friedman A, Boineau F, Strife CF, Fine R. Nutritional management of the child with mild to moderate chronic renal failure. J Pediatr. 1996;129(2):s13–8.

    CAS  PubMed  Google Scholar 

  207. Kaysen GA. Albumin metabolism in the nephrotic syndrome: the effect of dietary protein intake. Am J Kidney Dis. 1988;12(6):461–80.

    Article  CAS  PubMed  Google Scholar 

  208. American Academy of Pediatrics Committee on Infectious Diseases. Recommendations for the prevention of Streptococcus pneumoniae infections in infants and children: use of 13-valent pneumococcal conjugate vaccine (PCV13) and pneumococcal polysaccharide vaccine (PPSV23). Pediatrics. 2010;126(1):186–90.

    Article  Google Scholar 

  209. Banfi G, Colturi C, Montagnino G, Ponticelli C. The recurrence of focal segmental glomerulosclerosis in kidney transplant patients treated with cyclosporine. Transplantation. 1990;50(4):594–6.

    Article  CAS  PubMed  Google Scholar 

  210. Canaud G, Dion D, Zuber J, Gubler MC, Sberro R, Thervet E, Snanoudj R, Charbit M, Salomon R, Martinez F, Legendre C, Noel LH, Niaudet P. Recurrence of nephrotic syndrome after transplantation in a mixed population of children and adults: course of glomerular lesions and value of the Columbia classification of histological variants of focal and segmental glomerulosclerosis (FSGS). Nephrol Dial Transplant. 2010;25(4):1321–8.

    Article  PubMed  Google Scholar 

  211. Baum MA, Stablein DM, Panzarino VM, Tejani A, Harmon WE, Alexander SR. Loss of living donor renal allograft survival advantage in children with focal segmental glomerulosclerosis. Kidney Int. 2001;59(1):328–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasheed Gbadegesin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gbadegesin, R., Gibson, K., Reidy, K. (2023). Steroid Resistant Nephrotic Syndrome. In: Schaefer, F., Greenbaum, L.A. (eds) Pediatric Kidney Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-11665-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11665-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11664-3

  • Online ISBN: 978-3-031-11665-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics