Skip to main content

Nephronophthisis and Autosomal Dominant Tubulointerstitial Kidney Disease (ADTKD)

  • Chapter
  • First Online:
Pediatric Kidney Disease
  • 1072 Accesses

Abstract

Nephronophthisis comprises a clinically and genetically heterogeneous group of autosomal recessive inherited tubulointerstitial diseases. It represents the most frequent genetic cause of end-stage kidney disease in children and young adults. Disease-causing mutations in 25 different genes have been identified to date. Almost all gene products localize either to primary cilia or the ciliary base which leads to the classification of nephronophthisis as a ciliopathy. Nephronophthisis is often accompanied by anomalies in other organs. Several well described complex clinical syndromes can feature the renal picture of nephronophthisis, including Senior-Løken syndrome, Joubert syndrome, COACH syndrome, Jeune syndrome, Meckel-Gruber syndrome and others.

Autosomal dominant tubulointerstitial kidney disease (ADTKD) is a rare genetic disorder characterized by a slowly progressive tubulo-interstitial nephropathy leading to end-stage kidney disease in late adulthood. Although there is major clinical and histological overlap with nephronophthisis, autosomal dominant inheritance as well as progressive renal failure later in life are two main differences. So far five genes have been identified in which mutations lead to ADTKD: UMOD, REN, MUC1, HNF1B, and SEC61A1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fanconi G, Hanhart E, von Albertini A, Uhlinger E, Dolivo G, Prader A. Die familiäre juvenile Nephronophthise. Helv Paediatr Acta. 1951;6:1–49.

    CAS  PubMed  Google Scholar 

  2. Smith C, Graham J. Congenital medullary cysts of kidneys with severe refractory anemia. Am J Dis Child. 1945;69:369–77.

    Google Scholar 

  3. Titieni A, König J. Nephronophthise und assoziierte Ziliopathien. Medgen. 2018;30:461–8.

    Article  Google Scholar 

  4. König J, Kranz B, König S, Schlingmann KP, Titieni A, Tönshoff B, Habbig S, Pape L, Häffner K, Hansen M, Büscher A, Bald M, Billing H, Schild R, Walden U, Hampel T, Staude H, Riedl M, Gretz N, Lablans M, Bergmann C, Hildebrandt F, Omran H, Konrad M. Phenotypic spectrum of children with nephronophthisis and related ciliopathies. Clin J Am Soc Nephrol. 2017;12(12):1974–83.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Srivastava S, Molinari E, Raman S, Sayer JA. Many genes-one disease? Genetics of nephronophthisis (NPHP) and NPHP-associated disorders. Front Pediatr. 2017;5:287.

    Article  PubMed  Google Scholar 

  6. Waldherr R, Lennert T, Weber HP, Fodisch HJ, Scharer K. The nephronophthisis complex. A clinicopathologic study in children. Virchows Arch [Pathol Anat]. 1982;394:235–54.

    Article  CAS  Google Scholar 

  7. Zollinger HU, Mihatsch MJ, Edefonti A, Gaboardi F, Imbasciati E, Lennert T. Nephronophthisis (medullary cystic disease of the kidney). A study using electron microscopy, immunofluorescence, and a review of the morphological findings. Helv Paediatr Acta. 1980;35:509–30.

    CAS  PubMed  Google Scholar 

  8. Blowey DL, Querfeld U, Geary D, Warady BA, Alon U. Ultrasound findings in juvenile nephronophthisis. Pediatr Nephrol. 1996;10:22–4.

    Article  CAS  PubMed  Google Scholar 

  9. Luo F, Tao YH. Nephronophthisis: a review of genotype-phenotype correlation. Nephrology (Carlton). 2018;23(10):904–11.

    Article  PubMed  Google Scholar 

  10. Omran H. NPHP proteins: gatekeepers of the ciliary compartment. J Cell Biol. 2010;190(5):715–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Simms RJ, Eley L, Sayer JA. Nephronophthisis. Eur J Hum Genet. 2009;17(4):406–16.

    Article  CAS  PubMed  Google Scholar 

  12. Hildebrandt F, Strahm B, Nothwang HG, Gretz N, Schnieders B, Singh-Sawhney I, Kutt R, Vollmer M, Brandis M. Molecular genetic identification of families with juvenile nephronophthisis type 1: rate of progression to renal failure. APN Study Group. Arbeitsgemeinschaft fuer Paediatrische Nephrologie. Kidney Int. 1997b;51:261–9.

    Article  CAS  PubMed  Google Scholar 

  13. Konrad M, Saunier S, Heidet L, Silbermann F, Benessy F, Calado J, Le Paslier D, Broyer M, Gubler MC, Antignac C. Large homozygous deletions of the 2q13 region are a major cause of juvenile nephronophthisis. Hum Mol Genet. 1996;5:367–71.

    Article  CAS  PubMed  Google Scholar 

  14. Hildebrandt F, Rensing C, Betz R, Sommer U, Birnbaum S, Imm A, Omran H, Leipoldt M, Otto E. Arbeitsgemeinschaft fuer Paediatrische Nephrologie (APN) Study Group: establishing an algorithm for molecular genetic diagnostics in 127 families with juvenile nephronophthisis. Kidney Int. 2001;59(2):434–45.

    Article  CAS  PubMed  Google Scholar 

  15. Snoek R, van Setten J, Keating BJ, et al. NPHP1 (Nephrocystin-1) gene deletions cause adult-onset ESRD. J Am Soc Nephrol. 2018;29:1772–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gagnadoux MF, Bacri JL, Broyer M, Habib R. Infantile chronic tubulo-interstitial nephritis with cortical microcysts: variant of nephronophthisis or new disease entity? Pediatr Nephrol. 1989;3:50–5.

    Article  CAS  PubMed  Google Scholar 

  17. Otto EA, Schermer B, Obara T, O’Toole JF, Hiller KS, Mueller AM, Ruf RG, Hoefele J, Beekmann F, Landau D, Foreman JW, Goodship JA, Strachan T, Kispert A, Wolf MT, Gagnadoux MF, Nivet H, Antignac C, Walz G, Drummond IA, Benzing T, Hildebrandt F. Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination. Nat Genet. 2003;34:413–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Senior B, Friedmann AI, Braudo JL. Juvenile familial nephropathy with tapetoretinal degeneration: a new oculo-renal dystrophy. Am J Opthalmol. 1961;52:625–33.

    Article  CAS  Google Scholar 

  19. Leber T. Über Retinitis pigmentosa und angeborene Amaurose. Arch Ophthalmol. 1869;15:1–25.

    Google Scholar 

  20. Leber T. Über anormale Formen der Retinitis pigmentosa. Arch Ophthalmol. 1871;17:314–41.

    Google Scholar 

  21. François J. Leber’s congenital tapeto-retinal degeneration. Int Ophthalmol Clin. 1968;8:929–47.

    PubMed  Google Scholar 

  22. Franceschetti A, Dieterle P. L’importance diagnostique de l’éléctro-rétinogramme dans le dégénérescences tapéto-rétinennes avec rétrécissement du champ visuel et héméralopie. Conf Neurol. 1954;14:184–6.

    Article  CAS  Google Scholar 

  23. Otto EA, Loeys B, Khanna H, Hellemans J, Sudbrak R, Fan SL, Muerb U, O’Toole JF, Helou J, Attanasio M, et al. Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior-Loken syndrome and interacts with RPGR and calmodulin. Nat Genet. 2005;37:282–8.

    Article  CAS  PubMed  Google Scholar 

  24. Adamiok-Ostrowska A, Piekiełko-Witkowska A. Ciliary genes on renal cystic diseases. Cells. 2020;9(4):907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Grochowsky A, Gunay-Aygun M. Clinical characteristics of individual organ system disease in non-motile ciliopathies. Transl Sci Rare Dis. 2019;4(1–2):1–23.

    PubMed  PubMed Central  Google Scholar 

  26. Maria BL, Quisling RG, Rosainz LC, Yachnis AT, Gitten JC, Dede DE, Fennell E. Molar tooth sign in Joubert syndrome: clinical, radiologic, and pathologic significance. J Child Neurol. 1999;14:368–76.

    Article  CAS  PubMed  Google Scholar 

  27. Summers AC, Snow J, Wiggs E, Liu AG, Toro C, Poretti A, et al. Neuropsychological phenotypes of 76 individuals with Joubert syndrome evaluated at a single center. Am J Med Genet A. 2017;173(7):1796–812.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Poretti A, Snow J, Summers AC, Tekes A, Huisman T, Aygun N, et al. Joubert syndrome: neuroimaging findings in 110 patients in correlation with cognitive function and genetic cause. J Med Genet. 2017;54(8):521–9.

    Article  CAS  PubMed  Google Scholar 

  29. Parisi MA, Bennett CL, Eckert ML, Dobyns WB, Gleeson JG, Shaw DWW, McDonald R, Eddy A, Chance PF, Glass IA. The NPHP1 gene deletion associated with juvenile nephronophthisis is present in a subset of individuals with Joubert syndrome. Am J Hum Genet. 2004;75:82–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Strongin A, Heller T, Doherty D, Glass IA, Parisi MA, Bryant J, et al. Characteristics of liver disease in 100 individuals with joubert syndrome prospectively evaluated at a single center. J Pediatr Gastroenterol Nutr. 2018;66(3):428–35.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Parisi MA. The molecular genetics of Joubert syndrome and related ciliopathies: the challenges of genetic and phenotypic heterogeneity. Transl Sci Rare Dis. 2019;4(1–2):25–49.

    PubMed  PubMed Central  Google Scholar 

  32. Fleming LR, Doherty DA, Parisi MA, Glass IA, Bryant J, Fischer R, et al. Prospective evaluation of kidney disease in joubert syndrome. Clin J Am Soc Nephrol. 2017;12(12):1962–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bergmann C. Educational paper: ciliopathies. Eur J Pediatr. 2012;171(9):1285–300.

    Article  PubMed  Google Scholar 

  34. Parisi MA, Doherty D, Eckert ML, Shaw DW, Ozyurek H, Aysun S, Giray O, Al Swaid A, Al Shahwan S, Dohayan N, Bakhsh E, Indridason OS, Dobyns WB, Bennett CL, Chance PF, Glass IA. AHI1 mutations cause both retinal dystrophy and renal cystic disease in Joubert syndrome. J Med Genet. 2006;43:334–9.

    Article  CAS  PubMed  Google Scholar 

  35. Doherty D, Parisi MA, Finn LS, Gunay-Aygun M, Al-Mateen M, Bates D, Clericuzio C, Demir H, Dorschner M, van Essen AJ, Gahl WA, Gentile M, Gorden NT, Hikida A, Knutzen D, Ozyurek H, Phelps I, Rosenthal P, Verloes A, Weigand H, Chance PF, Dobyns WB, Glass IA. Mutations in 3 genes (MKS3, CC2D2A and RPGRIP1L) cause COACH syndrome (Joubert syndrome with congenital hepatic fibrosis). J Med Genet. 2010;47(1):8–21.

    Article  CAS  PubMed  Google Scholar 

  36. Dahmer-Heath M, Schriever V, Kollmann S, Schleithoff C, Titieni A, Cetiner M, Patzer L, Tönshoff B, Hansen M, Pennekamp P, Gerß J, Konrad M, König J. Systematic evaluation of olfaction in patients with hereditary cystic kidney diseases/renal ciliopathies. J Med Genet. 2020.

    Google Scholar 

  37. Hartill V, Szymanska K, Sharif SM, Wheway G, Johnson CA. Meckel-gruber syndrome: an update on diagnosis, clinical management, and research advances. Front Pediatr. 2017;5:244.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Salonen R. The meckel syndrome: clinicopathological findings in 67 patients. Am J Med Genet. 1984;18(4):671–89.

    Article  CAS  PubMed  Google Scholar 

  39. Sergi C, Adam S, Kahl P, Otto HF. Study of the malformation of ductal plate of the liver in Meckel syndrome and review of other syndromes presenting with this anomaly. Pediatr Dev Pathol. 2000;3(6):568–83.

    Article  CAS  PubMed  Google Scholar 

  40. Alexiev BA, Lin X, Sun CC, Brenner DS. Meckel-Gruber syndrome: pathologic manifestations, minimal diagnostic criteria, and differential diagnosis. Arch Pathol Lab Med. 2006;130(8):1236–8.

    Article  PubMed  Google Scholar 

  41. Sattar S, Gleeson JG. The ciliopathies in neuronal development: a clinical approach to investigation of Joubert syndrome and Joubert syndrome-related disorders. Dev Med Child Neurol. 2011;53(9):793–8.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cogan DG. Heredity of congenital ocular motor apraxia. Trans Am Acad Ophthal Otolaryng. 1972;76:60–3.

    CAS  Google Scholar 

  43. Schröder S, Li Y, Yigit G, Altmüller J, Bader I, Bevot A, Biskup S, Dreha-Kulaczewski S, Christoph Korenke G, Kottke R, Mayr JA, Preisel M, Toelle SP, Wente-Schulz S, Wortmann SB, Hahn H, Boltshauser E, Uhmann A, Wollnik B, Brockmann K. Heterozygous truncating variants in SUFU cause congenital ocular motor apraxia. Genet Med. 2020;23(2):341–51.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Betz R, Rensing C, Otto E, Mincheva A, Zehnder D, Lichter P, Hildebrandt F. Children with ocular motor apraxia type Cogan carry deletions in the gene (NPHP1) for juvenile nephronophthisis. J Pediatr. 2000;136(6):828–31.

    CAS  PubMed  Google Scholar 

  45. Di Rocco M, Picco P, Arslanian A, et al. Retinitis pigmentosa, hypopituitarism, nephronophthisis, and mild skeletal dysplasia (RHYNS): a new syndrome? Am J Med Genet. 1997;73:1–4.

    Article  PubMed  Google Scholar 

  46. Hedera P, Gorski JL. Retinitis pigmentosa, growth hormone deficiency, and acromelic skeletal dysplasia in two brothers: possible familial RHYNS syndrome. Am J Med Genet. 2001;101:142–5.

    Article  CAS  PubMed  Google Scholar 

  47. Brancati F, Camerota L, Colao E, Vega-Warner V, Zhao X, Zhang R, Bottillo I, Castori M, Caglioti A, Sangiuolo F, Novelli G, Perrotti N, Otto EA, Undiagnosed Disease Network Italy. Biallelic variants in the ciliary gene TMEM67 cause RHYNS syndrome. Eur J Hum Genet. 2018;26(9):1266–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stephen J, Vilboux T, Mian L, et al. Mutations in KIAA0753 cause Joubert syndrome associated with growth hormone deficiency. Hum Genet. 2017;136:399–08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vilboux T, Malicdan MC, Roney JC, et al. CELSR2, encoding a planar cell polarity protein, is a putative gene in Joubert syndrome with cortical heterotopia, microophthalmia, and growth hormone deficiency. Am J Med Genet A. 2017;173:661–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Braun DA, Hildebrandt F. Ciliopathies Cold Spring Harb Perspect Biol. 2017;9(3):a028191.

    Article  PubMed  Google Scholar 

  51. Zhang W, Taylor SP, Ennis HA, Forlenza KN, Duran I, Li B, Sanchez JAO, Nevarez L, Nickerson DA, Bamshad M, University of Washington Center for Mendelian Genomics, Lachman RS, Krakow D, Cohn DH. Expanding the genetic architecture and phenotypic spectrum in skeletal ciliopathies. Hum Mutat. 2018;39(1):152–66.

    Article  CAS  PubMed  Google Scholar 

  52. Arts H, Knoers N. Cranioectodermal dysplasia. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, LJH B, Stephens K, Amemiya A, editors. GeneReviews®. Seattle, WA, University of Washington, Seattle; 2013. p. 1993–2020.

    Google Scholar 

  53. Wallmeier J, Nielsen KG, Kuehni CE, Lucas JS, Leigh MW, Zariwala MA, Omran H. Motile ciliopathies. Nat Rev Dis Primers. 2020;6(1):77.

    Article  PubMed  Google Scholar 

  54. Lemaire M, Parekh RS. A perspective on inherited kidney disease: lessons for practicing nephrologists. Clin J Am Soc Nephrol. 2017;12(12):1914–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sawyer SL, Hartley T, Dyment DA, Beaulieu CL, Schwartzentruber J, Smith A, et al. Utility of whole-exome sequencing for those near the end of the diagnostic odyssey: time to address gaps in care. Clin Genet. 2016;89:275–84.

    Article  CAS  PubMed  Google Scholar 

  56. Joly D, Beroud C, Grünfeld JP. Rare inherited disorders with renal involvement-approach to the patient. Kidney Int. 2015;87:901–8.

    Article  PubMed  Google Scholar 

  57. König J, Titieni A, Konrad M. Network for Early Onset Cystic Kidney Diseases (NEOCYST)—a comprehensive multidisciplinary approach to hereditary cystic kidney diseases in childhood. Front Pediatr. 2018;6:24.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Eckardt KU, et al. Autosomal dominant tubulo-interstitial kidney disease: diagnosis, classification, and management—KDIGO consensus report. Kidney Int. 2015;88:676–83.

    Article  CAS  PubMed  Google Scholar 

  59. Goldman SH, Walker SR, Merigan TCJ, Gardner KDJ, Bull JM. Hereditary occurrence of cystic disease of the renal medulla. N Engl J Med. 1966;274:984–92.

    Article  CAS  PubMed  Google Scholar 

  60. Strauss MB, Sommers SC. Medullary cystic disease and familial juvenile nephronophthisis. N Engl J Med. 1967;277:863–4.

    Article  CAS  PubMed  Google Scholar 

  61. Devuyst O, Olinger E, Weber S, Eckardt KU, Kmoch S, Rampoldi L, Bleyer AJ. Autosomal dominant tubulointerstitial kidney disease. Nat Rev Dis Primers. 2019;5(1):60.

    Article  PubMed  Google Scholar 

  62. Wolf MT, Mucha BE, Attanasio M, Zalewski I, Karle SM, Neumann HP, Rahman N, Bader B, Baldamus CA, Otto E, Witzgall R, Fuchshuber A, Hildebrandt F. Mutations of the Uromodulin gene in MCKD type 2 patients cluster in exon 4, which encodes three EGF-like domains. Kidney Int. 2003;64:1580–7.

    Article  CAS  PubMed  Google Scholar 

  63. Bates JM, et al. Tamm-Horsfall protein knockout mice are more prone to urinary tract infection rapid communication. Kidney Int. 2004;65:791–7.

    Article  CAS  PubMed  Google Scholar 

  64. Gudbjartsson DF, et al. Association of variants at UMOD with chronic kidney disease and kidney stones-role of age and comorbid diseases. PLoS Genet. 2010;6:e1001039.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mutig K, Kahl T, Saritas T, Godes M, Persson P, Bates J, Raffi H, Rampoldi L, Uchida S, Hille S, Dosche C, Kumar S, Castaneda-Bueno M, Gamba G, Bachmann S. Na+K+2Cl-Cotransporter (NKCC2) is regulated by Tamm-Horsfall-Protein (THP). American Society of Nephrology Annual Meeting, 2008; abstract 134.

    Google Scholar 

  66. Renigunta A, Renigunta V, Saritas T, Decher N, Mutig K, Waldegger S. Tamm-Horsfall glycoprotein interacts with renal outer medullary potassium channel ROMK2 and regulates its function. J Biol Chem. 2011;286:2224–35.

    Article  CAS  PubMed  Google Scholar 

  67. Ayasreh N, et al. Autosomal dominant tubulointerstitial kidney disease: clinical presentation of patients with ADTKD-UMOD and ADTKD-MUC1. Am J Kidney Dis. 2018;72:411–8.

    Article  PubMed  Google Scholar 

  68. Kirby A, Gnirke A, Jaffe DB, Barešová V, Pochet N, Blumenstiel B, Aird D, Stevens C, Robinson JT, Cabili MN, Gat-Viks I, Kelliher E, Daza R, DeFelice M, Hůlková H, Sovová J, Vylet’al P, Antignac C, Guttman M, Handsaker RE, Perrin D, Steelman S, Sigurdsson S, Scheinman SJ, Sougnez C, Cibulskis K, Parkin M, Green T, Rossin E, Zody MC, Xavier RJ, Pollak MR, Alper SL, Lindblad-Toh K, Gabriel S, Hart PS, Regev A, Nusbaum C, Kmoch S, Bleyer AJ, Lander ES, Daly MJ. Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing. Nat Genet. 2013;45:299–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Clissold RL, Hamilton AJ, Hattersley AT, Ellard S, Bingham C. HNF1B associated renal and extrarenal disease—an expanding clinical spectrum. Nat Rev Nephrol. 2015;11:102–12.

    Article  CAS  PubMed  Google Scholar 

  70. Vlahakos DV, et al. Renin-angiotensin system stimulates erythropoietin secretion in chronic hemodialysis patients. Clin Nephrol. 1995;43:53–9.

    CAS  PubMed  Google Scholar 

  71. Zivná M, Hůlková H, Matignon M, Hodanová K, Vylet’al P, Kalbácová M, Baresová V, Sikora J, Blazková H, Zivný J, Ivánek R, Stránecký V, Sovová J, Claes K, Lerut E, Fryns JP, Hart PS, Hart TC, Adams JN, Pawtowski A, Clemessy M, Gasc JM, Gubler MC, Antignac C, Elleder M, Kapp K, Grimbert P, Bleyer AJ, Kmoch S. Dominant renin gene mutations associated with early onset hyperuricemia, anemia and chronic kidney failure. Am J Hum Genet. 2009;85:204–13.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Gribouval O, et al. Mutations in genes in the renin angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nat Genet. 2005;37:964–8.

    Article  CAS  PubMed  Google Scholar 

  73. Bolar NA, et al. Heterozygous loss-of-function SEC61A1 mutations cause autosomaldominant tubulo-interstitial and glomerulocystic kidney disease with anemia. Am J Hum Genet. 2016;99:174–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schubert D, et al. Plasma cell deficiency in human subjects with heterozygous mutations in Sec61 translocon alpha 1 subunit (SEC61A1). J Allergy Clin Immunol. 2018;141:1427–38.

    Article  CAS  PubMed  Google Scholar 

  75. Lang S, et al. An update on Sec 61 channel functions, mechanisms, and related diseases. Front Physiol. 2017;8:887.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Hart TC, Gorry MC, Hart PS, Woodard AS, Shihabi Z, Sandhu J, Shirts B, Xu L, Zhu H, Barmada MM, Bleyer AJ. Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy. J Med Genet. 2002;39(12):882–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Scolari F, Caridi G, Rampoldi L, Tardanico R, Izzi C, Pirulli D, Amoroso A, Casari G, Ghiggeri GM. Uromodulin storage disease: clinical aspects and mechanisms. Am J Kidney Dis. 2004;44:987–99.

    Article  CAS  PubMed  Google Scholar 

  78. Bollée G, Dahan K, Flamant M, Morinière V, Pawtowski A, Heidet L, Lacombe D, Devuyst O, Pirson Y, Antignac C, Knebelmann B. Phenotype and outcome in hereditary tubulointerstitial nephritis secondary to UMOD mutations. Clin J Am Soc Nephrol. 2011;6:2429–38.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Scolari F, Puzzer D, Amoroso A, Caridi G, Ghiggeri GM, Maiorca R, Aridon P, De Fusco M, Ballabio A, Casari G. Identification of a new locus for medullary cystic disease, on chromosome 16p12. Am J Hum Genet. 1999;64:1655–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rezende-Lima W, Parreira KS, Garcia-Gonzalez M, Riveira E, Banet JF, Lens XM. Homozygosity for uromodulin disorders: FJHN and MCKD-type 2. Kidney Int. 2004;66:558–63.

    Article  CAS  PubMed  Google Scholar 

  81. Stavrou C, Koptides M, Tombazos C, Psara E, Patsias C, Zouvani I, Kyriacou K, Hildebrandt F, Christofides T, Pierides A, Deltas CC. Autosomal-dominant medullary cystic kidney disease type 1: clinical and molecular findings in six large Cypriot families. Kidney Int. 2002;62:1385–94.

    Article  PubMed  Google Scholar 

  82. Wolf MT, Mucha BE, Hennies HC, Attanasio M, Panther F, Zalewski I, Karle SM, Otto EA, Deltas CC, Fuchshuber A, Hildebrandt F. Medullary cystic kidney disease type 1: mutational analysis in 37 genes based on haplotype sharing. Hum Genet. 2006;119:649–5.

    Article  CAS  PubMed  Google Scholar 

  83. Ulinski T, et al. Renal phenotypes related to hepatocyte nuclear factor1β (TCF2) mutations in a pediatric cohort. J Am Soc Nephrol. 2006;17:497–503.

    Article  CAS  PubMed  Google Scholar 

  84. Decramer S, et al. Anomalies of the TCF2 gene are the main cause of fetal bilateral hyperechogenic kidneys. J Am Soc Nephrol. 2007;18:923–33.

    Article  CAS  PubMed  Google Scholar 

  85. Gondra L, et al. Hyperechogenic kidneys and polyhydramnios associated with HNF1B gene mutation. Pediatr Nephrol. 2016;31:1705–8.

    Article  PubMed  Google Scholar 

  86. Shuster S, et al. Prenatal detection of isolated bilateral hyperechogenic kidneys: etiologies and outcomes. Prenat Diagn. 2019;39:693–700.

    Article  CAS  PubMed  Google Scholar 

  87. Mitchel MW, et al. 17q12 recurrent deletion syndrome. GeneReviews. https://www.ncbi.nlm.nih.gov/books/NBK401562/. Accessed 8 December 2016.

  88. Verhave JC, Bech AP, Wetzels JF, Nijenhuis T. Hepatocyte nuclear factor 1ß-associated kidney disease: more than renal cyst and diabetes. J Am Soc Nephrol. 2016;27(2):345–53.

    Article  CAS  PubMed  Google Scholar 

  89. Faguer S, et al. Diagnosis, management, and prognosis of HNF1B nephropathy in adulthood. Kidney Int. 2011;80:768–76.

    Article  CAS  PubMed  Google Scholar 

  90. Oram RA, et al. Mutations in the hepatocyte nuclear factor1β (HNF1B) gene are common with combined uterine and renal malformations but are not found with isolated uterine malformations. Am J Obstet Gynecol. 2010;203:364.e1–5.

    Article  PubMed  Google Scholar 

  91. MorenoDeLuca D, et al. Deletion 17q12 is a recurrent copy number variant that confers high risk of autism and schizophrenia. Am J Hum Genet. 2010;87:618–30.

    Article  CAS  PubMed  Google Scholar 

  92. Clissold RL, et al. Chromosome 17q12 microdeletions but not intragenic HNF1B mutations link developmental kidney disease and psychiatric disorder. Kidney Int. 2016;90:203–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gimpel C, Avni FE, Bergmann C, Cetiner M, Habbig S, Haffner D, König J, Konrad M, Liebau MC, Pape L, Rellensmann G, Titieni A, von Kaisenberg C, Weber S, Winyard PJD, Schaefer F. Perinatal diagnosis, management and follow-up of cystic renal diseases: a clinical practice recommendation with systematic literature reviews. JAMA Pediatr. 2018;172(1):74–86.

    Article  PubMed  Google Scholar 

  94. Okorn C, Goertz A, Vester U, Beck BB, Bergmann C, Habbig S, König J, Konrad M, Müller D, Oh J, Ortiz-Brüchle N, Patzer L, Schild R, Seeman T, Staude H, Thumfart J, Tönshoff B, Walden U, Weber L, Zaniew M, Zappel H, Hoyer PF, Weber S. HNF1B nephropathy has a slow-progressive phenotype in childhood—with the exception of very early onset cases. Results of the German Multicenter HNF1B Childhood Registry. Pediatr Nephrol. 2019;34(6):1065–75.

    Article  PubMed  Google Scholar 

  95. Bleyer AJ, Hart TC, Shihabi ZAK, Robins V, Hoyer JR. Mutations in the uromodulin gene decrease urinary excretion of Tamm-Horsfall protein. Kidney Int. 2004;66:974–7.

    Article  CAS  PubMed  Google Scholar 

  96. Wenzel A, et al. Single molecule real time sequencing in ADTKD-MUC1 allows complete assembly of the VNTR and exact positioning of causative mutations. Sci Rep. 2018;8:4170.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ross LF, Saal HM, David KL, Anderson RR. Technical report: ethical and policy issues in genetic testing and screening of children. Genet Med. 2013;15:234–45.

    Article  PubMed  Google Scholar 

  98. Liu X, et al. Effects of uric acid-lowering therapy on the progression of chronic kidney disease: a systematic review and meta-analysis. Ren Fail. 2018;40:289–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hamada T, et al. Uricosuric action of losartan via the inhibition of urate transporter 1 (URAT 1) in hypertensive patients. Am J Hypertens. 2008;21:1157–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to graciously acknowledge Andrea Titieni, Joachim Gerß and Carsten Bergmann for their contribution of figures and clinical pictures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens König .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

König, J., Omran, H. (2023). Nephronophthisis and Autosomal Dominant Tubulointerstitial Kidney Disease (ADTKD). In: Schaefer, F., Greenbaum, L.A. (eds) Pediatric Kidney Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-11665-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11665-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11664-3

  • Online ISBN: 978-3-031-11665-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics