Skip to main content

Investigation of the Viscosity of Liquid Silicone Rubber for Molding Microstructures in the Injection Molding Process

  • Chapter
  • First Online:
Lectures Notes on Advanced Structured Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 153))

Abstract

The processing of liquid silicone rubber (LSR) in the injection molding process is becoming increasingly important. The reasons for this are its outstanding properties and economic processability. The functionalization of surfaces through nano- or microstructures introduced directly in the injection mold opens up new fields of application. For example, antibacterial, self-cleaning or tribologically and haptically optimized surfaces can be produced directly during injection molding. To ensure process-reliable molding of the microstructures, the influence of various process settings on moldability is investigated in this work. The viscosity of the LSR plays a decisive role. If it is too high, the LSR cannot lay into the nano- and microstructures and the structures will not be completely imprinted. The viscosity of LSR is influenced by several overlapping factors during processing. While the shear stress and the initial temperature input reduce the viscosity, the crosslinking reaction starts after the incubation time at a certain temperature, which abruptly increases the viscosity. Dynamic differential scanning calorimetry (DSC), oscillating rheometer tests and dielectric thermal analysis (DEA) measurement methods are used to investigate the properties of LSR during processing. Incubation times and crosslinking reactions are determined and compared for rheometer and DSC measurements. An attempt has also been made to define a gel point. Here, a clear distinction must be made between physical gel, consisting of entanglements and intermolecular interactions, and chemical gel, consisting of covalent bonds due to crosslinking. Since the physical gel recedes very quickly after destruction by shear stress, it is difficult to determine the chemical gel point using rheometry. Here DSC and DEA measurements help to determine the chemical crosslinking behavior. In addition to material characterization, microstructures are produced in an injection molding process with varying mold temperatures and injection speeds. Afterward, the microstructures are characterized for their degree of molding. It is shown that LSR molds the microstructures very reliably, even with poorly selected process parameters. This can be justified by the additional volume dilation, which is not taken into account in any of the measurement methods investigated. The viscosity of the injected, cold LSR has already decreased due to the shear stress. In addition, the temperature input initially reduces the viscosity. While the incubation time prevents immediate crosslinking as the temperature rises, the low-viscosity LSR expands due to thermal expansion and pushes into the nanostructures or microstructures. This is when the crosslinking reaction begins, during which the viscosity increases abruptly. The structures were not completely formed only at very high mold temperatures and low injection speeds. Here, it is helpful to cool the mold surface briefly and locally using variothermal tempering before injection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aho J, Syrjälä S (2008) On the measurement and modeling of viscosity of polymers at low temperatures. Polym Test 27:35–40

    Article  CAS  Google Scholar 

  • Attia UM, Alcock JR (2010) Integration of functionality into polymer-based microfluidic devices produced by high-volume micro-moulding techniques. Int J Adv Manuf 48:973–991

    Article  Google Scholar 

  • Baum MJ, Heepe L, Gorb SN (2014) Friction behavior of a microstructured polymer surface inspired by snake skin. Beilstein J Nanotechnol 5:83–97

    Article  Google Scholar 

  • Beyer P, Wolf HP (2015) Effizienz und Qualität durch eine neue Generation rheologieoptimierter Flüssigsiliconelastomere. GAK Gummi Fasern Kunstst 68:676–683

    Google Scholar 

  • Boden SA, Bagnall DM (2012) Moth-eye antireflective structures. In: Bhushan B (ed) Encyclopedia of nanotechnology. Springer Netherlands, Dordrecht

    Google Scholar 

  • Bont M, Barry C, Johnston S (2021) A review of liquid silicone rubber injection molding: process variables and process modeling. Polym Eng Sci 61:331–347

    Article  CAS  Google Scholar 

  • Brown ME (ed) (2004) Introduction to thermal analysis. Techniques and applications. Kluwer Academic Publishers (Springer eBook Collection Chemistry and Materials Science, 1), Dordrecht

    Google Scholar 

  • Buyl F de, Beukema M, van Tiggelen K (2013) Innovations in silicones for LED application. In: Silicone elastomers 2013. 10-12 June 2013, Hilton Munich City, Munich, Germany. Smithers Rapra Ltd; Conference Silicone Elastomers Shawbury

    Google Scholar 

  • Capellmann R, Haberstroh E, Häuser T et al (2003) Development of Simulation software for the injection moulding of liquid silicone rubber. Int Polym Sci Technol 30:1–8

    Article  Google Scholar 

  • Castro JM, Macosko CW (1982) Studies of mold filling and curing in the reaction injection molding process. AIChE J 28:250–260

    Article  CAS  Google Scholar 

  • Čop M, Gospodarič B, Kemppainen K et al (2015) Characterization of the curing process of mixed pine and spruce tannin-based foams by different methods. Eur Polym J 69:29–37

    Article  Google Scholar 

  • Cross MM (1965) Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems. J Colloid Sci 20:417–437

    Article  CAS  Google Scholar 

  • Dick J S (2014) Rubber technology. Compounding and testing for performance. 2. Aufl. Carl Hanser Fachbuchverlag, s.l.

    Google Scholar 

  • DIN 53529-2:1983-03 Prüfung von Kautschuk und Elastomeren; Vulkametrie; Bestimmung des Vulkanisationsverlaufes und reaktionskinetische Auswertung von Vernetzungsisothermen

    Google Scholar 

  • Dow Corning Corporation (2019) Formbare optische Silikone von SILASTIC™ ermöglichen bahnbrechendes LED-Scheinwerferdesign von Hella KGaA Hueck & Co. Dow Corning Corporation. https://www.google.com/search?client=firefox-b-d&q=Formbare+optische+Silikone+von+SILASTIC%E2%84%A2+erm%C3%B6g-lichen+bahnbrechendes+LED-Scheinwerferdesign+von+Hella+KGaA+Hueck+%26+Co. Accessed 04 Apr 2022

  • Ehrenstein GW (2011) Polymer-Werkstoffe. Struktur; Eigenschaften; Anwendung. 3. Aufl. Carl Hanser Fachbuchverlag, s.l.

    Google Scholar 

  • Ehrenstein GW, Bittmann E, Hoffmann L (1997) Duroplaste. Aushärtung–Prüfung–Eigenschaften. Hanser, München

    Google Scholar 

  • Eyerer P, Hirth T, Elsner P (2008) Polymer engineering. Technologien und Praxis. Springer, Berlin, Heidelberg

    Google Scholar 

  • Geng C, Zhang Q, Lei W et al (2017) Simultaneously reduced viscosity and enhanced strength of liquid silicone rubber/silica composites by silica surface modification. J Appl Polym Sci 134:45544

    Article  Google Scholar 

  • GÖTTFERT Werkstoff-Prüfmaschinen GmbH Druckabhängigkeit der Viskosität. https://www.goettfert.de/anwendungen-wissen/rheo-info/fuer-kapillarrheometer/druckabhaengigkeit-der-viskositaet. Accessed 06 Dec 2021

  • Guan D, Cai Z, Liu X et al (2016) Rheological study on the cure kinetics of two-component addition cured silicone rubber. Chin J Polym Sci 34:1290–1300

    Article  CAS  Google Scholar 

  • Haberstroh E, Michaeli W, Henze EK (2002) Simulation of the filling and curing phase in injection molding of liquid silicone rubber (LSR). J Reinf Plast Compos 21:461–471

    Article  CAS  Google Scholar 

  • Haines P (2002) Principles of thermal analysis and calorimetry. Royal Society of Chemistry, Cambridge

    Book  Google Scholar 

  • Harkous A, Colomines G, Leroy E et al (2016) The kinetic behavior of liquid silicone rubber: a comparison between thermal and rheological approaches based on gel point determination. React Funct Polym 101:20–27

    Article  CAS  Google Scholar 

  • Hempel J (2001) Elastomere werkstoffe, Weinheim, Germany

    Google Scholar 

  • Henze EK (1999) Verarbeitung von Flüssigsilikonkautschuk (LSR) zu technischen Formteilen. Verlag Mainz, Wissenschaftsverlag, Aachen, Aachen

    Google Scholar 

  • Hoffmann K, Dumaine et al General discussion

    Google Scholar 

  • Hopmann C, Menges G, Michaeli W et al (2018) Spritzgießwerkzeuge. Auslegung, Bau, Anwendung. 7., neu bearbeitete Auflage. Hanser; Ciando, München

    Google Scholar 

  • Hülder G (2008) Zur Aushärtung kalthärtender Reaktionsharzsysteme für tragende Anwendungen im Bauwesen, 1st edn. Univ, Erlangen-Nürnberg, Lehrstuhl für Kunststofftechnik, Erlangen

    Google Scholar 

  • Jerschow P (2001) Silicone elastomers. Rapra Technology Ltd., Shawbury, U.K

    Google Scholar 

  • Kim D (2020) Curing kinetic and viscosity behavior of liquid silicone rubber for reaction injection molding analysis, vol. 3, 3. SPE ANTEC (2015: Orlando, Fla.) SPE ANTEC 2015, pp 2316–2320

    Google Scholar 

  • Klaiber F (2010) Entwicklung einer Anlagen- und Prozesstechnik für die Herstellung superhydrophober Oberflächen im Spritzgießverfahren. Development of a machine and process technique for the production of superhydrophobic surfaces by injection moulding. Zugl.: Aachen, Techn. Hochsch., Diss., 2010. 1. Aufl. Mainz, Aachen

    Google Scholar 

  • Kübler M (2010) Verfahrensentwicklung zur Herstellung gebrauchsbeständiger kleinststrukturierter Kunststoffbauteile. Zugl.: Berlin, Techn Univ, Diss., 2010. Univ.-Verl. der TU Berlin, Berlin

    Google Scholar 

  • Kuhn S, Burr A, Kübler M et al (2010) Study on the replication quality of micro-structures in the injection molding process with dynamical tool tempering systems. Microsyst Technol 16:1787–1801

    Article  Google Scholar 

  • Lambrecht J, Wolf HP, Gerlach E (2003) Chemische Eigenschaften von Siliconelastomeren. In: Kindersberger J (ed) Silikonelastomere. [Elektronische Ressource]: VDE Verl, Berlin

    Google Scholar 

  • Leroy E, Souid A, Sarda A et al (2013) A knowledge based approach for elastomer cure kinetic parameters estimation. Polym Test 32:9–14

    Article  CAS  Google Scholar 

  • Mezger T (2020) The rheology handbook. For users of rotational and oscillatory rheometers. 5th revised edition. Vincentz Network, Hannover

    Google Scholar 

  • Moretto H-H, Schulze M, Wagner G (2010) Silicones. In: Ullmann's encyclopedia of industrial chemistry. Wiley, Chichester

    Google Scholar 

  • NETZSCH Analysieren & Prüfen (2022) Dielektrische Analyse (DEA). https://www.netzsch-thermal-analysis.com/de/contract-testing/methoden/dielektrische-analyse-dea/, updated on 1/10/2022. Accessed 10 Jan 2022

  • Nishinari K (2009) Some thoughts on the definition of a gel. In: Gels: Structures, properties, and functions. Springer, Berlin

    Google Scholar 

  • Nosonovsky M, Bhushan B (2008) Biologically inspired surfaces: broadening the scope of roughness. Adv Funct Mater 18:843–855

    Article  CAS  Google Scholar 

  • Osswald T A, Rudolph N (2014) Polymer rheology. Fundamentals and applications. Hanser, Munich

    Google Scholar 

  • Osswald TA, Baur E, Rudolph N (2018) Plastics handbook. The resource for plastics engineers. 5. Auflage. Hanser Publications, Cincinnati, Ohio

    Google Scholar 

  • Ou H, Sahli M, Barriere T et al (2017a) Experimental characterisation and modelling of rheokinetic properties of different silicone elastomers. Int J Adv Manuf 92:4199–4211

    Article  Google Scholar 

  • Ou H, Sahli M, Barrière T et al (2017b) Multiphysics modelling and experimental investigations of the filling and curing phases of bi-injection moulding of thermoplastic polymer/liquid silicone rubbers. Int J Adv Manuf Technol 92:3871–3882

    Article  Google Scholar 

  • Owen MJ, Dvornic PR (2012) Silicone surface science. Springer, Dordrecht

    Book  Google Scholar 

  • Pahl M, Gleißle W, Hans-Martin L (eds) (1995) Praktische Rheologie der Kunststoffe und Elastomere. 4., überarb. Aufl., Düsseldorf. VDI-Verl. (Kunststofftechnik)

    Google Scholar 

  • Pelz PF (2001) Die Rheologie Kautschukmischung. In: Hempel J (ed) Darmsstadt (Elastomere Werkstoffe). http://tubiblio.ulb.tu-darmstadt.de/36244/. Accessed 16 Feb 2021

  • Pogodin S, Hasan J, Baulin VA et al (2013) Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces. Biophys J 104:835–840

    Article  CAS  Google Scholar 

  • Rapp BE (2017) Microfluidics. Modeling, mechanics, and mathematics. William Andrew, Kidlington, United Kingdom

    Google Scholar 

  • Ratner BD (ed) (2013) Biomaterials science. An introduction to materials in medicine. 3. ed., Amsterdam, Heidelberg, Elsevier

    Google Scholar 

  • Röthemeyer F, Sommer F (2013) Kautschuk-Technologie. Werkstoffe–Verarbeitung—Produkte. 3., neu bearb. und erw. Aufl. Hanser, München

    Google Scholar 

  • Saražin J, Schmiedl D, Pizzi A et al (2020) Bio-based adhesive mixtures of pine tannin and different types of lignins. BioRes 15:9401–9412

    Article  Google Scholar 

  • Schneider C (1986) Das Verarbeitungsverhalten von Elastomeren im Spritzgießporess. Dissertation. Rheinisch-Westfälischen Technischen Hochschule Aachen, Aachen. Fakultät für Maschinenwesen

    Google Scholar 

  • The Dow Chemical Company (2012) Liquid injection molding. Processing guide for SILASTIC™ liquid silicone rubber (LSR) and SILASTIC™ fluoro liquid silicone rubber (F-LSR). The Dow Chemical Company. https://www.dow.com/content/dam/dcc/documents/en-us/app-tech-guide/45/45-10/45-1014-01-liquid-injection-molding-processing-guide.pdf?iframe=true, updated on 2020. Accessed 30 Aug 2021

  • Tomanek A (1990) Silicone & Technik. Ein Kompendium für Praxis, Lehre und Selbststudium

    Google Scholar 

  • Tran NT (2020) Creating material properties for thermoset injection molding simulation process. Universitätsverlag Chemnitz, Chemnitz

    Google Scholar 

  • Verheyen F, Giesen R-U, Heim H-P (2016) Characterizing the rheological behavior of liquid silicone rubber using a high pressure capillary rheometer

    Google Scholar 

  • Verheyen F (2019) Die extrusion von Festsilikonkautschuk. With assistance of Universität Kassel

    Google Scholar 

  • Wacker Chemie AG, von Siliconen H (2020) https://www.chem2do.de/c2d/de/silicone/herstellung/herstellung.jsp. Accessed 21 Jan 2020

  • Walde H (1996) Beitrag zum vollautomatischen Spritzgiessen von Flüssigsilikonkautschuk. Basics of automatic injection moulding of liquid silicone rubber. 1. Aufl. Verl. der Augustinus-Buchh, Aachen

    Google Scholar 

  • Weißer DF, Walz D, Schmid J et al (2020) Calculating the temperature and degree of cross-linking for liquid silicone rubber processing in injection molding. Jnl Adv Manuf Process. https://doi.org/10.1002/amp2.10072

    Article  Google Scholar 

  • Winter HH (1987) Can the gel point of a cross-linking polymer be detected by the G’-G’’ crossover? Polym Eng Sci 27:1698–1702

    Article  CAS  Google Scholar 

  • Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol 30:367–382

    Article  CAS  Google Scholar 

  • Winter HH (2002) The critical gel. In: R Borsali, R Pecora (eds) Structure and dynamics of polymer and colloidal systems. Springer Netherlands, Dordrecht

    Google Scholar 

  • Wolf A, Andriot M, Chao S-H et al (2008) Chapter 2—Silicones in industrial applications. In: Gleria M, de Jaeger R (eds) Silicon-based inorganic polymers. Nova Science Publishers, New York

    Google Scholar 

  • Ziebell R, Bhogesra H (2016) LIM simulation modeling using newly developed chemorheological methods. In: International silicone conference. International Silicone Conference. Akron, OH, 17-18 May 2016

    Google Scholar 

Download references

Acknowledgements

D. Weisser would like to acknowledge the support of Baden-Württemberg Stiftung gGmbH within the scope of “Biofunctional materials and surfaces” research program. He would also like to thank NETZSCH-Gerätebau GmbH for performing the DEA measurements and Freiburger Materialforschungszentrum FMF for the measurement capabilities at the rheometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis F. Weißer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weißer, D.F., Szántó, L., Mayer, D., Schmid, J., Deckert, M.H. (2022). Investigation of the Viscosity of Liquid Silicone Rubber for Molding Microstructures in the Injection Molding Process. In: Altenbach, H., Johlitz, M., Merkel, M., Öchsner, A. (eds) Lectures Notes on Advanced Structured Materials. Advanced Structured Materials, vol 153. Springer, Cham. https://doi.org/10.1007/978-3-031-11589-9_18

Download citation

Publish with us

Policies and ethics