Skip to main content

Single Cell Transcriptomics

  • Chapter
  • First Online:
Innovations in Nephrology

Abstract

Kidney is a highly complex organ comprised of diverse cell types and subpopulations. This cellular complexity complicates efforts to understand both physiology and disease mechanisms. The recent advent of single-cell RNA sequencing (scRNA-seq) technologies has enabled us to dissect the cellular heterogeneity of kidney in unprecedented detail by profiling transcriptomic signatures at single-cell resolution. In addition to the widely used droplet microfluidics-based approaches, other alternative methods such as split-pool barcoding are emerging with substantially enhanced throughput and cost efficiency. Furthermore, evolving complementary technologies such as single-cell epigenetic profiling are now being leveraged together with scRNA-seq to describe comprehensive gene regulatory networks. Cell-specific transcriptomic characterizations of both mouse and human kidneys allow us to gain a comprehensive picture of biological processes in healthy and diseased kidneys. Successful application of scRNA-seq to biosamples including urine cells suggests possible future applications in diagnostics and precision medicine. The maturation of widely available bioinformatic tools now enables any researcher to utilize scRNA-seq without a deep background in informatics or computer science. Indeed, a basic understanding of single-cell omics and computational methods is increasingly becoming essential for investigators. In this chapter, we review the fundamentals of scRNA-seq methods, data analysis and future opportunities for scRNA-seq in nephrology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trapnell C. Defining cell types and states with single-cell genomics. Genome Res. 2015;25(10):1491–8. https://doi.org/10.1101/gr.190595.115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wu H, Kirita Y, Donnelly EL, Humphreys BD. Advantages of single-nucleus over single-cell RNA sequencing of adult kidney: rare cell types and novel cell states revealed in fibrosis. J Am Soc Nephrol. 2019;30(1):23–32. https://doi.org/10.1681/ASN.2018090912.

    Article  CAS  PubMed  Google Scholar 

  3. Lake BB, Chen S, Hoshi M, et al. A single-nucleus RNA-sequencing pipeline to decipher the molecular anatomy and pathophysiology of human kidneys. Nat Commun. 2019;10(1):1–15. https://doi.org/10.1038/s41467-019-10861-2.

    Article  CAS  Google Scholar 

  4. Park J, Shrestha R, Qiu C, et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science. 2018;360(6390):758–63. https://doi.org/10.1126/science.aar2131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zheng GXY, Terry JM, Belgrader P, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8:14049. https://doi.org/10.1038/ncomms14049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ma S, Zhang B, LaFave LM, et al. Chromatin potential identified by shared single-cell profiling of RNA and chromatin. Cell. 2020;183(4):1103–1116.e20. https://doi.org/10.1016/j.cell.2020.09.056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. O’Sullivan ED, Mylonas KJ, Hughes J, Ferenbach DA. Complementary roles for single-nucleus and single-cell RNA sequencing in kidney disease research. J Am Soc Nephrol. 2019;30(4):712–3. https://doi.org/10.1681/ASN.2019020112.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tang F, Barbacioru C, Wang Y, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6(5):377–82. https://doi.org/10.1038/nmeth.1315.

    Article  CAS  PubMed  Google Scholar 

  9. Gross A, Schoendube J, Zimmermann S, Steeb M, Zengerle R, Koltay P. Technologies for single-cell isolation. Int J Mol Sci. 2015;16(8):16897–919. https://doi.org/10.3390/ijms160816897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Matuła K, Rivello F, Huck WTS. Single-cell analysis using droplet microfluidics. Adv Biosyst. 2020;4(1):e1900188. https://doi.org/10.1002/adbi.201900188.

    Article  PubMed  Google Scholar 

  11. Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161(5):1202–14. https://doi.org/10.1016/j.cell.2015.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zilionis R, Nainys J, Veres A, et al. Single-cell barcoding and sequencing using droplet microfluidics. Nat Protoc. 2017;12(1):44–73. https://doi.org/10.1038/nprot.2016.154.

    Article  CAS  PubMed  Google Scholar 

  13. Fan HC, Fu GK, Fodor SPA. Expression profiling. Combinatorial labeling of single cells for gene expression cytometry. Science. 2015;347(6222):1258367. https://doi.org/10.1126/science.1258367.

    Article  CAS  PubMed  Google Scholar 

  14. Han X, Wang R, Zhou Y, et al. Mapping the mouse cell atlas by microwell-seq. Cell. 2018;172(5):1091–1107.e17. https://doi.org/10.1016/j.cell.2018.02.001.

    Article  CAS  PubMed  Google Scholar 

  15. Cao J, Spielmann M, Qiu X, et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature. 2019;566(7745):496–502. https://doi.org/10.1038/s41586-019-0969-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rosenberg AB, Roco CM, Muscat RA, et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science. 2018;360(6385):176–82. https://doi.org/10.1126/science.aam8999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li H, Humphreys BD. Single cell technologies: beyond microfluidics. Kidney360. 2021;2(7):1196–204. https://doi.org/10.34067/KID.0001822021.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ransick A, Lindström NO, Liu J, et al. Single-cell profiling reveals sex, lineage, and regional diversity in the mouse kidney. Dev Cell. 2019;51(3):399–413.e7. https://doi.org/10.1016/j.devcel.2019.10.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Combes AN, Phipson B, Lawlor KT, et al. Single cell analysis of the developing mouse kidney provides deeper insight into marker gene expression and ligand-receptor crosstalk. Development. 2019;146(12):dev178673. https://doi.org/10.1242/dev.178673.

    Article  PubMed  Google Scholar 

  20. Fu J, Akat KM, Sun Z, et al. Single-cell RNA profiling of glomerular cells shows dynamic changes in experimental diabetic kidney disease. J Am Soc Nephrol. 2019;30(4):533–45. https://doi.org/10.1681/ASN.2018090896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dangi A, Natesh NR, Husain I, et al. Single cell transcriptomics of mouse kidney transplants reveals a myeloid cell pathway for transplant rejection. JCI Insight. 2020;5(20):141321. https://doi.org/10.1172/jci.insight.141321.

    Article  PubMed  Google Scholar 

  22. Conway BR, O’Sullivan ED, Cairns C, et al. Kidney single-cell atlas reveals myeloid heterogeneity in progression and regression of kidney disease. J Am Soc Nephrol. 2020;31(12):2833–54. https://doi.org/10.1681/ASN.2020060806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kramann R, Machado F, Wu H, et al. Parabiosis and single-cell RNA sequencing reveal a limited contribution of monocytes to myofibroblasts in kidney fibrosis. JCI Insight. 2018;3(9):99561. https://doi.org/10.1172/jci.insight.99561.

    Article  PubMed  Google Scholar 

  24. Kirita Y, Wu H, Uchimura K, Wilson PC, Humphreys BD. Cell profiling of mouse acute kidney injury reveals conserved cellular responses to injury. Proc Natl Acad Sci U S A. 2020;117(27):15874–83. https://doi.org/10.1073/pnas.2005477117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gerhardt LMS, Liu J, Koppitch K, Cippà PE, McMahon AP. Single-nuclear transcriptomics reveals diversity of proximal tubule cell states in a dynamic response to acute kidney injury. Proc Natl Acad Sci U S A. 2021;118(27):e2026684118. https://doi.org/10.1073/pnas.2026684118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Young MD, Mitchell TJ, Vieira Braga FA, et al. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science. 2018;361(6402):594–9. https://doi.org/10.1126/science.aat1699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wilson PC, Wu H, Kirita Y, et al. The single-cell transcriptomic landscape of early human diabetic nephropathy. Proc Natl Acad Sci U S A. 2019;116(39):19619–25. https://doi.org/10.1073/pnas.1908706116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zheng Y, Lu P, Deng Y, et al. Single-cell Transcriptomics reveal immune mechanisms of the onset and progression of IgA nephropathy. Cell Rep. 2020;33(12):108525. https://doi.org/10.1016/j.celrep.2020.108525.

    Article  CAS  PubMed  Google Scholar 

  29. Arazi A, Rao DA, Berthier CC, et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat Immunol. 2019;20(7):902–14. https://doi.org/10.1038/s41590-019-0398-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu H, Malone AF, Donnelly EL, et al. Single-cell transcriptomics of a human kidney allograft biopsy specimen defines a diverse inflammatory response. J Am Soc Nephrol. 2018;29(8):2069–80. https://doi.org/10.1681/ASN.2018020125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lake BB. Menon R, Winfree S, et al. An atlas of healthy and injured cell states and niches in the human kidney. bioRxiv:454201. Published online July 29, 2021. https://doi.org/10.1101/2021.07.28.454201.

  32. Han X, Zhou Z, Fei L, et al. Construction of a human cell landscape at single-cell level. Nature. 2020;581(7808):303–9. https://doi.org/10.1038/s41586-020-2157-4.

    Article  CAS  PubMed  Google Scholar 

  33. Cao J, O’Day DR, Pliner HA, et al. A human cell atlas of fetal gene expression. Science. 2020;370(6518):eaba7721. https://doi.org/10.1126/science.aba7721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Muto Y, Wilson PC, Ledru N, et al. Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney. Nat Commun. 2021;12(1):2190. https://doi.org/10.1038/s41467-021-22368-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Miao Z, Balzer MS, Ma Z, et al. Single cell regulatory landscape of the mouse kidney highlights cellular differentiation programs and disease targets. Nat Commun. 2021;12(1):2277. https://doi.org/10.1038/s41467-021-22266-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Svensson V. Droplet scRNA-seq is not zero-inflated. Nat Biotechnol. 2020;38(2):147–50. https://doi.org/10.1038/s41587-019-0379-5.

    Article  CAS  PubMed  Google Scholar 

  37. Parekh S, Ziegenhain C, Vieth B, Enard W, Hellmann I. zUMIs—a fast and flexible pipeline to process RNA sequencing data with UMIs. Gigascience. 2018;7(6):giy059. https://doi.org/10.1093/gigascience/giy059.

    Article  CAS  PubMed Central  Google Scholar 

  38. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635.

    Article  CAS  PubMed  Google Scholar 

  39. Hao Y, Hao S, Andersen-Nissen E, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184(13):3573–3587.e29. https://doi.org/10.1016/j.cell.2021.04.048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Trapnell C, Cacchiarelli D, Grimsby J, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32(4):381–6. https://doi.org/10.1038/nbt.2859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 2018;19(1):15. https://doi.org/10.1186/s13059-017-1382-0.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Young MD, Behjati S. SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. Gigascience. 2020;9(12):giaa151. https://doi.org/10.1093/gigascience/giaa151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fleming SJ, Marioni JC, Babadi M. CellBender remove-background: a deep generative model for unsupervised removal of background noise from scRNA-seq datasets. Bioinformatics. bioRxiv:791699. Published online October 3, 2019. https://doi.org/10.1101/791699.

  44. McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 2019;8(4):329–337.e4. https://doi.org/10.1016/j.cels.2019.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wolock SL, Lopez R, Klein AM. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 2019;8(4):281–291.e9. https://doi.org/10.1016/j.cels.2018.11.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 2019;20(1):296. https://doi.org/10.1186/s13059-019-1874-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Korsunsky I, Millard N, Fan J, et al. Fast, sensitive and accurate integration of single-cell data with harmony. Nat Methods. 2019;16(12):1289–96. https://doi.org/10.1038/s41592-019-0619-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McInnes L, Healy J, Melville J. UMAP: uniform manifold approximation and projection for dimension reduction. arXiv:180203426 [cs, stat]. Published online September 17, 2020. http://arxiv.org/abs/1802.03426. Accessed 28 Aug 2021.

  49. Tran HTN, Ang KS, Chevrier M, et al. A benchmark of batch-effect correction methods for single-cell RNA sequencing data. Genome Biol. 2020;21(1):12. https://doi.org/10.1186/s13059-019-1850-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen W, Zhao Y, Chen X, et al. A multicenter study benchmarking single-cell RNA sequencing technologies using reference samples. Nat Biotechnol. 2020;21. https://doi.org/10.1038/s41587-020-00748-9.

    Google Scholar 

  51. Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–9. https://doi.org/10.1038/75556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci. 2005;102(43):15545–50. https://doi.org/10.1073/pnas.0506580102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li Y, Haug S, Schlosser P, et al. Integration of GWAS summary statistics and gene expression reveals target cell types underlying kidney function traits. J Am Soc Nephrol. 2020;31(10):2326–40. https://doi.org/10.1681/ASN.2020010051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Aibar S, González-Blas CB, Moerman T, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14(11):1083–6. https://doi.org/10.1038/nmeth.4463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Saelens W, Cannoodt R, Todorov H, Saeys Y. A comparison of single-cell trajectory inference methods. Nat Biotechnol. 2019;37(5):547–54. https://doi.org/10.1038/s41587-019-0071-9.

    Article  CAS  PubMed  Google Scholar 

  56. La Manno G, Soldatov R, Zeisel A, et al. RNA velocity of single cells. Nature. 2018;560(7719):494–8. https://doi.org/10.1038/s41586-018-0414-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ludwig LS, Lareau CA, Ulirsch JC, et al. Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics. Cell. 2019;176(6):1325–1339.e22. https://doi.org/10.1016/j.cell.2019.01.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Muto Y, Humphreys BD. Recent advances in lineage tracing for the kidney. Kidney Int. 100(6):1179–84. https://doi.org/10.1016/j.kint.2021.05.040.

  59. Raredon MSB. Yang J, Garritano J, et al. Connectome: computation and visualization of cell-cell signaling topologies in single-cell systems data. bioRxiv: 427529. bioRxiv: 427529. Published online January 21, 2021. https://doi.org/10.1101/2021.01.21.427529.

  60. Vento-Tormo R, Efremova M, Botting RA, et al. Single-cell reconstruction of the early maternal–fetal interface in humans. Nature. 2018;563(7731):347–53. https://doi.org/10.1038/s41586-018-0698-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12(5):453–7. https://doi.org/10.1038/nmeth.3337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jew B, Alvarez M, Rahmani E, et al. Accurate estimation of cell composition in bulk expression through robust integration of single-cell information. Nat Commun. 2020;11(1):1971. https://doi.org/10.1038/s41467-020-15816-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cusanovich DA, Hill AJ, Aghamirzaie D, et al. A single-cell atlas of in vivo mammalian chromatin accessibility. Cell. 2018;174(5):1309–1324.e18. https://doi.org/10.1016/j.cell.2018.06.052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bartosovic M, Kabbe M, Castelo-Branco G. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues. Nat Biotechnol. 2021;39(7):825–35. https://doi.org/10.1038/s41587-021-00869-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nagano T, Lubling Y, Yaffe E, et al. Single-cell Hi-C for genome-wide detection of chromatin interactions that occur simultaneously in a single cell. Nat Protoc. 2015;10(12):1986–2003. https://doi.org/10.1038/nprot.2015.127.

    Article  CAS  PubMed  Google Scholar 

  66. Longo SK, Guo MG, Ji AL, Khavari PA. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat Rev Genet. 2021;22:627–44. https://doi.org/10.1038/s41576-021-00370-8.

    Article  CAS  PubMed  Google Scholar 

  67. Stuart T, Satija R. Integrative single-cell analysis. Nat Rev Genet. 2019;20(5):257–72. https://doi.org/10.1038/s41576-019-0093-7.

    Article  CAS  PubMed  Google Scholar 

  68. Wu H, Uchimura K, Donnelly EL, Kirita Y, Morris SA, Humphreys BD. Comparative analysis and refinement of human PSC-derived kidney organoid differentiation with single-cell Transcriptomics. Cell Stem Cell. 2018;23(6):869–881.e8. https://doi.org/10.1016/j.stem.2018.10.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Subramanian A, Sidhom E-H, Emani M, et al. Single cell census of human kidney organoids shows reproducibility and diminished off-target cells after transplantation. Nat Commun. 2019;10(1):5462. https://doi.org/10.1038/s41467-019-13382-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Uchimura K, Wu H, Yoshimura Y, Humphreys BD. Human pluripotent stem cell-derived kidney organoids with improved collecting duct maturation and injury modeling. Cell Rep. 2020;33(11):108514. https://doi.org/10.1016/j.celrep.2020.108514.

    Article  CAS  PubMed  Google Scholar 

  71. Abedini A, Zhu YO, Chatterjee S, et al. Urinary single-cell profiling captures the cellular diversity of the kidney. J Am Soc Nephrol. 2021;32(3):614–27. https://doi.org/10.1681/ASN.2020050757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin D. Humphreys .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muto, Y., Li, H., Humphreys, B.D. (2022). Single Cell Transcriptomics. In: Bezerra da Silva Junior, G., Nangaku, M. (eds) Innovations in Nephrology. Springer, Cham. https://doi.org/10.1007/978-3-031-11570-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11570-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11569-1

  • Online ISBN: 978-3-031-11570-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics