Skip to main content

Innovations in Maintenance Dialysis Therapy

  • Chapter
  • First Online:
Innovations in Nephrology

Abstract

Innovations are closely related to the past and present of maintenance dialysis therapy. Efforts are being coordinated worldwide in the research and development of improvements to the care of patients with chronic kidney disease and developing paradigm-changing new devices for renal replacement therapy. The ultimate goal of these innovations is not only to bring clinical benefits and better outcomes but also to improve patient perceptions or benefits for health systems. This chapter intends to present an overview of innovations in hemodialysis and peritoneal dialysis and briefly discusses future perspectives in the field, such as portable and implantable devices as well as a revolutionary yet theoretical renal replacement therapy model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kelly CJ, Young AJ. Promoting innovation in healthcare. Future Healthc J. 2017;4:121–5.

    PubMed  PubMed Central  Google Scholar 

  2. Busink E, Canaud B, Schröder-Bäck P, et al. Chronic kidney disease: exploring value-based healthcare as a potential viable solution. Blood Purif. 2019;47:156–65.

    Article  PubMed  Google Scholar 

  3. Basile C, Davenport A, Mitra S, et al. Frontiers in hemodialysis: innovations and technological advances. Artif Organs. 2021;45:175–82.

    Article  PubMed  Google Scholar 

  4. Ronco C. Hemodiafiltration: technical and clinical issues. Blood Purif. 2015;40(Suppl 1):2–11.

    Article  CAS  PubMed  Google Scholar 

  5. Granger Vallée A, Chenine L, Leray-Moragues H, et al. Online high-efficiency haemodiafiltration achieves higher serum free light chain removal than high-flux haemodialysis in multiple myeloma patients: preliminary quantitative study. Nephrol Dial Transplant. 2011;26:3627–33.

    Article  PubMed  Google Scholar 

  6. Bourguignon C, Chenine L, Bargnoux AS, et al. Hemodiafiltration improves free light chain removal and normalizes κ/λ ratio in hemodialysis patients. J Nephrol. 2016;29:251–7.

    Article  PubMed  Google Scholar 

  7. Pendón-Ruiz de Mier MV, Ojeda R, Álvarez-Lara MA, et al. Hemodiafiltration with ultrafiltrate regeneration reduces free light chains without albumin loss in multiple myeloma patients. BMC Nephrol. 2020;21:227.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Maduell F, Navarro V, Cruz MC, et al. Osteocalcin and myoglobin removal in on-line hemodiafiltration versus low- and high-flux hemodialysis. Am J Kidney Dis. 2002;40:582–9.

    Article  CAS  PubMed  Google Scholar 

  9. Roumelioti ME, Nolin T, Unruh ML, Argyropoulos C. Revisiting the middle molecule hypothesis of uremic toxicity: a systematic review of beta 2 microglobulin population kinetics and large scale modeling of hemodialysis trials in silico. PLoS One. 2016;11:e0153157.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Roumelioti ME, Trietley G, Nolin TD, et al. Beta-2 microglobulin clearance in high-flux dialysis and convective dialysis modalities: a meta-analysis of published studies. Nephrol Dial Transplant. 2018;33:1025–39.

    Article  CAS  PubMed  Google Scholar 

  11. Lornoy W, Becaus I, Billiouw JM, Sierens L, van Malderen P. Remarkable removal of beta-2-microglobulin by on-line hemodiafiltration. Am J Nephrol. 1998;18:105–8.

    Article  CAS  PubMed  Google Scholar 

  12. Lornoy W, Becaus I, Billiouw JM, Sierens L, Van Malderen P, D’Haenens P. On-line haemodiafiltration. Remarkable removal of beta2-microglobulin. Long-term clinical observations. Nephrol Dial Transplant. 2000;15(Suppl 1):49–54.

    Article  PubMed  Google Scholar 

  13. Wizemann V, Külz M, Techert F, Nederlof B. Efficacy of haemodiafiltration. Nephrol Dial Transplant. 2001;16(Suppl 4):27–30.

    Article  CAS  PubMed  Google Scholar 

  14. Rosner MH, Reis T, Husain-Syed F, et al. Classification of uremic toxins and their role in kidney failure. Clin J Am Soc Nephrol. 2021;16(12):1918–28.

    Article  CAS  Google Scholar 

  15. Canaud B, Barbieri C, Marcelli D, et al. Optimal convection volume for improving patient outcomes in an international incident dialysis cohort treated with online hemodiafiltration. Kidney Int. 2015;88:1108–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Argyropoulos CP, Chen SS, Ng YH, et al. Rediscovering beta-2 microglobulin as a biomarker across the spectrum of kidney diseases. Front Med (Lausanne). 2017;4:73.

    Article  PubMed Central  Google Scholar 

  17. Cheung AK, Rocco MV, Yan G, et al. Serum beta-2 microglobulin levels predict mortality in dialysis patients: results of the HEMO study. J Am Soc Nephrol. 2006;17:546–55.

    Article  CAS  PubMed  Google Scholar 

  18. Canaud B, Morena M, Cristol JP, Krieter D. Beta2-microglobulin, a uremic toxin with a double meaning. Kidney Int. 2006;69:1297–9.

    Article  CAS  PubMed  Google Scholar 

  19. Drüeke TB, Massy ZA. Beta2-microglobulin. Semin Dial. 2009;22:378–80.

    Article  PubMed  Google Scholar 

  20. Shi F, Sun L, Kaptoge S. Association of beta-2-microglobulin and cardiovascular events and mortality: a systematic review and meta-analysis. Atherosclerosis. 2021;320:70–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liabeuf S, Lenglet A, Desjardins L, et al. Plasma beta-2 microglobulin is associated with cardiovascular disease in uremic patients. Kidney Int. 2012;82:1297–303.

    Article  CAS  PubMed  Google Scholar 

  22. Kanda E, Muenz D, Bieber B, et al. Beta-2 microglobulin and all-cause mortality in the era of high-flux hemodialysis: results from the dialysis outcomes and practice patterns study. Clin Kidney J. 2021;14:1436–42.

    Article  CAS  PubMed  Google Scholar 

  23. Watanabe Y, Kawanishi H, Suzuki K, et al. Japanese society for dialysis therapy clinical guideline for “maintenance hemodialysis: hemodialysis prescriptions”. Ther Apher Dial. 2015;19(Suppl 1):67–92.

    Article  PubMed  Google Scholar 

  24. Tattersall JE, Ward RA. Online haemodiafiltration: definition, dose quantification and safety revisited. Nephrol Dial Transplant. 2013;28:542–50.

    Article  CAS  PubMed  Google Scholar 

  25. Ronco C, Marchionna N, Brendolan A, Neri M, Lorenzin A, Martínez Rueda AJ. Expanded haemodialysis: from operational mechanism to clinical results. Nephrol Dial Transplant. 2018;33:iii41–i7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lorenzin A, Neri M, Clark WR, et al. Modeling of internal filtration in theranova hemodialyzers. Contrib Nephrol. 2017;191:127–41.

    Article  PubMed  Google Scholar 

  27. Lorenzin A, Neri M, Lupi A, et al. Quantification of internal filtration in hollow fiber hemodialyzers with medium cut-off membrane. Blood Purif. 2018;46:196–204.

    Article  CAS  PubMed  Google Scholar 

  28. Kirsch AH, Lyko R, Nilsson LG, et al. Performance of hemodialysis with novel medium cut-off dialyzers. Nephrol Dial Transplant. 2017;32:165–72.

    CAS  PubMed  Google Scholar 

  29. Maduell F, Rodas L, Broseta JJ, et al. Medium cut-off dialyzer versus eight hemodiafiltration dialyzers: comparison using a global removal score. Blood Purif. 2019;48:167–74.

    Article  CAS  PubMed  Google Scholar 

  30. Leypoldt JK, Storr M, Agar BU, et al. Intradialytic kinetics of middle molecules during hemodialysis and hemodiafiltration. Nephrol Dial Transplant. 2019;34:870–7.

    Article  CAS  PubMed  Google Scholar 

  31. Casino FG, Pedrini LA, Santoro A, et al. A simple approach for assessing equilibrated Kt/V beta 2-M on a routine basis. Nephrol Dial Transplant. 2010;25:3038–44.

    Article  PubMed  Google Scholar 

  32. Cornelis T, van der Sande FM, Eloot S, et al. Acute hemodynamic response and uremic toxin removal in conventional and extended hemodialysis and hemodiafiltration: a randomized crossover study. Am J Kidney Dis. 2014;64:247–56.

    Article  CAS  PubMed  Google Scholar 

  33. Collins AJ, Chan CT. Intensive hemodialysis: time to give the therapy greater consideration. Am J Kidney Dis. 2016;68:S1–s4.

    Article  PubMed  Google Scholar 

  34. Kraus MA, Fluck RJ, Weinhandl ED, et al. Intensive hemodialysis and health-related quality of life. Am J Kidney Dis. 2016;68:S33–s42.

    Article  PubMed  Google Scholar 

  35. McCullough PA, Chan CT, Weinhandl ED, Burkart JM, Bakris GL. Intensive hemodialysis, left ventricular hypertrophy, and cardiovascular disease. Am J Kidney Dis. 2016;68:S5–S14.

    Article  PubMed  Google Scholar 

  36. Bakris GL, Burkart JM, Weinhandl ED, McCullough PA, Kraus MA. Intensive hemodialysis, blood pressure, and antihypertensive medication use. Am J Kidney Dis. 2016;68:S15–23.

    Article  PubMed  Google Scholar 

  37. Mathew A, McLeggon JA, Mehta N, et al. Mortality and hospitalizations in intensive dialysis: a systematic review and meta-analysis. Can J Kidney Health Dis. 2018;5:2054358117749531.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Maduell F, Arias M, Durán CE, et al. Nocturnal, every-other-day, online haemodiafiltration: an effective therapeutic alternative. Nephrol Dial Transplant. 2012;27:1619–31.

    Article  CAS  PubMed  Google Scholar 

  39. Maduell F, Navarro V, Torregrosa E, et al. Change from three times a week on-line hemodiafiltration to short daily on-line hemodiafiltration. Kidney Int. 2003;64:305–13.

    Article  PubMed  Google Scholar 

  40. Maduell F, Ojeda R, Arias-Guillen M, et al. Eight-year experience with nocturnal, every-other-day. Online Haemodiafiltr Nephron. 2016;133:98–110.

    Article  CAS  PubMed  Google Scholar 

  41. Ward RA, Greene T, Hartmann B, Samtleben W. Resistance to intercompartmental mass transfer limits beta2-microglobulin removal by post-dilution hemodiafiltration. Kidney Int. 2006;69:1431–7.

    Article  CAS  PubMed  Google Scholar 

  42. Burton JO, Jefferies HJ, Selby NM, McIntyre CW. Hemodialysis-induced cardiac injury: determinants and associated outcomes. Clin J Am Soc Nephrol. 2009;4:914–20.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Flythe JE, Assimon MM, Wang L. Ultrafiltration rate scaling in hemodialysis patients. Semin Dial. 2017;30:282–3.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Flythe JE, Brunelli SM. The risks of high ultrafiltration rate in chronic hemodialysis: implications for patient care. Semin Dial. 2011;24:259–65.

    Article  PubMed  Google Scholar 

  45. Flythe JE, Kimmel SE, Brunelli SM. Rapid fluid removal during dialysis is associated with cardiovascular morbidity and mortality. Kidney Int. 2011;79:250–7.

    Article  PubMed  Google Scholar 

  46. Flythe JE, Xue H, Lynch KE, Curhan GC, Brunelli SM. Association of mortality risk with various definitions of intradialytic hypotension. J Am Soc Nephrol. 2015;26:724–34.

    Article  CAS  PubMed  Google Scholar 

  47. Canaud B, Kooman JP, Selby NM, et al. Dialysis-induced cardiovascular and multiorgan morbidity. Kidney Int Rep. 2020;5:1856–69.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lopot F, Válek A. Time-averaged concentration--time-averaged deviation: a new concept in mathematical assessment of dialysis adequacy. Nephrol Dial Transplant. 1988;3:846–8.

    CAS  PubMed  Google Scholar 

  49. Lopot F, Nejedlý B, Sulková S. Physiology in daily hemodialysis in terms of the time average concentration/time average deviation concept. Hemodial Int. 2004;8:39–44.

    Article  PubMed  Google Scholar 

  50. Ledebo I. Does convective dialysis therapy applied daily approach renal blood purification? Kidney Int Suppl. 2001;78:S286–91.

    Article  CAS  PubMed  Google Scholar 

  51. Kliger AS. More intensive hemodialysis. Clin J Am Soc Nephrol. 2009;4(Suppl 1):S121–4.

    Article  PubMed  Google Scholar 

  52. Morfin JA, Fluck RJ, Weinhandl ED, Kansal S, McCullough PA, Komenda P. Intensive hemodialysis and treatment complications and tolerability. Am J Kidney Dis. 2016;68:S43–s50.

    Article  PubMed  Google Scholar 

  53. Canaud B, Chazot C, Koomans J, Collins A. Fluid and hemodynamic management in hemodialysis patients: challenges and opportunities. J Bras Nefrol. 2019;41(4):550–9.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Flythe JE. Turning the tide: improving fluid management in dialysis through technology. J Am Soc Nephrol. 2017;28:2260–2.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Flythe JE, Assimon MM, Overman RA. Target weight achievement and ultrafiltration rate thresholds: potential patient implications. BMC Nephrol. 2017;18:185.

    Article  PubMed  PubMed Central  Google Scholar 

  56. McIntyre CW. Recurrent circulatory stress: the dark side of dialysis. Semin Dial. 2010;23:449–51.

    Article  PubMed  Google Scholar 

  57. London GM. Ultrafiltration intensification for achievement of dry weight and hypertension control is not always the therapeutic gold standard. J Nephrol. 2011;24:395–7.

    Article  PubMed  Google Scholar 

  58. Flythe JE, Chang TI, Gallagher MP, et al. Blood pressure and volume management in dialysis: conclusions from a kidney disease: improving global outcomes (KDIGO) controversies conference. Kidney Int. 2020;97:861–76.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Canaud B, Stephens MP, Nikam M, Etter M, Collins A. Multitargeted interventions to reduce dialysis-induced systemic stress. Clin Kidney J. 2021;14:i72–84.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Davies SJ. The elusive promise of bioimpedance in fluid management of patients undergoing dialysis. Clin J Am Soc Nephrol. 2020;15:597–9.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Onofriescu M, Hogas S, Voroneanu L, et al. Bioimpedance-guided fluid management in maintenance hemodialysis: a pilot randomized controlled trial. Am J Kidney Dis. 2014;64:111–8.

    Article  PubMed  Google Scholar 

  62. Moissl U, Arias-Guillén M, Wabel P, et al. Bioimpedance-guided fluid management in hemodialysis patients. Clin J Am Soc Nephrol. 2013;8:1575–82.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hur E, Usta M, Toz H, et al. Effect of fluid management guided by bioimpedance spectroscopy on cardiovascular parameters in hemodialysis patients: a randomized controlled trial. Am J Kidney Dis. 2013;61:957–65.

    Article  PubMed  Google Scholar 

  64. Zoccali C. Lung ultrasound in the management of fluid volume in dialysis patients: potential usefulness. Semin Dial. 2017;30:6–9.

    Article  PubMed  Google Scholar 

  65. Di Nicolo P, Magnoni G, Granata A. Lung ultrasound in hemodialysis: a card to be played? Blood Purif. 2017;44:1–7.

    Article  PubMed  Google Scholar 

  66. Loutradis C, Papadopoulos CE, Sachpekidis V, et al. Lung ultrasound-guided dry weight assessment and echocardiographic measures in hypertensive hemodialysis patients: a randomized controlled study. Am J Kidney Dis. 2020;75:11–20.

    Article  PubMed  Google Scholar 

  67. Zoccali C, Torino C, Mallamaci F, et al. A randomized multicenter trial on a lung ultrasound-guided treatment strategy in patients on chronic hemodialysis with high cardiovascular risk. Kidney Int. 2021;100:1325–33.

    Article  PubMed  Google Scholar 

  68. Antlanger M, Hecking M, Haidinger M, et al. Fluid overload in hemodialysis patients: a cross-sectional study to determine its association with cardiac biomarkers and nutritional status. BMC Nephrol. 2013;14:266.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Di Somma S, Navarin S, Giordano S, et al. The emerging role of biomarkers and bio-impedance in evaluating hydration status in patients with acute heart failure. Clin Chem Lab Med. 2012;50:2093–105.

    Article  PubMed  Google Scholar 

  70. Bargnoux AS, Morena M, Jaussent I, et al. A combined index of cardiac biomarkers as a risk factor for early cardiovascular mortality in hemodialysis patients. Clin Chem Lab Med. 2013;51:1865–74.

    Article  CAS  PubMed  Google Scholar 

  71. Chazot C, Vo-Van C, Zaoui E, et al. Fluid overload correction and cardiac history influence brain natriuretic peptide evolution in incident haemodialysis patients. Nephrol Dial Transplant. 2011;26:2630–4.

    Article  CAS  PubMed  Google Scholar 

  72. Kron S, Schneditz D, Leimbach T, Kron J. Feedback control of absolute blood volume: a new technical approach in hemodialysis. Hemodial Int. 2020;24:344–50.

    Article  PubMed  Google Scholar 

  73. Franssen CF, Dasselaar JJ, Sytsma P, Burgerhof JG, de Jong PE, Huisman RM. Automatic feedback control of relative blood volume changes during hemodialysis improves blood pressure stability during and after dialysis. Hemodial Int. 2005;9:383–92.

    Article  PubMed  Google Scholar 

  74. Selby NM, Lambie SH, Camici PG, Baker CS, McIntyre CW. Occurrence of regional left ventricular dysfunction in patients undergoing standard and biofeedback dialysis. Am J Kidney Dis. 2006;47:830–41.

    Article  PubMed  Google Scholar 

  75. Leung KCW, Quinn RR, Ravani P, Duff H, MacRae JM. Randomized crossover trial of blood volume monitoring-guided ultrafiltration biofeedback to reduce intradialytic hypotensive episodes with hemodialysis. Clin J Am Soc Nephrol. 2017;12:1831–40.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Selby NM, McIntyre CW. A systematic review of the clinical effects of reducing dialysate fluid temperature. Nephrol Dial Transplant. 2006;21:1883–98.

    Article  PubMed  Google Scholar 

  77. Mustafa RA, Bdair F, Akl EA, et al. Effect of lowering the dialysate temperature in chronic hemodialysis: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2016;11:442–57.

    Article  PubMed  Google Scholar 

  78. Roumelioti ME, Unruh ML. Lower dialysate temperature in hemodialysis: is it a cool idea? Clin J Am Soc Nephrol. 2015;10:1318–20.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ságová M, Wojke R, Maierhofer A, Gross M, Canaud B, Gauly A. Automated individualization of dialysate sodium concentration reduces intradialytic plasma sodium changes in hemodialysis. Artif Organs. 2019;43:1002–13.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kuhlmann U, Maierhofer A, Canaud B, Hoyer J, Gross M. Zero diffusive sodium balance in hemodialysis provided by an algorithm-based electrolyte balancing controller: a proof of principle clinical study. Artif Organs. 2019;43:150–8.

    Article  CAS  PubMed  Google Scholar 

  81. Ponce P, Pinto B, Wojke R, Maierhofer AP, Gauly A. Evaluation of intradialytic sodium shifts during sodium controlled hemodialysis. Int J Artif Organs. 2020;43:620–4.

    Article  CAS  PubMed  Google Scholar 

  82. Canaud B, Kooman J, Selby NM, et al. Sodium and water handling during hemodialysis: new pathophysiologic insights and management approaches for improving outcomes in end-stage kidney disease. Kidney Int. 2019;95:296–309.

    Article  CAS  PubMed  Google Scholar 

  83. USRDS. International Comparisons. USRDS Annual Data Report 2015.

    Google Scholar 

  84. Davenport A. Selecting patients for home haemodialysis modality. Contrib Nephrol. 2017;189:46–53.

    Article  PubMed  Google Scholar 

  85. Haroon S, Griva K, Davenport A. Factors affecting uptake of home hemodialysis among self-care dialysis unit patients. Hemodial Int. 2020;24:460–9.

    Article  PubMed  Google Scholar 

  86. Haroon S, Davenport A. Haemodialysis at home: review of current dialysis machines. Expert Rev Med Devices. 2018;15:337–47.

    Article  CAS  PubMed  Google Scholar 

  87. Wong J, Vilar E, Davenport A, Farrington K. Incremental haemodialysis. Nephrol Dial Transplant. 2015;30:1639–48.

    Article  PubMed  Google Scholar 

  88. Garofalo C, Borrelli S, De Stefano T, et al. Incremental dialysis in ESRD: systematic review and meta-analysis. J Nephrol. 2019;32:823–36.

    Article  PubMed  Google Scholar 

  89. Golper TA. Incremental dialysis: review of recent literature. Curr Opin Nephrol Hypertens. 2017;26:543–7.

    Article  PubMed  Google Scholar 

  90. Yan Y, Wang M, Zee J, et al. Twice-weekly hemodialysis and clinical outcomes in the China dialysis outcomes and practice patterns study. Kidney Int Rep. 2018;3:889–96.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Dai L, Lu C, Liu J, et al. Impact of twice- or three-times-weekly maintenance hemodialysis on patient outcomes: a multicenter randomized trial. Medicine (Baltimore). 2020;99:e20202.

    Article  CAS  Google Scholar 

  92. Yan Y, Ramirez S, Anand S, Qian J, Zuo L. Twice-weekly hemodialysis in China: can it be a better option for initiation or maintenance dialysis therapy? Semin Dial. 2017;30:277–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Davenport A. Will incremental hemodialysis preserve residual function and improve patient survival? Semin Dial. 2015;28:16–9.

    Article  PubMed  Google Scholar 

  94. Li T, Wilcox CS, Lipkowitz MS, Gordon-Cappitelli J, Dragoi S. Rationale and strategies for preserving residual kidney function in dialysis patients. Am J Nephrol. 2019;50:411–21.

    Article  CAS  PubMed  Google Scholar 

  95. Murea M. Precision medicine approach to dialysis including incremental and decremental dialysis regimens. Curr Opin Nephrol Hypertens. 2021;30:85–92.

    Article  PubMed  Google Scholar 

  96. Evenepoel P, Poesen R, Meijers B. The gut-kidney axis. Pediatr Nephrol. 2017;32:2005–14.

    Article  PubMed  Google Scholar 

  97. Meijers BK, Evenepoel P. The gut-kidney axis: indoxyl sulfate, p-cresyl sulfate and CKD progression. Nephrol Dial Transplant. 2011;26:759–61.

    Article  CAS  PubMed  Google Scholar 

  98. Yamaguchi J, Tanaka T, Inagi R. Effect of AST-120 in chronic kidney disease treatment: still a controversy? Nephron. 2017;135:201–6.

    Article  CAS  PubMed  Google Scholar 

  99. Lok CE, Foley R. Vascular access morbidity and mortality: trends of the last decade. Clin J Am Soc Nephrol. 2013;8:1213–9.

    Article  PubMed  Google Scholar 

  100. Lee T, Thamer M, Zhang Q, Zhang Y, Allon M. Vascular access type and clinical outcomes among elderly patients on hemodialysis. Clin J Am Soc Nephrol. 2017;12:1823–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lee T, Allon M. Reassessing recommendations for choice of vascular access. Clin J Am Soc Nephrol. 2017;12:865–7.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Vachharajani TJ, Taliercio JJ, Anvari E. New devices and technologies for hemodialysis vascular access: a review. Am J Kidney Dis. 2021;78:116–24.

    Article  PubMed  Google Scholar 

  103. Lee KG, Chong TT, Goh N, et al. Outcomes of arteriovenous fistula creation, effect of preoperative vein mapping and predictors of fistula success in incident haemodialysis patients: a single-centre experience. Nephrology (Carlton). 2017;22:382–7.

    Article  Google Scholar 

  104. Hui SH, Folsom R, Killewich LA, Michalek JE, Davies MG, Pounds LL. A comparison of preoperative and intraoperative vein mapping sizes for arteriovenous fistula creation. J Vasc Surg. 2018;67:1813–20.

    Article  PubMed  Google Scholar 

  105. Brown PW. Preoperative radiological assessment for vascular access. Eur J Vasc Endovasc Surg. 2006;31:64–9.

    Article  CAS  PubMed  Google Scholar 

  106. Georgiadis GS, Charalampidis DG, Argyriou C, Georgakarakos EI, Lazarides MK. The necessity for routine pre-operative ultrasound mapping before arteriovenous fistula creation: a meta-analysis. Eur J Vasc Endovasc Surg. 2015;49:600–5.

    Article  CAS  PubMed  Google Scholar 

  107. Wong CS, McNicholas N, Healy D, et al. A systematic review of preoperative duplex ultrasonography and arteriovenous fistula formation. J Vasc Surg. 2013;57:1129–33.

    Article  PubMed  Google Scholar 

  108. Franco G, Mallios A, Bourquelot P, Hebibi H, Jennings W, Boura B. Feasibility for arteriovenous fistula creation with ellipsys(®). J Vasc Access. 2020;21:701–4.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Hull J, Deitrick J, Groome K. Maturation for hemodialysis in the Ellipsys post-market registry. J Vasc Interv Radiol. 2020;31:1373–81.

    Article  PubMed  Google Scholar 

  110. Koo KSH, Monroe EJ, Reis J, Shivaram GM, Munshi R. Initial experience with the Ellipsys vascular access system for percutaneous arteriovenous fistula creation in adolescents: a case report. Radiol Case Rep. 2021;16:441–7.

    Article  PubMed  Google Scholar 

  111. Shahverdyan R, Beathard G, Mushtaq N, Litchfield TF, Nelson PR, Jennings WC. Comparison of outcomes of percutaneous arteriovenous fistulae creation by Ellipsys and Wavelinq devices. J Vasc Interv Radiol. 2020;31:1365–72.

    Article  PubMed  Google Scholar 

  112. Lawson JH, Glickman MH, Ilzecki M, et al. Bioengineered human acellular vessels for dialysis access in patients with end-stage renal disease: two phase 2 single-arm trials. Lancet. 2016;387:2026–34.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Lawson JH, Niklason LE, Roy-Chaudhury P. Challenges and novel therapies for vascular access in haemodialysis. Nat Rev Nephrol. 2020;16:586–602.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Niklason LE, Lawson JH. Bioengineered human blood vessels. Science. 2020;370(6513):eaaw8682.

    Article  CAS  PubMed  Google Scholar 

  115. Song HG, Rumma RT, Ozaki CK, Edelman ER, Chen CS. Vascular tissue engineering: progress, challenges, and clinical promise. Cell Stem Cell. 2018;22:340–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jaffer Y, Selby NM, Taal MW, Fluck RJ, McIntyre CW. A meta-analysis of hemodialysis catheter locking solutions in the prevention of catheter-related infection. Am J Kidney Dis. 2008;51:233–41.

    Article  PubMed  Google Scholar 

  117. Abdul Salim S, Masoud AT, Thongprayoon C, et al. Systematic review and meta-analysis of antibiotic and antimicrobial lock solutions for prevention of hemodialysis catheter-related infections. ASAIO J. 2021;67:1079–86.

    PubMed  Google Scholar 

  118. Chen CH, Chen YM, Yang Y, Chang YJ, Lin LJ, Yen HC. Re-evaluating the protective effect of hemodialysis catheter locking solutions in hemodialysis patients. J Clin Med. 2019;8(3):412.

    Article  PubMed Central  Google Scholar 

  119. Sheng KX, Zhang P, Li JW, et al. Comparative efficacy and safety of lock solutions for the prevention of catheter-related complications including infectious and bleeding events in adult haemodialysis patients: a systematic review and network meta-analysis. Clin Microbiol Infect. 2020;26:545–52.

    Article  CAS  PubMed  Google Scholar 

  120. Perl J, Dember LM, Bargman JM, et al. The use of a multidimensional measure of dialysis adequacy-moving beyond small solute kinetics. Clin J Am Soc Nephrol. 2017;12:839–47.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Pizzarelli F, Basile C. Do we have to rely on metric-based quality improvement strategies for the management of ESKD? Nephrol Dial Transplant. 2021;37(3):397–9.

    Article  Google Scholar 

  122. Kliger AS. Quality measures for dialysis: time for a balanced scorecard. Clin J Am Soc Nephrol. 2016;11:363–8.

    Article  PubMed  Google Scholar 

  123. Garbelli M, Ion Titapiccolo J, Bellocchio F, Stuard S, Brancaccio D, Neri L. Leveraging digital transformation to empower clinical governance: enhancement in intermediate clinical endpoints and patients’ survival after implementation of a continuous quality improvement program in a large dialysis network. Nephrol Dial Transplant. 2021;37(3):469–76.

    Article  Google Scholar 

  124. Moncrief J, Popovich RP. Continuous ambulatory peritoneal dialysis (CAPD)—worldwide experience. In: Peritoneal dialysis. 1st ed. Dordrecht: Springer; 1981. p. 178–212.

    Chapter  Google Scholar 

  125. Moncrief JW, Popovich RP, Nolph KD, Rubin J. Additional experience with continuous ambulatory peritoneal dialysis (CAPD). Trans Am Soc Artif Intern Organs. 1978;24(4):76–83.

    Google Scholar 

  126. Oreopoulos DG, Robson M, Izatt S, Clayton SL, DeVeber GA. A simple and safe technique for continuous ambulatory peritoneal dialysis (CAPD). Trans Am Soc Artif Intern Organs. 1979;24:484–9.

    Google Scholar 

  127. Di Paolo N, Petrini G, Garosi G, Buoncristiani U, Brardi S, Monaci G. A new self-locating peritoneal catheter. Perit Dial Int. 1996;16(6):623–7. PMID: 8981532.

    Article  PubMed  Google Scholar 

  128. Di Paolo N, Capotondo L, Sansoni E, Romolini V, Simola M, Gaggiotti E, Bercia R, Buoncristiani U, Canto P, Concetti M, De Vecchi A, Fatuzzo P, Giannattasio M, La Rosa R, Lopez T, Lo Piccolo G, Melandri M, Vezzoli G, Orazi E, Pacitti A, Ramello A, Russo F, Napoli M, Tessarin MC. The self-locating catheter: clinical experience and follow-up. Perit Dial Int. 2004;24(4):359–64. PMID: 15335150.

    Article  PubMed  Google Scholar 

  129. Stonelake S, Baharani J, Thomas M, Adkins R, Hollingsworth L, Wilmink T. Outcomes of the weighted peritoneal dialysis catheter in patients at risk of percutaneous catheter failure. Perit Dial Int. 2019;39(2):142–6; Epub 2018 Nov 25. PMID: 30478139. https://doi.org/10.3747/pdi.2017.00233.

    Article  PubMed  Google Scholar 

  130. Al-Hwiesh A, et al. A novel three cuff peritoneal dialysis catheter with low entry technique: three years single center experience. Urol Nephrol Open Access J. 2017;4(5):150–6. https://doi.org/10.15406/unoaj.2017.04.0014.

    Article  Google Scholar 

  131. Hess S, Dubach M, Meboldt M, Foggensteiner L. Evaluating patient safety and ease of use of a novel connection-assist device for peritoneal dialysis. Patient Prefer Adherence. 2019;13:1785–90; PMID: 31754299; PMCID:PMC6825503. https://doi.org/10.2147/PPA.S218663.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Goodlad C, George S, Sandoval S, Mepham S, Parekh G, Eberl M, Topley N, Davenport A. Measurement of innate immune response biomarkers in peritoneal dialysis effluent using a rapid diagnostic point-of-care device as a diagnostic indicator of peritonitis. Kidney Int. 2020;97(6):1253–9; Epub 2020 Mar 6. PMID: 32359809. https://doi.org/10.1016/j.kint.2020.01.044.

    Article  CAS  PubMed  Google Scholar 

  133. Baharani J, et al. A quality improvement process to increase and sustain a peritoneal dialysis program in the United Kingdom. Blood Purif. 2022;1–9.

    Google Scholar 

  134. Delarue J, Maingourd C. Acute metabolic effects of dialysis fluids during CAPD. Am J Kidney Dis. 2001;37(1 Suppl 2):S103–7. https://doi.org/10.1053/ajkd.2001.20762.

    Article  CAS  PubMed  Google Scholar 

  135. Selby NM, Fialova J, Burton JO, McIntyre CW. The haemodynamic and metabolic effects of hypertonic-glucose and amino-acid-based peritoneal dialysis fluids. Nephrol Dial Transplant. 2007;22(3):870–9. https://doi.org/10.1093/ndt/gfl654.

    Article  CAS  PubMed  Google Scholar 

  136. Rhee CM, Leung AM, Kovesdy CP, Lynch KE, Brent GA, Kalantar-Zadeh K. Updates on the management of diabetes in dialysis patients. Semin Dial. 2014;27(2):135–45.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Kubota T, Kubota N, Kadowaki T. Imbalanced insulin actions in obesity and type 2 diabetes: key mouse models of insulin signaling pathway. Cell Metab. 2017;25(4):797–810. https://doi.org/10.1016/j.cmet.2017.03.004.

    Article  CAS  PubMed  Google Scholar 

  138. King GL, Park K, Li Q. Selective insulin resistance and the development of cardiovascular diseases in diabetes: the 2015 edwin bierman award lecture. Diabetes. 2016;65(6):1462–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lambie M, Bonomini M, Davies SJ, Accili D, Arduini A, Zammit V. Insulin resistance in cardiovascular disease, uremia, and peritoneal dialysis. Trends Endocrinol Metab. 2021;32(9):721–30. https://doi.org/10.1016/j.tem.2021.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bonomini M, Masola V, Procino G, Zammit V, Divino-Filho JC, Arduini A, Gambaro G. How to improve the biocompatibility of peritoneal dialysis solutions (without jeopardizing the patient's health). Int J Mol Sci. 2021;22(15):7955. https://doi.org/10.3390/ijms22157955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Arduini A, Bonomini M, Savica V, Amato A, Zammit V. Carnitine in metabolic disease: potential for pharmacological intervention. Pharmacol Ther. 2008;120(2):149–56. https://doi.org/10.1016/j.pharmthera.2008.08.008.

    Article  CAS  PubMed  Google Scholar 

  142. Bonomini M, Di Liberato L, Del Rosso G, Stingone A, Marinangeli G, Consoli A, Bertoli S, De Vecchi A, Bosi E, Russo R, Corciulo R, Gesualdo L, Giorgino F, Cerasoli P, Di Castelnuovo A, Monaco MP, Shockley T, Rossi C, Arduini A. Effect of an L-carnitine-containing peritoneal dialysate on insulin sensitivity in patients treated with CAPD: a 4-month, prospective, multicenter randomized trial. Am J Kidney Dis. 2013;62(5):929–38. https://doi.org/10.1053/j.ajkd.2013.04.007.

    Article  CAS  PubMed  Google Scholar 

  143. Arden C, Tudhope SJ, Petrie JL, Al-Oanzi ZH, Cullen KS, Lange AJ, Towle HC, Agius L. Fructose 2,6-bisphosphate is essential for glucose-regulated gene transcription of glucose-6-phosphatase and other ChREBP target genes in hepatocytes. Biochem J. 2012;443(1):111–23. https://doi.org/10.1042/BJ20111280.

    Article  CAS  PubMed  Google Scholar 

  144. Kishore P, Kehlenbrink S, Hu M, Zhang K, Gutierrez-Juarez R, Koppaka S, El-Maghrabi MR, Hawkins M. Xylitol prevents NEFA-induced insulin resistance in rats. Diabetologia. 2012;55(6):1808–12; Epub 2012 Mar 30. PMID: 22460760; PMCID: PMC3606878. https://doi.org/10.1007/s00125-012-2527-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Rago C, Lombardi T, Di Fulvio G, Di Liberato L, Arduini A, Divino-Filho JC, Bonomini M. A new peritoneal dialysis solution containing l-carnitine and xylitol for patients on continuous ambulatory peritoneal dialysis: first clinical experience. Toxins (Basel). 2021;13(3):174; PMID: 33668249; PMCID: PMC7996173. https://doi.org/10.3390/toxins13030174.

    Article  CAS  Google Scholar 

  146. Masola V, Bonomini M, Onisto M, Ferraro PM, Arduini A, Gambaro G. Biological effects of xylocore, a glucose sparing pd solution, on mesothelial cells: focus on mesothelial-mesenchymal transition, inflammation and angiogenesis. Nutrients. 2021;13(7):2282. https://doi.org/10.3390/nu13072282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Henderson J, O'Reilly S. The emerging role of metabolism in fibrosis. Trends Endocrinol Metab. 2021;32(8):639–53; Epub 2021 May 20. PMID: 34024695. https://doi.org/10.1016/j.tem.2021.05.003.

    Article  CAS  PubMed  Google Scholar 

  148. Masola V, Arduini A, Bonomini M, Gambaro G, Zaza G. Dichloroacetate and l-carnitine reduced tgf-beta-induced mesothelial-to-mesenchymal transition. Nephrol Dial Transplant. 2020;35(Supp 3):P1142.

    Google Scholar 

  149. Murisasco A, Reynier JP, Ragon A, Boobes Y, Baz M, Durand C, Bertocchio P, Agenet C, el Mehdi M. Continuous arterio-venous hemofiltration in a wearable device to treat end-stage renal disease. ASAIO Trans. 1986;32(1):567–71; PMID: 3778771. https://doi.org/10.1097/00002480-198609000-00040.

    Article  CAS  PubMed  Google Scholar 

  150. Shettigar UR, Kablitz C, Stephen R, Kolff WJ. A portable hemodialysis/hemofiltration system independent of dialysate and infusion fluid. Artif Organs. 1983;7(2):254–6. PMID: 6870603.

    CAS  PubMed  Google Scholar 

  151. Stephens RL, Jacobsen SC, Atkin-thor E, Kolff W. Portable/wearable artificial kidney (WAK)–initial evaluation. Proc Eur Dial Transplant Assoc. 1976;12:511–8. PMID: 935129.

    CAS  PubMed  Google Scholar 

  152. Ronco C, Davenport A, Gura V. A wearable artificial kidney: dream or reality? Nat Clin Pract Nephrol. 2008;4(11):604–5; Epub 2008 Sep 9. PMID: 18779855. https://doi.org/10.1038/ncpneph0929.

    Article  PubMed  Google Scholar 

  153. Salani M, Golper T. Avanços no rim artificial portátil e no rim bioartificial implantável. In: Moura-Neto JA, editor. Terapia Renal Substitutiva 2–Controvérsias e Tendências. São Paulo: Livraria Balieiro; 2019. p. 33–40.

    Google Scholar 

  154. Salani M, Golper T. Developments in implantable and wearable artificial kidneys. In: Fadem SZ, Moura-Neto JA, editors. Issues in kidney disease–dialysis. Hauppage. New York: Nova Science; 2021.

    Google Scholar 

  155. Gura V, Macy AS, Beizai M, Ezon C, Golper TA. Technical breakthroughs in the wearable artificial kidney (WAK). Clin J Am Soc Nephrol. 2009;4(9):1441–8; Epub 2009 Aug 20. PMID: 19696219; PMCID: PMC2736696. https://doi.org/10.2215/CJN.02790409.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Davenport A, Gura V, Ronco C, Beizai M, Ezon C, Rambod E. A wearable haemodialysis device for patients with end-stage renal failure: a pilot study. Lancet. 2007;370(9604):2005–10. PMID: 18083402. https://doi.org/10.1016/S0140-6736(07)61864-9.

    Article  PubMed  Google Scholar 

  157. Salani M, Roy S, Fissell WH 4th. Innovations in wearable and implantable artificial kidneys. Am J Kidney Dis. 2018;72(5):745–51; Epub 2018 Aug 23. PMID: 30146422. https://doi.org/10.1053/j.ajkd.2018.06.005.

    Article  PubMed  Google Scholar 

  158. Lee DB, Roberts M, Lee DBN, Roberts M. A peritoneal-based automated wearable artificial kidney. Clin Exp Nephrol. 2008;12(3):171–80.

    Article  CAS  PubMed  Google Scholar 

  159. Kotanko P, Maheshwari V, Pecoits-Filho R, Thijssen S. Alo-hemodiálise–um conceito novo na terapia renal substitutiva. In: Moura-Neto JA, editor. Terapia Renal Substitutiva 2–Controvérsias e Tendências. São Paulo: Livraria Balieiro; 2019. p. 25–32.

    Google Scholar 

  160. Kotanko P, Maheshwari V, Thijssen S, Zhang A, Dong A, Jor J. Allo-hemodialysis: a novel treatment option for patients with acute and chronic kidney failure in limited resource settings [Abstract]. Kidney Int Rep. 2019;4:S346.

    Article  Google Scholar 

  161. Campos I, Arellano J, Gomez V, Quiroz J, Mariscal LA. Renal replacement therapy preferences survey: is Allo-hemodialysis an acceptable option for patient caregivers and health care professionals? Blood Purif. 2020;49(1–2):197–201; Epub 2019 Dec 18. PMID: 31851978. https://doi.org/10.1159/000504241.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Canaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moura-Neto, J.A. et al. (2022). Innovations in Maintenance Dialysis Therapy. In: Bezerra da Silva Junior, G., Nangaku, M. (eds) Innovations in Nephrology. Springer, Cham. https://doi.org/10.1007/978-3-031-11570-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11570-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11569-1

  • Online ISBN: 978-3-031-11570-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics