Skip to main content

Emerging Devices for Sensing-Memory-Computing Applications

  • Chapter
  • First Online:
Near-sensor and In-sensor Computing

Abstract

Traditional artificial visual system consisting of separated photodetector, memory unit, and processing unit is facing the problems of high energy consumption and high delay, not conducive to the development of real-time processing. It is in an urgent need to develop sensing-memory-computing electronics for high-efficiency information processing, breaking the bottleneck of separated functional units in artificial visual system. Emerging neuromorphic computing memristors are considered as the most attractive candidate for next-generation sensing-memory-computing electronics owing to excellent characteristics including low power consumption, high speed, and low operation voltage. Various materials and device structures were developed to fabricate neuromorphic computing memristors, such as metal oxide, two-dimensional materials, organic material, phase change material, and ferroelectric materials. Binary oxide material, ternary oxide material, and oxide heterojunctions could be fabricated as active layers in oxide-based memristor with the advantages of CMOS compatibility, uniform distribution operating voltage, and excellent endurance characteristics. Two-dimensional materials have shown great advantages in mechanical flexibility, dangling-bond-free lattice, tunable bandgap, and diverse heterostructures. Organic materials have advantages of low Young’s modulus and easily changing properties by chemical design. Phase change materials show advantages in low power consumption, high speed, multi-bit storage, and optical sensing. Ferroelectric materials have advantages in dielectric, piezoelectric, pyroelectric, electro-optic, and acousto-optic effect. However, there is still a long way to go for industrial applications of sensing-memory-computing devices with these materials. The CMOS compatibility, high-density integration capability, low cost, and stable performance of memristors are key factors of sensing-memory-computing devices for industrial applications. For future sensing-memory-computing chips, novel heterogeneous integration of different material systems and structure by combining the advantages of specific material system may be the possible direction of the next-generation real-time processing neuromorphic system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Yu, X. Yang, G. Gao, Y. Xiong, Y. Wang, J. Han, et al., Bioinspired mechano-photonic artificial synapse based on graphene/MoS2 heterostructure. Sci. Adv. 7(12), eabd9117 (2021). https://doi.org/10.1126/sciadv.abd9117

    Article  Google Scholar 

  2. T.-Y. Wang, J.-L. Meng, Z.-Y. He, L. Chen, H. Zhu, Q.-Q. Sun, et al., Ultralow power wearable heterosynapse with photoelectric synergistic modulation. Adv. Sci. 7(8), 1903480 (2020). https://doi.org/10.1002/advs.201903480

    Article  Google Scholar 

  3. T.-Y. Wang, J.-L. Meng, M.-Y. Rao, Z.-Y. He, L. Chen, H. Zhu, et al., Three-dimensional nanoscale flexible memristor networks with ultralow power for information transmission and processing application. Nano Lett. 20(6), 4111–4120 (2020). https://doi.org/10.1021/acs.nanolett.9b05271

    Article  Google Scholar 

  4. J.-L. Meng, T.-Y. Wang, Z.-Y. He, L. Chen, H. Zhu, L. Ji, et al., Flexible boron nitride-based memristor for in situ digital and analogue neuromorphic computing applications. Mater. Horiz. 8(2), 538–546 (2021). https://doi.org/10.1039/D0MH01730B

    Article  Google Scholar 

  5. J.-L. Meng, T.-Y. Wang, H. Zhu, L. Ji, W. Bao, P. Zhou, et al., Integrated In-Sensor Computing Optoelectronic Device for Environment-Adaptable Artificial Retina Perception Application. Nano Lett. 22(1), 81–89 (2022). https://doi.org/10.1021/acs.nanolett.1c03240

  6. S. Gao, G. Liu, H. Yang, C. Hu, Q. Chen, G. Gong, et al., An oxide Schottky junction artificial optoelectronic synapse. ACS Nano 13(2), 2634–2642 (2019). https://doi.org/10.1021/acsnano.9b00340

    Article  Google Scholar 

  7. S. Hong, S.H. Choi, J. Park, H. Yoo, J.Y. Oh, E. Hwang, et al., Sensory adaptation and neuromorphic phototransistors based on CsPb(Br1–xIx)3 perovskite and MoS2 hybrid structure. ACS Nano 14(8), 9796–9806 (2020). https://doi.org/10.1021/acsnano.0c01689

    Article  Google Scholar 

  8. Q.-B. Zhu, B. Li, D.-D. Yang, C. Liu, S. Feng, M.-L. Chen, et al., A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nat. Commun. 12(1), 1798 (2021). https://doi.org/10.1038/s41467-021-22047-w

    Article  Google Scholar 

  9. X. Han, Z. Xu, W. Wu, X. Liu, P. Yan, C. Pan, Recent progress in optoelectronic synapses for artificial visual-perception system. Small Struct. 1(3), 2000029 (2020). https://doi.org/10.1002/sstr.202000029

    Article  Google Scholar 

  10. Y. Chai, In-sensor computing for machine vision. Nature 579, 32–33 (2020)

    Article  Google Scholar 

  11. H. Tan, Q. Tao, I. Pande, S. Majumdar, F. Liu, Y. Zhou, et al., Tactile sensory coding and learning with bio-inspired optoelectronic spiking afferent nerves. Nat. Commun. 11(1), 1369 (2020). https://doi.org/10.1038/s41467-020-15105-2

    Article  Google Scholar 

  12. H. Tan, Y. Zhou, Q. Tao, J. Rosen, S. van Dijken, Bioinspired multisensory neural network with crossmodal integration and recognition. Nat. Commun. 12(1), 1120 (2021). https://doi.org/10.1038/s41467-021-21404-z

    Article  Google Scholar 

  13. C. Wan, P. Cai, X. Guo, M. Wang, N. Matsuhisa, L. Yang, et al., An artificial sensory neuron with visual-haptic fusion. Nat. Commun. 11(1), 4602 (2020). https://doi.org/10.1038/s41467-020-18375-y

    Article  Google Scholar 

  14. M. Wang, Y. Luo, T. Wang, C. Wan, L. Pan, S. Pan, et al., Artificial skin perception. Adv. Mater. 33(19), 2003014 (2021). https://doi.org/10.1002/adma.202003014

    Article  Google Scholar 

  15. X. Yang, Z. Xiong, Y. Chen, Y. Ren, L. Zhou, H. Li, et al., A self-powered artificial retina perception system for image preprocessing based on photovoltaic devices and memristive arrays. Nano Energy 78, 105246 (2020). https://doi.org/10.1016/j.nanoen.2020.105246

    Article  Google Scholar 

  16. Y. Li, K.-W. Ang, Hardware implementation of neuromorphic computing using large-scale memristor crossbar arrays. Adv. Intell. Syst. 3(1), 2000137 (2021). https://doi.org/10.1002/aisy.202000137

    Article  MathSciNet  Google Scholar 

  17. F. Zhou, Y. Chai, Near-sensor and in-sensor computing. Nat. Electron. 3(11), 664–671 (2020). https://doi.org/10.1038/s41928-020-00501-9

    Article  Google Scholar 

  18. L. Chua, Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971). https://doi.org/10.1109/TCT.1971.1083337

    Article  Google Scholar 

  19. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453(7191), 80–83 (2008). https://doi.org/10.1038/nature06932

    Article  Google Scholar 

  20. K. Sun, J. Chen, X. Yan, The future of memristors: Materials engineering and neural networks. Adv. Funct. Mater. 31(8), 2006773 (2021). https://doi.org/10.1002/adfm.202006773

    Article  Google Scholar 

  21. H.P. Wong, H. Lee, S. Yu, Y. Chen, Y. Wu, P. Chen, et al., Metal–oxide RRAM. Proc. IEEE 100(6), 1951–1970 (2012). https://doi.org/10.1109/JPROC.2012.2190369

    Article  Google Scholar 

  22. Z. Wang, M. Yin, T. Zhang, Y. Cai, Y. Wang, Y. Yang, et al., Engineering incremental resistive switching in TaOx based memristors for brain-inspired computing. Nanoscale 8(29), 14015–14022 (2016). https://doi.org/10.1039/C6NR00476H

    Article  Google Scholar 

  23. T.-Y. Wang, J.-L. Meng, Z.-Y. He, L. Chen, H. Zhu, Q.-Q. Sun, et al., Room-temperature developed flexible biomemristor with ultralow switching voltage for array learning. Nanoscale 12(16), 9116–9123 (2020). https://doi.org/10.1039/D0NR00919A

    Article  Google Scholar 

  24. T.-Y. Wang, J.-L. Meng, Z.-Y. He, L. Chen, H. Zhu, Q.-Q. Sun, et al., Atomic layer deposited Hf0.5Zr0.5O2-based flexible memristor with short/long-term synaptic plasticity. Nanoscale Res. Lett. 14(1), 102 (2019). https://doi.org/10.1186/s11671-019-2933-y

    Article  Google Scholar 

  25. T.-Y. Wang, J.-L. Meng, L. Chen, H. Zhu, Q.-Q. Sun, S.-J. Ding, et al., Flexible 3D memristor array for binary storage and multi-states neuromorphic computing applications. InfoMat 3(2), 212–221 (2021). https://doi.org/10.1002/inf2.12158

    Article  Google Scholar 

  26. M.-J. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang, J.H. Hur, et al., A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures. Nat. Mater. 10(8), 625–630 (2011). https://doi.org/10.1038/nmat3070

    Article  Google Scholar 

  27. G.S. Kim, H. Song, Y.K. Lee, J.H. Kim, W. Kim, T.H. Park, et al., Defect-engineered electroforming-free analog HfOx memristor and its application to the neural network. ACS Appl. Mater. Interfaces 11(50), 47063–47072 (2019). https://doi.org/10.1021/acsami.9b16499

    Article  Google Scholar 

  28. H. Tan, G. Liu, H. Yang, X. Yi, L. Pan, J. Shang, et al., Light-gated memristor with integrated logic and memory functions. ACS Nano 11(11), 11298–11305 (2017). https://doi.org/10.1021/acsnano.7b05762

    Article  Google Scholar 

  29. M. Kumar, R. Singh, H. Kang, S. Kim, H. Seo, An artificial piezotronic synapse for tactile perception. Nano Energy 73, 104756 (2020). https://doi.org/10.1016/j.nanoen.2020.104756

    Article  Google Scholar 

  30. F. Zhou, Z. Zhou, J. Chen, T.H. Choy, J. Wang, N. Zhang, et al., Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 14(8), 776–782 (2019). https://doi.org/10.1038/s41565-019-0501-3

    Article  Google Scholar 

  31. S. Chen, Z. Lou, D. Chen, G. Shen, An artificial flexible visual memory system based on an UV-motivated memristor. Adv. Mater. 30(7), 1705400 (2018). https://doi.org/10.1002/adma.201705400

    Article  Google Scholar 

  32. L. Yin, R. Cheng, Y. Wen, C. Liu, J. He, Emerging 2D memory devices for in-memory computing. Adv. Mater. (2021). https://doi.org/10.1002/adma.202007081

  33. Z. Wang, S. Joshi, S. Savel’ev, W. Song, R. Midya, Y. Li, et al., Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 1(2), 137–145 (2018). https://doi.org/10.1038/s41928-018-0023-2

    Article  Google Scholar 

  34. D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. van den Driessche, et al., Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016). https://doi.org/10.1038/nature16961

    Article  Google Scholar 

  35. J.-L. Meng, T.-Y. Wang, L. Chen, Q.-Q. Sun, H. Zhu, L. Ji, et al., Energy-efficient flexible photoelectric device with 2D/0D hybrid structure for bio-inspired artificial heterosynapse application. Nano Energy 83 (2021). https://doi.org/10.1016/j.nanoen.2021.105815

  36. W. Huh, D. Lee, C.-H. Lee, Memristors based on 2D materials as an artificial synapse for neuromorphic electronics. Adv. Mater. 32(51) (2020). https://doi.org/10.1002/adma.202002092

  37. Z. Yang, J. Hao, Recent progress in black-phosphorus-based heterostructures for device applications. Small Methods 2(2), 1700296 (2018). https://doi.org/10.1002/smtd.201700296

    Article  Google Scholar 

  38. C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385 (2008). https://doi.org/10.1126/science.1157996

    Article  Google Scholar 

  39. H. Li, J. Tie, J. Li, M. Ye, H. Zhang, X. Zhang, et al., High-performance sub-10-nm monolayer black phosphorene tunneling transistors. Nano Res. 11(5), 2658–2668 (2018). https://doi.org/10.1007/s12274-017-1895-6

    Article  Google Scholar 

  40. L. Sun, W. Wang, H. Yang, Recent progress in synaptic devices based on 2D materials. Adv. Intell. Syst. 2(5) (2020). https://doi.org/10.1002/aisy.201900167

  41. Z. Lin, Y. Liu, U. Halim, M. Ding, Y. Liu, Y. Wang, et al., Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562(7726), 254–+ (2018). https://doi.org/10.1038/s41586-018-0574-4

    Article  Google Scholar 

  42. C. Pan, C.-Y. Wang, S.-J. Liang, Y. Wang, T. Cao, P. Wang, et al., Reconfigurable logic and neuromorphic circuits based on electrically tunable two-dimensional homojunctions. Nat. Electron. 3(7), 383–390 (2020). https://doi.org/10.1038/s41928-020-0433-9

    Article  Google Scholar 

  43. D. Akinwande, C. Huyghebaert, C.-H. Wang, M.I. Serna, S. Goossens, L.-J. Li, et al., Graphene and two-dimensional materials for silicon technology. Nature 573(7775), 507–518 (2019). https://doi.org/10.1038/s41586-019-1573-9

    Article  Google Scholar 

  44. N. Li, Q. Wang, C. Shen, Z. Wei, H. Yu, J. Zhao, et al., Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron. 3(11), 711–717 (2020). https://doi.org/10.1038/s41928-020-00475-8

    Article  Google Scholar 

  45. M.-L. Chen, X. Sun, H. Liu, H. Wang, Q. Zhu, S. Wang, et al., A FinFET with one atomic layer channel. Nat. Commun. 11(1) (2020). https://doi.org/10.1038/s41467-020-15096-0

  46. S.-J. Lee, Z. Lin, J. Huang, C.S. Choi, P. Chen, Y. Liu, et al., Programmable devices based on reversible solid-state doping of two-dimensional semiconductors with superionic silver iodide. Nat. Electron. 3(10), 630–637 (2020). https://doi.org/10.1038/s41928-020-00472-x

    Article  Google Scholar 

  47. K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto, 2D materials and van der Waals heterostructures. Science 353(6298) (2016). https://doi.org/10.1126/science.aac9439

  48. C.-H. Lee, G.-H. Lee, A.M. van der Zande, W. Chen, Y. Li, M. Han, et al., Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9(9), 676–681 (2014). https://doi.org/10.1038/nnano.2014.150

    Article  Google Scholar 

  49. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896

    Article  Google Scholar 

  50. A.K. Geim, Graphene: Status and prospects. Science 324(5934), 1530–1534 (2009). https://doi.org/10.1126/science.1158877

    Article  Google Scholar 

  51. Y. Wang, N. Xu, D. Li, J. Zhu, Thermal properties of two dimensional layered materials. Adv. Funct. Mater. 27(19) (2017). https://doi.org/10.1002/adfm.201604134

  52. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, et al., Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008). https://doi.org/10.1021/nl0731872

    Article  Google Scholar 

  53. X. Li, Y. Liu, Q. Zheng, X. Yan, X. Yang, G. Lv, et al., Anomalous thermal anisotropy of two-dimensional nanoplates of vertically grown MoS2. Appl. Phys. Lett. 111(16) (2017). https://doi.org/10.1063/1.4999248

  54. J.B. Oostinga, H.B. Heersche, X. Liu, A.F. Morpurgo, L.M.K. Vandersypen, Gate-induced insulating state in bilayer graphene devices. Nat. Mater. 7(2), 151–157 (2008). https://doi.org/10.1038/nmat2082

    Article  Google Scholar 

  55. J.-K. Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang, Y.-H. Chang, et al., Large-area synthesis of highly crystalline WSe2 mono layers and device applications. ACS Nano 8(1), 923–930 (2014). https://doi.org/10.1021/nn405719x

    Article  Google Scholar 

  56. X. Zou, C.-W. Huang, L. Wang, L.-J. Yin, W. Li, J. Wang, et al., Dielectric engineering of a boron nitride/hafnium oxide heterostructure for high-performance 2D field effect transistors. Adv. Mater. 28(10), 2062–+ (2016). https://doi.org/10.1002/adma.201505205

    Article  Google Scholar 

  57. W. Zhu, T. Low, Y.-H. Lee, H. Wang, D.B. Farmer, J. Kong, et al., Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nat. Commun. 5 (2014). https://doi.org/10.1038/ncomms4087

  58. Y. Xie, B. Zhang, S. Wang, D. Wang, A. Wang, Z. Wang, et al., Ultrabroadband MoS2 photodetector with spectral response from 445 to 2717 nm. Adv. Mater. 29(17) (2017). https://doi.org/10.1002/adma.201605972

  59. S.R. Tamalampudi, Y.-Y. Lu, R.U. Kumar, R. Sankar, C.-D. Liao, K.B. Moorthy, et al., High performance and bendable few-layered InSe photodetectors with broad spectral response. Nano Lett. 14(5), 2800–2806 (2014). https://doi.org/10.1021/nl500817g

    Article  Google Scholar 

  60. A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures. Nature 499(7459), 419–425 (2013)

    Article  Google Scholar 

  61. A.J. Mannix, B. Kiraly, M.C. Hersam, N.P. Guisinger, Synthesis and chemistry of elemental 2D materials. Nat. Rev. Chem. 1(2) (2017). https://doi.org/10.1038/s41570-016-0014

  62. Z. Lin, A. McCreary, N. Briggs, S. Subramanian, K. Zhang, Y. Sun, et al., 2D materials advances: From large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. 2D Materi. 3(4) (2016). https://doi.org/10.1088/2053-1583/3/4/042001

  63. X. Xiao, H. Wang, P. Urbankowski, Y. Gogotsi, Topochemical synthesis of 2D materials. Chem. Soc. Rev. 47(23), 8744–8765 (2018). https://doi.org/10.1039/c8cs00649k

    Article  Google Scholar 

  64. L. Sun, W.S. Leong, S. Yang, M.F. Chisholm, S.-J. Liang, L.K. Ang, et al., Concurrent synthesis of high-performance monolayer transition metal disulfides. Adv. Funct. Mater. 27(15) (2017). https://doi.org/10.1002/adfm.201605896

  65. C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang, X. Zhang, et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117(9), 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558

    Article  Google Scholar 

  66. C. Huang, S. Wu, A.M. Sanchez, J.J.P. Peters, R. Beanland, J.S. Ross, et al., Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. Nat. Mater. 13(12), 1096–1101 (2014). https://doi.org/10.1038/nmat4064

    Article  Google Scholar 

  67. X. Duan, C. Wang, J.C. Shaw, R. Cheng, Y. Chen, H. Li, et al., Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9(12), 1024–1030 (2014). https://doi.org/10.1038/nnano.2014.222

    Article  Google Scholar 

  68. C. Liu, H. Chen, S. Wang, Q. Liu, Y.-G. Jiang, D.W. Zhang, et al., Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 15(7), 545–557 (2020). https://doi.org/10.1038/s41565-020-0724-3

    Article  Google Scholar 

  69. Y. Shi, X. Liang, B. Yuan, V. Chen, H. Li, F. Hui, et al., Electronic synapses made of layered two-dimensional materials. Nat. Electron. 1(8), 458–465 (2018). https://doi.org/10.1038/s41928-018-0118-9

    Article  Google Scholar 

  70. R. Ge, X. Wu, M. Kim, J. Shi, S. Sonde, L. Tao, et al., Atomristor: Nonvolatile resistance switching in atomic sheets of transition metal dichalcogenides. Nano Lett. 18(1), 434–441 (2018). https://doi.org/10.1021/acs.nanolett.7b04342

    Article  Google Scholar 

  71. X. Wu, R. Ge, P.-A. Chen, H. Chou, Z. Zhang, Y. Zhang, et al., Thinnest nonvolatile memory based on monolayer h-BN. Adv. Mater. 31(15) (2019). https://doi.org/10.1002/adma.201806790

  72. J. Wu, H.-Y. Chen, N. Yang, J. Cao, X. Yan, F. Liu, et al., High tunnelling electroresistance in a ferroelectric van der Waals heterojunction via giant barrier height modulation. Nat. Electron. 3(8), 466–472 (2020). https://doi.org/10.1038/s41928-020-0441-9

    Article  Google Scholar 

  73. C. Wan, P. Cai, M. Wang, Y. Qian, W. Huang, X. Chen, Artificial sensory memory. Adv. Mater. 32(15), 1902434 (2020). https://doi.org/10.1002/adma.201902434

    Article  Google Scholar 

  74. S. Dai, Y. Zhao, Y. Wang, J. Zhang, L. Fang, S. Jin, et al., Recent advances in transistor-based artificial synapses. Adv. Funct. Mater. 29(42), 1903700 (2019). https://doi.org/10.1002/adfm.201903700

    Article  Google Scholar 

  75. P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, et al., Prime: A novel processing-in-memory architecture for neural network computation in ReRAM-based main memory. ACM SIGARCH Comp. Arch. News 44(3), 27–39 (2016)

    Article  Google Scholar 

  76. B. Zhang, C. Wang, L. Wang, Y. Chen, Macrocyclic triphenylamine-based push–pull type polymer memristive material: Synthesis and characterization. J. Mater. Chem. C 6(15), 4023–4029 (2018). https://doi.org/10.1039/C8TC00524A

    Article  Google Scholar 

  77. X. Yang, C. Wang, J. Shang, C. Zhang, H. Tan, X. Yi, et al., An organic terpyridyl-iron polymer based memristor for synaptic plasticity and learning behavior simulation. RSC Adv. 6(30), 25179–25184 (2016). https://doi.org/10.1039/C6RA02915A

    Article  Google Scholar 

  78. A.J. Bremner, C. Spence, Chapter Seven – The development of tactile perception, in Advances in Child Development and Behavior, ed. by J. B. Benson, (JAI, Greenwich, 2017), pp. 227–268

    Google Scholar 

  79. Y. Lin, J. Chen, M.M. Tavakoli, Y. Gao, Y. Zhu, D. Zhang, et al., Printable fabrication of a fully integrated and self-powered sensor system on plastic substrates. Adv. Mater. 31(5), 1804285 (2019). https://doi.org/10.1002/adma.201804285

    Article  Google Scholar 

  80. C. Zhang, W.B. Ye, K. Zhou, H.-Y. Chen, J.-Q. Yang, G. Ding, et al., Bioinspired artificial sensory nerve based on nafion memristor. Adv. Funct. Mater. 29(20), 1808783 (2019). https://doi.org/10.1002/adfm.201808783

    Article  Google Scholar 

  81. L. Shao, Y. Li, Z. Ma, Y. Bai, J. Wang, P. Zeng, et al., Highly sensitive strain sensor based on a stretchable and conductive poly(vinyl alcohol)/Phytic acid/NH2-POSS hydrogel with a 3D microporous structure. ACS Appl. Mater. Interfaces 12(23), 26496–26508 (2020). https://doi.org/10.1021/acsami.0c07717

    Article  Google Scholar 

  82. T.F. Brady, T. Konkle, G.A. Alvarez, A. Oliva, Visual long-term memory has a massive storage capacity for object details. Proc. Natl. Acad. Sci. 105(38), 14325 (2008). https://doi.org/10.1073/pnas.0803390105

    Article  Google Scholar 

  83. X. Wang, Y. Lu, J. Zhang, S. Zhang, T. Chen, Q. Ou, et al., Highly sensitive artificial visual array using transistors based on porphyrins and semiconductors. Small 17(2), 2005491 (2021). https://doi.org/10.1002/smll.202005491

    Article  Google Scholar 

  84. C. Choi, J. Leem, M.S. Kim, A. Taqieddin, C. Cho, K.W. Cho, et al., Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nat. Commun. 11(1), 5934 (2020). https://doi.org/10.1038/s41467-020-19806-6

    Article  Google Scholar 

  85. C. Ban, X. Min, J. Xu, F. Xiu, Y. Nie, Y. Hu, et al., An artificial olfactory memory system for monitoring and recording of volatile organic compounds. Adv. Mater. Technol. 6(11), 2100366 (2021). https://doi.org/10.1002/admt.202100366

    Article  Google Scholar 

  86. H.R. Lee, D. Lee, J.H. Oh, A hippocampus-inspired dual-gated organic artificial synapse for simultaneous sensing of a neurotransmitter and light. Adv. Mater. 33(17), 2100119 (2021). https://doi.org/10.1002/adma.202100119

    Article  Google Scholar 

  87. P. Nie, R. Wang, X. Xu, Y. Cheng, X. Wang, L. Shi, et al., High-performance piezoresistive electronic skin with bionic hierarchical microstructure and microcracks. ACS Appl. Mater. Interfaces 9(17), 14911–14919 (2017). https://doi.org/10.1021/acsami.7b01979

    Article  Google Scholar 

  88. S.J. Kim, J.-S. Jeong, H.W. Jang, H. Yi, H. Yang, H. Ju, et al., Dendritic network implementable organic neurofiber transistors with enhanced memory cyclic endurance for spatiotemporal iterative learning. Adv. Mater. 33(26), 2100475 (2021). https://doi.org/10.1002/adma.202100475

    Article  Google Scholar 

  89. S.R. Ovshinsky, Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21(20), 1450 (1968)

    Article  Google Scholar 

  90. F.T. Hady, A. Foong, B. Veal, D. Williams, Platform storage performance with 3D XPoint technology. Proc. IEEE 105(9), 1822–1833 (2017). https://doi.org/10.1109/JPROC.2017.2731776

    Article  Google Scholar 

  91. H.P. Wong, S. Raoux, S. Kim, J. Liang, J.P. Reifenberg, B. Rajendran, et al., Phase change memory. Proc. IEEE 98(12), 2201–2227 (2010). https://doi.org/10.1109/JPROC.2010.2070050

    Article  Google Scholar 

  92. C.D. Wright, Y. Liu, K.I. Kohary, M.M. Aziz, R.J. Hicken, Arithmetic and biologically-inspired computing using phase-change materials. Adv. Mater. 23(30), 3408–3413 (2011). https://doi.org/10.1002/adma.201101060

    Article  Google Scholar 

  93. G.W. Burr, R.M. Shelby, S. Sidler, C. de Nolfo, J. Jang, I. Boybat, et al., Experimental demonstration and tolerancing of a large-scale neural network (165 000 synapses) using phase-change memory as the synaptic weight element. IEEE Trans. Electron Devices 62(11), 3498–3507 (2015). https://doi.org/10.1109/TED.2015.2439635

    Article  Google Scholar 

  94. S. Ambrogio, P. Narayanan, H. Tsai, R.M. Shelby, I. Boybat, C. di Nolfo, et al., Equivalent-accuracy accelerated neural-network training using analogue memory. Nature 558(7708), 60–67 (2018). https://doi.org/10.1038/s41586-018-0180-5

    Article  Google Scholar 

  95. M. Davies, N. Srinivasa, T.H. Lin, G. Chinya, Y. Cao, S.H. Choday, et al., Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro 38(1), 82–99 (2018). https://doi.org/10.1109/MM.2018.112130359

    Article  Google Scholar 

  96. W.H.P. Pernice, H. Bhaskaran, Photonic non-volatile memories using phase change materials. Appl. Phys. Lett. 101(17), 171101 (2012). https://doi.org/10.1063/1.4758996

    Article  Google Scholar 

  97. C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C.D. Wright, et al., Integrated all-photonic non-volatile multi-level memory. Nat. Photonics 9(11), 725–732 (2015). https://doi.org/10.1038/nphoton.2015.182

    Article  Google Scholar 

  98. C. Ríos, N. Youngblood, Z. Cheng, M. Le Gallo, W.H.P. Pernice, C.D. Wright, et al., In-memory computing on a photonic platform. Sci. Adv. 5(2), eaau5759 (2019). https://doi.org/10.1126/sciadv.aau5759

    Article  Google Scholar 

  99. Z. Cheng, C. Ríos, W.H.P. Pernice, C.D. Wright, H. Bhaskaran, On-chip photonic synapse. Sci. Adv. 3(9), e1700160 (2017). https://doi.org/10.1126/sciadv.1700160

    Article  Google Scholar 

  100. J. Valasek, Piezo-electric and allied phenomena in Rochelle Salt. Phys. Rev. 17(4), 475–481 (1921). https://doi.org/10.1103/PhysRev.17.475

    Article  Google Scholar 

  101. J.F. Scott, C.A. Paz de Araujo, Ferroelectric memories. Science 246(4936), 1400 (1989). https://doi.org/10.1126/science.246.4936.1400

    Article  Google Scholar 

  102. K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, et al., A 45nm logic technology with high-k+metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging. 2007 IEEE International Electron Devices Meeting, 2007. pp. 247–250

    Google Scholar 

  103. T.S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, U. Böttger, Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 99(10), 102903 (2011). https://doi.org/10.1063/1.3634052

    Article  Google Scholar 

  104. J. Müller, T.S. Böscke, D. Bräuhaus, U. Schröder, U. Böttger, J. Sundqvist, et al., Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications. Appl. Phys. Lett. 99(11), 112901 (2011). https://doi.org/10.1063/1.3636417

    Article  Google Scholar 

  105. S. Ballandras, T. Baron, E. Lebrasseur, G. Martin, D. Gachon, A. Reinhardt, et al., High overtone bulk acoustic resonators: Application to resonators, filters and sensors. Acoustics, 2012

    Google Scholar 

  106. M. Hoffmann, B. Max, T. Mittmann, U. Schroeder, S. Slesazeck, T. Mikolajick, Demonstration of high-speed hysteresis-free negative capacitance in ferroelectric Hf0.5Zr0.5O2. 2018 IEEE International Electron Devices Meeting (IEDM), 2018, pp. 31.6.1–31.6.4

    Google Scholar 

  107. J. Luo, L. Yu, T. Liu, M. Yang, Z. Fu, Z. Liang, et al., Capacitor-less stochastic leaky-FeFET neuron of both excitatory and inhibitory connections for SNN with reduced hardware cost. 2019 IEEE International Electron Devices Meeting (IEDM), 2019, pp. 6.4.1–6.6.4

    Google Scholar 

  108. Q. Luo, Y. Cheng, J. Yang, R. Cao, H. Ma, Y. Yang, et al., A highly CMOS compatible hafnia-based ferroelectric diode. Nat. Commun. 11(1), 1391 (2020). https://doi.org/10.1038/s41467-020-15159-2

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2021YFA1202600), NSFC (92064009, 61904033, 62004044), Shanghai Rising-Star Program (19QA1400600), the Program of Shanghai Subject Chief Scientist (18XD1402800), China Postdoctoral Science Foundation (Grant 2022TQ0068, BX2021070, 2021M700026), the Zhejiang Lab’s International Talent Fund for Young Professionals, and the Young Scientist Project of MOE Innovation Platform.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, L., Wang, T., Meng, J., Li, Q., Fang, Y., Yu, J. (2022). Emerging Devices for Sensing-Memory-Computing Applications. In: Chai, Y., Liao, F. (eds) Near-sensor and In-sensor Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-11506-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11506-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11505-9

  • Online ISBN: 978-3-031-11506-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics