Skip to main content

Neuromorphic Vision Based on van der Waals Heterostructure Materials

  • Chapter
  • First Online:
Near-sensor and In-sensor Computing
  • 1051 Accesses

Abstract

The human vision system represents the most intelligent camera capable of sensing and perceiving the world in a real-time manner. It has long been one of the human dreams to reversely engineer the intelligent vision system by exploiting physics properties of materials. Van der Waals (vdW) heterostructures stacked by two-dimensional (2D) materials possess unique gate-tunable electrical and optical properties and provide an ideal platform to emulate the organization and functionality of the human vision system. In this chapter, we first show how the electrically tunable vdW heterostructures can be exploited for mimicking the hierarchical organization and biological function of the retina. Afterward, we demonstrate a proof-of-concept neuromorphic vision system by networking the retinomorphic sensor based on vdW heterostructures with memristive crossbar array and explore its promising application in pattern recognition and object tracking. These results suggest that such neuromorphic vision system may open unprecedented opportunities in future visual perception applications, such as edge computing in Internet of Things (IoT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.H. Masland, The fundamental plan of the retina. Nat. Neurosci. 4(9), 877–886 (2001). https://doi.org/10.1038/nn0901-877

    Article  Google Scholar 

  2. T. Gollisch, M. Meister, Eye smarter than scientists believed: Neural computations in circuits of the retina. Neuron 65(2), 150–164 (2010). https://doi.org/10.1016/j.neuron.2009.12.009

    Article  Google Scholar 

  3. A. Moini, Vision Chips (Springer, New York, 1999)

    Google Scholar 

  4. N. Wu, Neuromorphic vision chips. Sci. China Inf. Sci. 61, 060421 (2018). https://doi.org/10.1007/s11432-017-9303-0

    Article  Google Scholar 

  5. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). https://doi.org/10.1038/nnano.2012.193

    Article  Google Scholar 

  6. H. Yang, J. Heo, S. Park, H.J. Song, D.H. Seo, K.-E. Byun, et al., Graphene Barristor, a triode device with a gate-controlled Schottky barrier. Science 336(6085), 1140–1143 (2012). https://doi.org/10.1126/science.1220527

    Article  Google Scholar 

  7. G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, et al., Electronics based on two-dimensional materials. Nat. Nanotechnol. 9(10), 768–779 (2014). https://doi.org/10.1038/nnano.2014.207

    Article  Google Scholar 

  8. S.B. Desai, S.R. Madhvapathy, A.B. Sachid, J.P. Llinas, Q. Wang, G.H. Ahn, et al., MoS2 transistors with 1-nanometer gate lengths. Science 354(6308), 99–102 (2016). https://doi.org/10.1126/science.aah4698

    Article  Google Scholar 

  9. J. Wang, X. Guo, Z. Yu, Z. Ma, Y. Liu, M. Chan et al., Steep slope p-type 2D WSe2 field-effect transistors with Van Der Waals contact and negative capacitance. 2018 IEEE International Electron Devices Meeting (IEDM), 2018, pp. 22.3.1–22.3.4

    Google Scholar 

  10. F. Xia, H. Wang, J.C.M. Hwang, A.H.C. Neto, L. Yang, Black phosphorus and its isoelectronic materials. Nat. Rev. Phys. 1(5), 306–317 (2019). https://doi.org/10.1038/s42254-019-0043-5

    Article  Google Scholar 

  11. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8(7), 497–501 (2013). https://doi.org/10.1038/nnano.2013.100

    Article  Google Scholar 

  12. M. Amani, D.-H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, et al., Near-unity photoluminescence quantum yield in MoS2. Science 350(6264), 1065–1068 (2015). https://doi.org/10.1126/science.aad2114

    Article  Google Scholar 

  13. M. Romagnoli, V. Sorianello, M. Midrio, F.H.L. Koppens, C. Huyghebaert, D. Neumaier, et al., Graphene-based integrated photonics for next-generation datacom and telecom. Nat. Rev. Mater. 3(10), 392–414 (2018). https://doi.org/10.1038/s41578-018-0040-9

    Article  Google Scholar 

  14. A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures. Nature 499(7459), 419–425 (2013). https://doi.org/10.1038/nature12385

    Article  Google Scholar 

  15. W.J. Yu, Z. Li, H. Zhou, Y. Chen, Y. Wang, Y. Huang, et al., Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 12(3), 246–252 (2013). https://doi.org/10.1038/nmat3518

    Article  Google Scholar 

  16. W.J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, et al., Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 8(12), 952–958 (2013). https://doi.org/10.1038/nnano.2013.219

    Article  Google Scholar 

  17. L. Ju, J. Velasco, E. Huang, S. Kahn, C. Nosiglia, H.-Z. Tsai, et al., Photoinduced doping in heterostructures of graphene and boron nitride. Nat. Nanotechnol. 9(5), 348–352 (2014). https://doi.org/10.1038/nnano.2014.60

    Article  Google Scholar 

  18. D. Sarkar, X. Xie, W. Liu, W. Cao, J. Kang, Y. Gong, et al., A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526(7571), 91–95 (2015). https://doi.org/10.1038/nature15387

    Article  Google Scholar 

  19. Y. Liu, N.O. Weiss, X. Duan, H.-C. Cheng, Y. Huang, X. Duan, Van der Waals heterostructures and devices. Nat. Rev. Mater. 1(9), 16042 (2016). https://doi.org/10.1038/natrevmats.2016.42

    Article  Google Scholar 

  20. K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H.C. Neto, 2D materials and van der Waals heterostructures. Science 353(6298), aac9439 (2016). https://doi.org/10.1126/science.aac9439

    Article  Google Scholar 

  21. D. Jariwala, T.J. Marks, M.C. Hersam, Mixed-dimensional van der Waals heterostructures. Nat. Mater. 16(2), 170–181 (2017). https://doi.org/10.1038/nmat4703

    Article  Google Scholar 

  22. H. Tian, X. Cao, Y. Xie, X. Yan, A. Kostelec, D. DiMarzio, et al., Emulating bilingual synaptic response using a junction-based artificial synaptic device. ACS Nano 11(7), 7156–7163 (2017). https://doi.org/10.1021/acsnano.7b03033

    Article  Google Scholar 

  23. C. Liu, X. Yan, X. Song, S. Ding, D.W. Zhang, P. Zhou, A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat. Nanotechnol. 13(5), 404–410 (2018). https://doi.org/10.1038/s41565-018-0102-6

    Article  Google Scholar 

  24. D. Xiang, T. Liu, J. Xu, J.Y. Tan, Z. Hu, B. Lei, et al., Two-dimensional multibit optoelectronic memory with broadband spectrum distinction. Nat. Commun. 9(1), 2966 (2018). https://doi.org/10.1038/s41467-018-05397-w

    Article  Google Scholar 

  25. S.-H. Bae, H. Kum, W. Kong, Y. Kim, C. Choi, B. Lee, et al., Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nat. Mater. 18(6), 550–560 (2019). https://doi.org/10.1038/s41563-019-0335-2

    Article  Google Scholar 

  26. Y. Liu, Y. Huang, X. Duan, Van der Waals integration before and beyond two-dimensional materials. Nature 567(7748), 323–333 (2019). https://doi.org/10.1038/s41586-019-1013-x

    Article  Google Scholar 

  27. S. Seo, S.-H. Jo, S. Kim, J. Shim, S. Oh, J.-H. Kim, et al., Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 9(1), 5106 (2018). https://doi.org/10.1038/s41467-018-07572-5

    Article  Google Scholar 

  28. C. Choi, M.K. Choi, S. Liu, M.S. Kim, O.K. Park, C. Im, et al., Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 8(1), 1664 (2017). https://doi.org/10.1038/s41467-017-01824-6

    Article  Google Scholar 

  29. J. Zhu, Y. Yang, R. Jia, Z. Liang, W. Zhu, Z.U. Rehman, et al., Ion gated synaptic transistors based on 2D van der Waals crystals with tunable diffusive dynamics. Adv. Mater. 30(21), 1800195 (2018). https://doi.org/10.1002/adma.201800195

    Article  Google Scholar 

  30. X. Zhu, D. Li, X. Liang, W.D. Lu, Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 18(2), 141–148 (2019). https://doi.org/10.1038/s41563-018-0248-5

    Article  Google Scholar 

  31. V.K. Sangwan, H.-S. Lee, H. Bergeron, I. Balla, M.E. Beck, K.-S. Chen, et al., Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 554(7693), 500–504 (2018). https://doi.org/10.1038/nature25747

    Article  Google Scholar 

  32. L. Sun, Y. Zhang, G. Hwang, J. Jiang, D. Kim, Y.A. Eshete, et al., Synaptic computation enabled by joule heating of single-layered semiconductors for sound localization. Nano Lett. 18(5), 3229–3234 (2018). https://doi.org/10.1021/acs.nanolett.8b00994

    Article  Google Scholar 

  33. Z. Remes, M. Nesladek, K. Haenen, K. Watanabe, T. Taniguchi, The optical absorption and photoconductivity spectra of hexagonal boron nitride single crystals. Phys. Status Solidi A 202(11), 2229–2233 (2005). https://doi.org/10.1002/pssa.200561902

    Article  Google Scholar 

  34. T. Taniguchi, K. Watanabe, Synthesis of high-purity boron nitride single crystals under high pressure by using Ba–BN solvent. J. Cryst. 303(2), 525–529 (2007). https://doi.org/10.1016/j.jcrysgro.2006.12.061

    Article  Google Scholar 

  35. L.A. Gatys, A.S. Ecker, M. Bethge, Image style transfer using convolutional neural networks. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. pp. 2414–2423

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shi-Jun Liang or Feng Miao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, S., Liang, SJ., Miao, F. (2022). Neuromorphic Vision Based on van der Waals Heterostructure Materials. In: Chai, Y., Liao, F. (eds) Near-sensor and In-sensor Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-11506-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11506-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11505-9

  • Online ISBN: 978-3-031-11506-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics