Skip to main content

Recent Advances on DNA Base Flipping: A General Mechanism for Writing, Reading, and Erasing DNA Modifications

  • Chapter
  • First Online:
DNA Methyltransferases - Role and Function

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1389))

Abstract

The modification of DNA bases is a classic hallmark of epigenetics. Four forms of modified cytosine—5-methylcytosine, 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine—have been discovered in eukaryotic DNA. In addition to cytosine carbon-5 modifications, cytosine and adenine methylated in the exocyclic amine—N4-methylcytosine and N6-methyladenine—are other modified DNA bases discovered even earlier. Each modified base can be considered a distinct epigenetic signal with broader biological implications beyond simple chemical changes. Since 1994, several crystal structures of proteins and enzymes involved in writing, reading, and erasing modified bases have become available. Here, we present a structural synopsis of writers, readers, and erasers of the modified bases from prokaryotes and eukaryotes. Despite significant differences in structures and functions, they are remarkably similar regarding their engagement in flipping a target base/nucleotide within DNA for specific recognitions and/or reactions. We thus highlight base flipping as a common structural framework broadly applied by distinct classes of proteins and enzymes across phyla for epigenetic regulations of DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5caC:

5-carboxylcytosine

5fC:

5-formylcytosine

5ghmC:

Glucosylated 5-hydroxymethylcytosine

5hmC:

5-hydroxymethylcytosine

5mC:

5-methylcytosine

αKG:

α-ketoglutarate

AdoHcy:

S-adenosyl-l-homocysteine (SAH)

AdoMet:

S-adenosyl-l-methionine (SAM)

AlkB:

E. coli Alkylated DNA repair protein AlkB

ALKBH5:

Alkylated DNA repair protein AlkB homolog 5 in human

CMT2:

Chromomethylase 2 (plant specific)

CMT3:

Chromomethylase 3 (plant specific)

DME:

Demeter (plant)

DML3:

Demeter-like protein 3 (plant)

DNMT1:

Mammalian DNA methyltransferase 1

DNMT3A:

Mammalian DNA methyltransferase 3A

DNMT3L:

Mammalian DNA methyltransferase 3-like

DRM2:

Domain rearranged methyltransferase 2 (plant)

FTO:

Fat mass and obesity-associated protein

HhH:

Helix-hairpin-helix

JBP:

J-binding protein

MBD:

Methyl-CpG binding domain

McrB:

Modified cytosine restriction B

Met1:

DNA methyltransferase 1 (plant)

MTase:

Methyltransferase

N4mC:

N4-methylcytosine

N6mA:

N6-methyladenine

NOG:

N-oxalylglycine

ROS1:

Repressor of silencing 1 (plant specific)

SRA:

SET- and RING-associated

TDG:

Thymine DNA glycosylase

TET:

Ten-eleven translocation

TRD:

Target recognition domain

Uhrf1:

Ubiquitin-like-containing PHD and RING finger domains protein 1

WH:

Winged helix

References

  • Adam S, Anteneh H, Hornisch M, Wagner V, Lu J, Radde NE, Bashtrykov P, Song J, Jeltsch A (2020) DNA sequence-dependent activity and base flipping mechanisms of DNMT1 regulate genome-wide DNA methylation. Nat Commun 11:3723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adam S, Bracker J, Klingel V, Osteresch B, Radde NE, Brockmeyer J, Bashtrykov P, Jeltsch A (2022) Flanking sequences influence the activity of TET1 and TET2 methylcytosine dioxygenases and affect genomic 5hmC patterns. Commun Biol 5:92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anton BP, Roberts RJ (2021) Beyond restriction modification: epigenomic roles of DNA methylation in prokaryotes. Annu Rev Microbiol 75:129–149

    Article  PubMed  Google Scholar 

  • Arita K, Ariyoshi M, Tochio H, Nakamura Y, Shirakawa M (2008) Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism. Nature 455:818–821

    Article  CAS  PubMed  Google Scholar 

  • Avvakumov GV, Walker JR, Xue S, Li Y, Duan S, Bronner C, Arrowsmith CH, Dhe-Paganon S (2008) Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1. Nature 455:822–825

    Article  CAS  PubMed  Google Scholar 

  • Beh LY, Debelouchina GT, Clay DM, Thompson RE, Lindblad KA, Hutton ER, Bracht JR, Sebra RP, Muir TW, Landweber LF (2019) Identification of a DNA N6-adenine methyltransferase complex and its impact on chromatin organization. Cell 177:1781–1796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bestor TH (2000) The DNA methyltransferases of mammals. Hum Mol Genet 9:2395–2402

    Article  CAS  PubMed  Google Scholar 

  • Borgaro JG, Zhu Z (2013) Characterization of the 5-hydroxymethylcytosine-specific DNA restriction endonucleases. Nucleic Acids Res 41:4198–4206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borst P, Sabatini R (2008) Base J: discovery, biosynthesis, and possible functions. Annu Rev Microbiol 62:235–251

    Article  CAS  PubMed  Google Scholar 

  • Bostick M, Kim JK, Esteve PO, Clark A, Pradhan S, Jacobsen SE (2007) UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317:1760–1764

    Article  CAS  PubMed  Google Scholar 

  • Brooks SC, Adhikary S, Rubinson EH, Eichman BF (2013) Recent advances in the structural mechanisms of DNA glycosylases. Biochim Biophys Acta 1834:247–271

    Article  CAS  PubMed  Google Scholar 

  • Buck-Koehntop BA, Stanfield RL, Ekiert DC, Martinez-Yamout MA, Dyson HJ, Wilson IA, Wright PE (2012) Molecular basis for recognition of methylated and specific DNA sequences by the zinc finger protein Kaiso. Proc Natl Acad Sci U S A 109:15229–15234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannon SV, Cummings A, Teebor GW (1988) 5-Hydroxymethylcytosine DNA glycosylase activity in mammalian tissue. Biochem Biophys Res Commun 151:1173–1179

    Article  CAS  PubMed  Google Scholar 

  • Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10:295–304

    Article  CAS  PubMed  Google Scholar 

  • Cheng X (1995) DNA modification by methyltransferases. Curr Opin Struct Biol 5:4–10

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Roberts RJ (2001) AdoMet-dependent methylation, DNA methyltransferases and base flipping. Nucleic Acids Res 29:3784–3795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng X, Kumar S, Posfai J, Pflugrath JW, Roberts RJ (1993) Crystal structure of the HhaI DNA methyltransferase complexed with S-adenosyl-L-methionine. Cell 74:299–307

    Article  CAS  PubMed  Google Scholar 

  • Cohen-Karni D, Xu D, Apone L, Fomenkov A, Sun Z, Davis PJ, Kinney SR, Yamada-Mabuchi M, Xu SY, Davis T et al (2011) The MspJI family of modification-dependent restriction endonucleases for epigenetic studies. Proc Natl Acad Sci U S A 108:11040–11045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duymich CE, Charlet J, Yang X, Jones PA, Liang G (2016) DNMT3B isoforms without catalytic activity stimulate gene body methylation as accessory proteins in somatic cells. Nat Commun 7:11453

    Article  PubMed  PubMed Central  Google Scholar 

  • Fromme JC, Banerjee A, Huang SJ, Verdine GL (2004) Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase. Nature 427:652–656

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Emperle M, Guo Y, Grimm SA, Ren W, Adam S, Uryu H, Zhang ZM, Chen D, Yin J et al (2020) Comprehensive structure-function characterization of DNMT3B and DNMT3A reveals distinctive de novo DNA methylation mechanisms. Nat Commun 11:3355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gehring M, Huh JH, Hsieh TF, Penterman J, Choi Y, Harada JJ, Goldberg RB, Fischer RL (2006) DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation. Cell 124:495–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goedecke K, Pignot M, Goody RS, Scheidig AJ, Weinhold E (2001) Structure of the N6-adenine DNA methyltransferase M.TaqI in complex with DNA and a cofactor analog. Nat Struct Biol 8:121–125

    Article  CAS  PubMed  Google Scholar 

  • Golla JP, Zhao J, Mann IK, Sayeed SK, Mandal A, Rose RB, Vinson C (2014) Carboxylation of cytosine (5caC) in the CG dinucleotide in the E-box motif (CGCAG|GTG) increases binding of the Tcf3|Ascl1 helix-loop-helix heterodimer 10-fold. Biochem Biophys Res Commun 449:248–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gommers-Ampt JH, Van Leeuwen F, de Beer AL, Vliegenthart JF, Dizdaroglu M, Kowalak JA, Crain PF, Borst P (1993) beta-D-glucosyl-hydroxymethyluracil: a novel modified base present in the DNA of the parasitic protozoan T. brucei. Cell 75:1129–1136

    Article  CAS  PubMed  Google Scholar 

  • Gong Z, Morales-Ruiz T, Ariza RR, Roldan-Arjona T, David L, Zhu JK (2002) ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell 111:803–814

    Article  CAS  PubMed  Google Scholar 

  • Gowher H, Jeltsch A (2001) Enzymatic properties of recombinant Dnmt3a DNA methyltransferase from mouse: the enzyme modifies DNA in a non-processive manner and also methylates non-CpG [correction of non-CpA] sites. J Mol Biol 309:1201–1208

    Article  CAS  PubMed  Google Scholar 

  • Gupta YK, Chan SH, Xu SY, Aggarwal AK (2015) Structural basis of asymmetric DNA methylation and ATP-triggered long-range diffusion by EcoP15I. Nat Commun 6:7363

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto H, Horton JR, Zhang X, Bostick M, Jacobsen SE, Cheng X (2008) The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix. Nature 455:826–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto H, Vertino PM, Cheng X (2010) Molecular coupling of DNA methylation and histone methylation. Epigenomics 2:657–669

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto H, Hong S, Bhagwat AS, Zhang X, Cheng X (2012a) Excision of 5-hydroxymethyluracil and 5-carboxylcytosine by the thymine DNA glycosylase domain: its structural basis and implications for active DNA demethylation. Nucleic Acids Res 40:10203–10214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto H, Liu Y, Upadhyay AK, Chang Y, Howerton SB, Vertino PM, Zhang X, Cheng X (2012b) Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res 40:4841–4849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto H, Pais JE, Zhang X, Saleh L, Fu ZQ, Dai N, Correa IR Jr, Zheng Y, Cheng X (2014a) Structure of a Naegleria Tet-like dioxygenase in complex with 5-methylcytosine DNA. Nature 506:391–395

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto H, Olanrewaju YO, Zheng Y, Wilson GG, Zhang X, Cheng X (2014b) Wilms tumor protein recognizes 5-carboxylcytosine within a specific DNA sequence. Genes Dev 28:2304–2313

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashimoto H, Pais JE, Dai N, Correa IR Jr, Zhang X, Zheng Y, Cheng X (2015a) Structure of Naegleria Tet-like dioxygenase (NgTet1) in complexes with a reaction intermediate 5-hydroxymethylcytosine DNA. Nucleic Acids Res 43:10713–10721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto H, Zhang X, Vertino PM, Cheng X (2015b) The mechanisms of generation, recognition, and erasure of DNA 5-methylcytosine and thymine oxidations. J Biol Chem 290:20723–20733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L et al (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333:1303–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong S, Hashimoto H, Kow YW, Zhang X, Cheng X (2014) The carboxy-terminal domain of ROS1 is essential for 5-methylcytosine DNA glycosylase activity. J Mol Biol 426:3703–3712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong S, Wang D, Horton JR, Zhang X, Speck SH, Blumenthal RM, Cheng X (2017) Methyl-dependent and spatial-specific DNA recognition by the orthologous transcription factors human AP-1 and Epstein-Barr virus Zta. Nucleic Acids Res 45:2503–2515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horton JR, Liebert K, Hattman S, Jeltsch A, Cheng X (2005) Transition from nonspecific to specific DNA interactions along the substrate-recognition pathway of dam methyltransferase. Cell 121:349–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horton JR, Borgaro JG, Griggs RM, Quimby A, Guan S, Zhang X, Wilson GG, Zheng Y, Zhu Z, Cheng X (2014a) Structure of 5-hydroxymethylcytosine-specific restriction enzyme, AbaSI, in complex with DNA. Nucleic Acids Res 42:7947–7959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horton JR, Wang H, Mabuchi MY, Zhang X, Roberts RJ, Zheng Y, Wilson GG, Cheng X (2014b) Modification-dependent restriction endonuclease, MspJI, flips 5-methylcytosine out of the DNA helix. Nucleic Acids Res 42:12092–12101

    Article  PubMed  PubMed Central  Google Scholar 

  • Horton JR, Nugent RL, Li A, Mabuchi MY, Fomenkov A, Cohen-Karni D, Griggs RM, Zhang X, Wilson GG, Zheng Y et al (2014c) Structure and mutagenesis of the DNA modification-dependent restriction endonuclease AspBHI. Sci Rep 4:4246

    Article  PubMed  PubMed Central  Google Scholar 

  • Horton JR, Woodcock CB, Opot SB, Reich NO, Zhang X, Cheng X (2019) The cell cycle-regulated DNA adenine methyltransferase CcrM opens a bubble at its DNA recognition site. Nat Commun 10:4600

    Article  PubMed  PubMed Central  Google Scholar 

  • Horton JR, Yang J, Zhang X, Petronzio T, Fomenkov A, Wilson GG, Roberts RJ, Cheng X (2020) Structure of HhaI endonuclease with cognate DNA at an atomic resolution of 1.0 A. Nucleic Acids Res 48:1466–1478

    Article  CAS  PubMed  Google Scholar 

  • Hosford CJ, Bui AQ, Chappie JS (2020) The structure of the Thermococcus gammatolerans McrB N-terminal domain reveals a new mode of substrate recognition and specificity among McrB homologs. J Biol Chem 295:743–756

    Article  PubMed  Google Scholar 

  • Hu L, Li Z, Cheng J, Rao Q, Gong W, Liu M, Shi YG, Zhu J, Wang P, Xu Y (2013) Crystal structure of TET2-DNA complex: insight into TET-mediated 5mC oxidation. Cell 155:1545–1555

    Article  CAS  PubMed  Google Scholar 

  • Hu L, Lu J, Cheng J, Rao Q, Li Z, Hou H, Lou Z, Zhang L, Li W, Gong W et al (2015) Structural insight into substrate preference for TET-mediated oxidation. Nature 527:118–122

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333:1300–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer LM, Zhang D, Maxwell Burroughs A, Aravind L (2013) Computational identification of novel biochemical systems involved in oxidation, glycosylation and other complex modifications of bases in DNA. Nucleic Acids Res 41:7635–7655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang H, Shin H, Eichman BF, Huh JH (2014) Excision of 5-hydroxymethylcytosine by DEMETER family DNA glycosylases. Biochem Biophys Res Commun 446:1067–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeltsch A, Adam S, Dukatz M, Emperle M, Bashtrykov P (2021) Deep enzymology studies on DNA methyltransferases reveal novel connections between flanking sequences and enzyme activity. J Mol Biol 433:167186

    Article  CAS  PubMed  Google Scholar 

  • Jia D, Jurkowska RZ, Zhang X, Jeltsch A, Cheng X (2007) Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449:248–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG et al (2011) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7:885–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kellinger MW, Song CX, Chong J, Lu XY, He C, Wang D (2012) 5-formylcytosine and 5-carboxylcytosine reduce the rate and substrate specificity of RNA polymerase II transcription. Nat Struct Mol Biol 19:831–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klimasauskas S, Kumar S, Roberts RJ, Cheng X (1994) HhaI methyltransferase flips its target base out of the DNA helix. Cell 76:357–369

    Article  CAS  PubMed  Google Scholar 

  • Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31:89–97

    Article  CAS  PubMed  Google Scholar 

  • Konttinen O, Carmody J, Pathuri S, Anderson K, Zhou X, Reich N (2020) Cell cycle regulated DNA methyltransferase: fluorescent tracking of a DNA strand-separation mechanism and identification of the responsible protein motif. Nucleic Acids Res 48:11589–11601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kornberg SR, Zimmerman SB, Kornberg A (1961) Glucosylation of deoxyribonucleic acid by enzymes from bacteriophage-infected Escherichia coli. J Biol Chem 236:1487–1493

    Article  CAS  PubMed  Google Scholar 

  • Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324:929–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Cheng X, Klimasauskas S, Mi S, Posfai J, Roberts RJ, Wilson GG (1994) The DNA (cytosine-5) methyltransferases. Nucleic Acids Res 22:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehman IR, Pratt EA (1960) On the structure of the glucosylated hydroxymethylcytosine nucleotides of coliphages T2, T4, and T6. J Biol Chem 235:3254–3259

    Article  CAS  PubMed  Google Scholar 

  • Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926

    Article  CAS  PubMed  Google Scholar 

  • Lin CC, Chen YP, Yang WZ, Shen JCK, Yuan HS (2020) Structural insights into CpG-specific DNA methylation by human DNA methyltransferase 3B. Nucleic Acids Res 48:3949–3961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindroth AM, Cao X, Jackson JP, Zilberman D, McCallum CM, Henikoff S, Jacobsen SE (2001) Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292:2077–2080

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Toh H, Sasaki H, Zhang X, Cheng X (2012) An atomic model of Zfp57 recognition of CpG methylation within a specific DNA sequence. Genes Dev 26:2374–2379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Zhang X, Blumenthal RM, Cheng X (2013) A common mode of recognition for methylated CpG. Trends Biochem Sci 38:177–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X et al (2014a) A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 10:93–95

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Olanrewaju YO, Zheng Y, Hashimoto H, Blumenthal RM, Zhang X, Cheng X (2014b) Structural basis for Klf4 recognition of methylated DNA. Nucleic Acids Res 42:4859–4867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lunt MR, Siebke JC, Burton K (1964) Glucosylated nucleotide sequences from T2-bacteriophage deoxyribonucleic acid. Biochem J 92:27–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiti A, Drohat AC (2011) Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem 286:35334–35338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malone T, Blumenthal RM, Cheng X (1995) Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes. J Mol Biol 253:618–632

    Article  CAS  PubMed  Google Scholar 

  • McDonough MA, Loenarz C, Chowdhury R, Clifton IJ, Schofield CJ (2010) Structural studies on human 2-oxoglutarate dependent oxygenases. Curr Opin Struct Biol 20:659–672

    Article  CAS  PubMed  Google Scholar 

  • Messer W, Noyer-Weidner M (1988) Timing and targeting: the biological functions of Dam methylation in E. coli. Cell 54:735–737

    Article  CAS  PubMed  Google Scholar 

  • Mierzejewska K, Siwek W, Czapinska H, Kaus-Drobek M, Radlinska M, Skowronek K, Bujnicki JM, Dadlez M, Bochtler M (2014) Structural basis of the methylation specificity of R.DpnI. Nucleic Acids Res 42:8745–8754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazono K, Furuta Y, Watanabe-Matsui M, Miyakawa T, Ito T, Kobayashi I, Tanokura M (2014) A sequence-specific DNA glycosylase mediates restriction-modification in Pyrococcus abyssi. Nat Commun 5:3178

    Article  PubMed  Google Scholar 

  • Miyazono KI, Wang D, Ito T, Tanokura M (2020) Distortion of double-stranded DNA structure by the binding of the restriction DNA glycosylase R.PabI. Nucleic Acids Res 48:5106–5118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mok YG, Uzawa R, Lee J, Weiner GM, Eichman BF, Fischer RL, Huh JH (2010) Domain structure of the DEMETER 5-methylcytosine DNA glycosylase. Proc Natl Acad Sci U S A 107:19225–19230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morales-Ruiz T, Ortega-Galisteo AP, Ponferrada-Marin MI, Martinez-Macias MI, Ariza RR, Roldan-Arjona T (2006) DEMETER and REPRESSOR OF SILENCING 1 encode 5-methylcytosine DNA glycosylases. Proc Natl Acad Sci U S A 103:6853–6858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullins EA, Shi R, Parsons ZD, Yuen PK, David SS, Igarashi Y, Eichman BF (2015) The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions. Nature 527:254–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray IA, Morgan RD, Luyten Y, Fomenkov A, Correa IR Jr, Dai N, Allaw MB, Zhang X, Cheng X, Roberts RJ (2018) The non-specific adenine DNA methyltransferase M.EcoGII. Nucleic Acids Res 46:840–848

    Article  CAS  PubMed  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    Article  CAS  PubMed  Google Scholar 

  • Oliveira PH, Ribis JW, Garrett EM, Trzilova D, Kim A, Sekulovic O, Mead EA, Pak T, Zhu S, Deikus G et al (2020) Epigenomic characterization of Clostridioides difficile finds a conserved DNA methyltransferase that mediates sporulation and pathogenesis. Nat Microbiol 5:166–180

    Article  CAS  PubMed  Google Scholar 

  • Ooi SKT, Qiu C, Bernstein E, Li K, Jia D, Yang Z, Erdjument-Bromage H, Tempst P, Lin S-P, Allis CD et al (2007) DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448:714–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortega-Galisteo AP, Morales-Ruiz T, Ariza RR, Roldan-Arjona T (2008) Arabidopsis DEMETER-LIKE proteins DML2 and DML3 are required for appropriate distribution of DNA methylation marks. Plant molecular biology 67:671–681

    Article  CAS  PubMed  Google Scholar 

  • Pais JE, Dai N, Tamanaha E, Vaisvila R, Fomenkov AI, Bitinaite J, Sun Z, Guan S, Correa IR Jr, Noren CJ et al (2015) Biochemical characterization of a Naegleria TET-like oxygenase and its application in single molecule sequencing of 5-methylcytosine. Proc Natl Acad Sci U S A 112:4316–4321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pappalardi MB, Keenan K, Cockerill M, Kellner WA, Stowell A, Sherk C, Wong K, Pathuri S, Briand J, Steidel M et al (2021) Discovery of a first-in-class reversible DNMT1-selective inhibitor with improved tolerability and efficacy in acute myeloid leukemia. Nat Cancer 2:1002–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfaffeneder T, Hackner B, Truss M, Munzel M, Muller M, Deiml CA, Hagemeier C, Carell T (2011) The discovery of 5-formylcytosine in embryonic stem cell DNA. Angewandte Chemie 50:7008–7012

    Article  CAS  PubMed  Google Scholar 

  • Pidugu LS, Dai Q, Malik SS, Pozharski E, Drohat AC (2019) Excision of 5-carboxylcytosine by thymine DNA glycosylase. J Am Chem Soc 141:18851–18861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponferrada-Marin MI, Roldan-Arjona T, Ariza RR (2009) ROS1 5-methylcytosine DNA glycosylase is a slow-turnover catalyst that initiates DNA demethylation in a distributive fashion. Nucleic Acids Res 37:4264–4274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponferrada-Marin MI, Martinez-Macias MI, Morales-Ruiz T, Roldan-Arjona T, Ariza RR (2010) Methylation-independent DNA binding modulates specificity of Repressor of Silencing 1 (ROS1) and facilitates demethylation in long substrates. J Biol Chem 285:23032–23039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponferrada-Marin MI, Parrilla-Doblas JT, Roldan-Arjona T, Ariza RR (2011) A discontinuous DNA glycosylase domain in a family of enzymes that excise 5-methylcytosine. Nucleic Acids Res 39:1473–1484

    Article  CAS  PubMed  Google Scholar 

  • Ponferrada-Marin MI, Roldan-Arjona T, Ariza RR (2012) Demethylation initiated by ROS1 glycosylase involves random sliding along DNA. Nucleic Acids Res 40:11554–11562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi S, Mota J, Chan SH, Villarreal J, Dai N, Arya S, Hromas RA, Rao MK, Correa IR Jr, Gupta YK (2022) RNA binding to human METTL3-METTL14 restricts N(6)-deoxyadenosine methylation of DNA in vitro. eLife:11

    Google Scholar 

  • Qian W, Miki D, Zhang H, Liu Y, Zhang X, Tang K, Kan Y, La H, Li X, Li S et al (2012) A histone acetyltransferase regulates active DNA demethylation in Arabidopsis. Science 336:1445–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R (2000) Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci U S A 97:5237–5242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravichandran M, Rafalski D, Ortega-Recalde O, Davies CI, Glanfield CR, Kotter A, Misztal K, Wang AH, Wojciechowski M, Rażew M et al (2021) Pronounced sequence specificity of the TET enzyme catalytic domain guides its cellular function. bioRxiv. https://doi.org/10.1101/2021.12.29.474486

  • Reich NO, Dang E, Kurnik M, Pathuri S, Woodcock CB (2018) The highly specific, cell cycle-regulated methyltransferase from Caulobacter crescentus relies on a novel DNA recognition mechanism. J Biol Chem 293:19038–19046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts RJ, Myers PA, Morrison A, Murray K (1976) A specific endonuclease from Haemophilus haemolyticus. J Mol Biol 103:199–208

    Article  CAS  PubMed  Google Scholar 

  • Roberts RJ, Vincze T, Posfai J, Macelis D (2015) REBASE—a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 43:D298–D299

    Article  CAS  PubMed  Google Scholar 

  • Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6:597–610

    Article  CAS  PubMed  Google Scholar 

  • Schubert HL, Blumenthal RM, Cheng X (2003) Many paths to methyltransfer: a chronicle of convergence. Trends Biochem Sci 28:329–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharif J, Muto M, Takebayashi S, Suetake I, Iwamatsu A, Endo TA, Shinga J, Mizutani-Koseki Y, Toyoda T, Okamura K et al (2007) The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450:908–912

    Article  CAS  PubMed  Google Scholar 

  • Song J, Rechkoblit O, Bestor TH, Patel DJ (2011) Structure of DNMT1-DNA complex reveals a role for autoinhibition in maintenance DNA methylation. Science 331:1036–1040

    Article  CAS  PubMed  Google Scholar 

  • Spruijt CG, Gnerlich F, Smits AH, Pfaffeneder T, Jansen PW, Bauer C, Munzel M, Wagner M, Muller M, Khan F et al (2013) Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152:1146–1159

    Article  CAS  PubMed  Google Scholar 

  • Stephens C, Reisenauer A, Wright R, Shapiro L (1996) A cell cycle-regulated bacterial DNA methyltransferase is essential for viability. Proc Natl Acad Sci U S A 93:1210–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart FJ, Panne D, Bickle TA, Raleigh EA (2000) Methyl-specific DNA binding by McrBC, a modification-dependent restriction enzyme. J Mol Biol 298:611–622

    Article  CAS  PubMed  Google Scholar 

  • Stroud H, Do T, Du J, Zhong X, Feng S, Johnson L, Patel DJ, Jacobsen SE (2014) Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat Struct Mol Biol 21:64–72

    Article  CAS  PubMed  Google Scholar 

  • Sukackaite R, Grazulis S, Tamulaitis G, Siksnys V (2012) The recognition domain of the methyl-specific endonuclease McrBC flips out 5-methylcytosine. Nucleic Acids Res 40:7552–7562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tate PH, Bird AP (1993) Effects of DNA methylation on DNA-binding proteins and gene expression. Curr Opin Genet Dev 3:226–231

    Article  CAS  PubMed  Google Scholar 

  • Vairapandi M (2004) Characterization of DNA demethylation in normal and cancerous cell lines and the regulatory role of cell cycle proteins in human DNA demethylase activity. J Cell Biochem 91:572–583

    Article  CAS  PubMed  Google Scholar 

  • Vairapandi M, Duker NJ (1993) Enzymic removal of 5-methylcytosine from DNA by a human DNA-glycosylase. Nucleic Acids Res 21:5323–5327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vairapandi M, Liebermann DA, Hoffman B, Duker NJ (2000) Human DNA-demethylating activity: a glycosylase associated with RNA and PCNA. J Cell Biochem 79:249–260

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Guan S, Quimby A, Cohen-Karni D, Pradhan S, Wilson G, Roberts RJ, Zhu Z, Zheng Y (2011) Comparative characterization of the PvuRts1I family of restriction enzymes and their application in mapping genomic 5-hydroxymethylcytosine. Nucleic Acids Res 39:9294–9305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Zhou Y, Xu L, Xiao R, Lu X, Chen L, Chong J, Li H, He C, Fu XD et al (2015) Molecular basis for 5-carboxycytosine recognition by RNA polymerase II elongation complex. Nature 523:621–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D, Hashimoto H, Zhang X, Barwick BG, Lonial S, Boise LH, Vertino PM, Cheng X (2017) MAX is an epigenetic sensor of 5-carboxylcytosine and is altered in multiple myeloma. Nucleic Acids Res 45:2396–2407

    Article  CAS  PubMed  Google Scholar 

  • Warren RA (1980) Modified bases in bacteriophage DNAs. Annu Rev Microbiol 34:137–158

    Article  CAS  PubMed  Google Scholar 

  • Wei J, He C (2021) Chromatin and transcriptional regulation by reversible RNA methylation. Curr Opin Cell Biol 70:109–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson GG, Murray NE (1991) Restriction and modification systems. Annu Rev Genet 25:585–627

    Article  CAS  PubMed  Google Scholar 

  • Woo HR, Pontes O, Pikaard CS, Richards EJ (2007) VIM1, a methylcytosine-binding protein required for centromeric heterochromatinization. Genes Dev 21:267–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodcock CB, Yu D, Hajian T, Li J, Huang Y, Dai N, Correa IR Jr, Wu T, Vedadi M, Zhang X et al (2019) Human MettL3-MettL14 complex is a sequence-specific DNA adenine methyltransferase active on single-strand and unpaired DNA in vitro. Cell Discov 5:63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodcock CB, Horton JR, Zhang X, Blumenthal RM, Cheng X (2020a) Beta class amino methyltransferases from bacteria to humans: evolution and structural consequences. Nucleic Acids Res 48(18):10034–10044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodcock CB, Horton JR, Zhou J, Bedford MT, Blumenthal RM, Zhang X, Cheng X (2020b) Biochemical and structural basis for YTH domain of human YTHDC1 binding to methylated adenine in DNA. Nucleic Acids Res 48:10329–10341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu JC, Santi DV (1985) On the mechanism and inhibition of DNA cytosine methyltransferases. Prog Clin Biol Res 198:119–129

    CAS  PubMed  Google Scholar 

  • Wu JC, Santi DV (1987) Kinetic and catalytic mechanism of HhaI methyltransferase. J Biol Chem 262:4778–4786

    Article  CAS  PubMed  Google Scholar 

  • Wu B, Li L, Huang Y, Ma J, Min J (2017) Readers, writers and erasers of N(6)-methylated adenosine modification. Curr Opin Struct Biol 47:67–76

    Article  PubMed  Google Scholar 

  • Wyatt GR, Cohen SS (1952) A new pyrimidine base from bacteriophage nucleic acids. Nature 170:1072–1073

    Article  CAS  PubMed  Google Scholar 

  • Wyatt GR, Cohen SS (1953) The bases of the nucleic acids of some bacterial and animal viruses: the occurrence of 5-hydroxymethylcytosine. Biochem J 55:774–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu TH, Liu M, Zhou XE, Liang G, Zhao G, Xu HE, Melcher K, Jones PA (2020) Structure of nucleosome-bound DNA methyltransferases DNMT3A and DNMT3B. Nature 586:151–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Horton JR, Li J, Huang Y, Zhang X, Blumenthal RM, Cheng X (2019) Structural basis for preferential binding of human TCF4 to DNA containing 5-carboxylcytosine. Nucleic Acids Res 47:8375–8387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Zhang X, Blumenthal RM, Cheng X (2020) Detection of DNA modifications by sequence-specific transcription factors. J Mol Biol 432:1661–1673

    Article  CAS  Google Scholar 

  • Ye F, Kong X, Zhang H, Liu Y, Shao Z, Jin J, Cai Y, Zhang R, Li L, Zhang YW et al (2018) Biochemical studies and molecular dynamic simulations reveal the molecular basis of conformational changes in DNA methyltransferase-1. ACS Chem Biol 13:772–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu D, Horton JR, Yang J, Hajian T, Vedadi M, Sagum CA, Bedford MT, Blumenthal RM, Zhang X, Cheng X (2021) Human MettL3-MettL14 RNA adenine methyltransferase complex is active on double-stranded DNA containing lesions. Nucleic Acids Res 49:11629–11642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zandarashvili L, White MA, Esadze A, Iwahara J (2015) Structural impact of complete CpG methylation within target DNA on specific complex formation of the inducible transcription factor Egr-1. FEBS Lett 589:1748–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zemach A, Kim MY, Hsieh PH, Coleman-Derr D, Eshed-Williams L, Thao K, Harmer SL, Zilberman D (2013) The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153:193–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng Y, Ren R, Kaur G, Hardikar S, Ying Z, Babcock L, Gupta E, Zhang X, Chen T, Cheng X (2020) The inactive Dnmt3b3 isoform preferentially enhances Dnmt3b-mediated DNA methylation. Genes Dev 34:1546–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE et al (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Lu X, Lu J, Liang H, Dai Q, Xu GL, Luo C, Jiang H, He C (2012) Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Nat Chem Biol 8:328–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Yang S, Nelakanti R, Zhao W, Liu G, Li Z, Liu X, Wu T, Xiao A, Li H (2020) Mammalian ALKBH1 serves as an N(6)-mA demethylase of unpairing DNA. Cell Res 30:197–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng X, Pontes O, Zhu J, Miki D, Zhang F, Li WX, Iida K, Kapoor A, Pikaard CS, Zhu JK (2008) ROS3 is an RNA-binding protein required for DNA demethylation in Arabidopsis. Nature 455:1259–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vagbo CB, Shi Y, Wang WL, Song SH et al (2013) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49:18–29

    Article  CAS  PubMed  Google Scholar 

  • Zhong X, Du J, Hale CJ, Gallego-Bartolome J, Feng S, Vashisht AA, Chory J, Wohlschlegel JA, Patel DJ, Jacobsen SE (2014) Molecular mechanism of action of plant DRM de novo DNA methyltransferases. Cell 157:1050–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou T, Xiong J, Wang M, Yang N, Wong J, Zhu B, Xu RM (2014) Structural basis for hydroxymethylcytosine recognition by the SRA domain of UHRF2. Mol Cell 54:879–886

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Horton JR, Blumenthal RM, Zhang X, Cheng X (2021) Clostridioides difficile specific DNA adenine methyltransferase CamA squeezes and flips adenine out of DNA helix. Nat Commun 12:3436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2009) Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet 43:143–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu C, Yi C (2014) Switching demethylation activities between AlkB family RNA/DNA demethylases through exchange of active-site residues. Angewandte Chemie 53:3659–3662

    Article  CAS  PubMed  Google Scholar 

  • Zweiger G, Marczynski G, Shapiro L (1994) A Caulobacter DNA methyltransferase that functions only in the predivisional cell. J Mol Biol 235:472–485

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank members of the Cheng laboratory during the last three decades of research on DNA base flipping. The work in the authors’ laboratory is currently supported by grant from the National Institutes of Health (R35GM134744) and the Cancer Prevention and Research Institute of Texas (CPRIT RR160029). X.C. is a CPRIT Scholar in Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ren, R., Horton, J.R., Hong, S., Cheng, X. (2022). Recent Advances on DNA Base Flipping: A General Mechanism for Writing, Reading, and Erasing DNA Modifications. In: Jeltsch, A., Jurkowska, R.Z. (eds) DNA Methyltransferases - Role and Function. Advances in Experimental Medicine and Biology, vol 1389. Springer, Cham. https://doi.org/10.1007/978-3-031-11454-0_12

Download citation

Publish with us

Policies and ethics