Skip to main content

Testing for Convergent Evolution in Baleen Whale Cochleae

  • Chapter
  • First Online:
Convergent Evolution

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

Mysticetes (baleen whales) include the largest animals on Earth and are renowned for their songs and long-distance communication. Even so, the scope and origins of their hearing abilities remain poorly understood. Recent work on their sister clade, the toothed whales (odontocetes), has revealed notably convergent trends in the evolution of their inner ear. Here, we test whether the same applies to baleen whales via SURFACE, a phylogenetic method that fits Ornstein-Uhlenbeck models with stepwise Akaike Information Criterion to identify instances of convergent evolution. We identify a single convergent regime, including minke (Balaenoptera acutorostrata) and Bryde’s (Balaenoptera edeni) whales, which, however, is not statistically significant. We discuss potential reasons for the overall absence of convergence and suggest improvements for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • 3D Systems. (2017). Geomagic Wrap.

    Google Scholar 

  • Adams, D. C. (2014). A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Systematic Biology, 63, 685–697.

    Article  PubMed  Google Scholar 

  • Adams, D. C., Rohlf, F. J., & Slice, D. E. (2013). A field comes of age: geometric morphometrics in the 21st century. Hystrix, the Italian Journal of Mammalogy, 24, 7–14.

    Google Scholar 

  • Adams, D. C., Collyer, M. L., & Kaliontzopoulou, A. (2018). Geomorph: Software for geometric morphometric analyses.

    Google Scholar 

  • Árnason, Ú., Lammers, F., Kumar, V., Nilsson, M. A., & Janke, A. (2018). Whole-genome sequencing of the blue whale and other rorquals finds signatures for introgressive gene flow. Science Advances, 4, eaap9873.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bookstein, F., Schäfer, K., Prossinger, H., Seidler, H., Fieder, M., Stringer, C., Weber, G. W., Arsuaga, J. L., Slice, D. E., Rohlf, F. J., Recheis, W., Mariam, A. J., & Marcus, L. F. (1999). Comparing frontal cranial profiles in archaic and modern Homo by morphometric analysis. The Anatomical Record, 257, 217–224.

    Article  CAS  PubMed  Google Scholar 

  • Christiansen, F., Lynas, N. M., Lusseau, D., & Tscherter, U. (2015). Structure and dynamics of minke whale surfacing patterns in the gulf of St. Lawrence, Canada. PLoS One, 10(5), e0126396.

    Article  PubMed  PubMed Central  Google Scholar 

  • Churchill, M., Martinez-Caceres, M., de Muizon, C., Mnieckowski, J., & Geisler, J. H. (2016). The origin of high-frequency hearing in whales. Current Biology, 26, 2144–2149.

    Article  CAS  PubMed  Google Scholar 

  • Clark, C. W., & Clark, J. M. (1980). Sound playback experiments with Southern right whales (Eubalaena australis). Science, 207, 663–665.

    Article  CAS  PubMed  Google Scholar 

  • Costeur, L., Grohé, C., Aguirre-Fernández, G., Ekdale, E., Schulz, G., Müller, B., & Mennecart, B. (2018). The bony labyrinth of toothed whales reflects both phylogeny and habitat preferences. Scientific Reports, 8, 7841.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cranford, T. W., & Krysl, P. (2015). Fin whale sound reception mechanisms: Skull vibration enables low-frequency hearing. PLoS One, 10, e0116222.

    Article  PubMed  PubMed Central  Google Scholar 

  • Croll, D. A., Kudela, R., & Tershy, B. R. (2006). Ecosystem impact of the decline of large whales in the North Pacific. In J. A. Estes, D. P. DeMaster, D. F. Doak, T. M. Williams, & R. L. Brownell (Eds.), Whales, whaling and ocean ecosystems (pp. 202–214). University of California Press.

    Google Scholar 

  • Cummings, W. C., & Thompson, P. O. (1971). Underwater sounds from the blue whale, Balaenoptera musculus. The Journal of the Acoustical Society of America, 50(4B), 1193–1198.

    Article  Google Scholar 

  • Ekdale, E. G. (2010). Ontogenetic variation in the bony labyrinth of Monodelphis domestica (Mammalia: Marsupialia) following ossification of the inner ear cavities. The Anatomical Record, 293, 1896–1912.

    Article  PubMed  Google Scholar 

  • Ekdale, E. G. (2013). Comparative anatomy of the bony labyrinth (inner ear) of placental mammals. PLoS One, 8, e66624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekdale, E. G. (2016). Morphological diversity among the inner ears of extinct and extant baleen whales (Cetacea: Mysticeti). Journal of Morphology, 277, 1599–1615.

    Article  PubMed  Google Scholar 

  • Ekdale, E. G., & Racicot, R. A. (2015). Anatomical evidence for low frequency sensitivity in an archaeocete whale: Comparison of the inner ear of Zygorhiza kochii with that of crown Mysticeti. Journal of Anatomy, 226, 22–39.

    Article  PubMed  Google Scholar 

  • Galatius, A., Olsen, M. T., Steeman, M. E., Racicot, R. A., Bradshaw, C. D., Kyhn, L. A., & Miller, L. A. (2019). Raising your voice: Evolution of narrow-band high-frequency signals in toothed whales (Odontoceti). Biological Journal of the Linnean Society, 126, 213–224.

    Article  Google Scholar 

  • Geijer, C. K., Notarbartolo di Sciara, G., & Panigada, S. (2016). Mysticete migration revisited: Are Mediterranean fin whales an anomaly? Mammal Review, 46, 284–296.

    Article  Google Scholar 

  • Geisler, J. H., Colbert, M. W., & Carew, J. L. (2014). A new fossil species supports an early origin for toothed whale echolocation. Nature, 508, 383–386.

    Article  CAS  PubMed  Google Scholar 

  • Gunz, P., Mitteroecker, P., & Bookstein, F. L. (2005). Semilandmarks in three dimensions. In D. E. Slice (Ed.), Modern Morphometrics in physical anthropology (pp. 73–98). Plenum Publishers.

    Chapter  Google Scholar 

  • Gutstein, C. S., Figueroa-Bravo, C. P., Pyenson, N. D., Yury-Yañez, R. E., Cozzuol, M. A., & Canals, M. (2014). High frequency echolocation, ear morphology, and the marine–freshwater transition: A comparative study of extant and extinct toothed whales. Palaeogeography Palaeoclimatology Palaeoecology, 400, 62–74.

    Article  Google Scholar 

  • Ingram, T., & Mahler, D. L. (2013). SURFACE: Detecting convergent evolution from comparative data by fitting Ornstein-Uhlenbeck models with stepwise Akaike information criterion. Methods in Ecology and Evolution, 4, 416–425.

    Article  Google Scholar 

  • Jefferson, T. A., Webber, M. A., & Pitman, R. L. (2015). Marine mammals of the world: A comprehensive guide to their identification. Academic.

    Google Scholar 

  • Kato, H., & Perrin, W. F. (2018). Bryde’s whale. In B. Würsig, J. G. M. Thewissen, & K. M. Kovacs (Eds.), Encyclopedia of marine mammals (3rd ed., pp. 143–145). Academic.

    Chapter  Google Scholar 

  • Ketten, D. R. (2000). Cetacean ears. In W. W. L. Au, A. Popper, & R. R. Fay (Eds.), Hearing by whales and dolphins (pp. 43–108). Springer.

    Chapter  Google Scholar 

  • Ketten, D. R., & Wartzok, D. (1990). Three dimensional reconstructions of the dolphin ear. In J. Thomas & R. Kastelem (Eds.), Sensory abilities of Cetaceans (pp. 81–105). Plenum Press.

    Chapter  Google Scholar 

  • Ketten, D. R., Arruda, J., Cramer, S., & Yamato, M. (2016). Great ears: Low-frequency sensitivity correlates in land and marine leviathans. In A. N. Popper & A. Hawkins (Eds.), The effects of noise on aquatic life II (pp. 529–538). Springer.

    Chapter  Google Scholar 

  • Li, Y., Liu, Z., Shi, P., & Zhang, J. (2010). The hearing gene Prestin unites echolocating bats and whales. Current Biology, 20, 55–56.

    Article  Google Scholar 

  • Liu, Y., Cotton, J. A., Shen, B., Han, X., Rossiter, S. J., & Zhang, S. (2010). Convergent sequence evolution between echolocating bats and dolphins. Current Biology, 20, 53–54.

    Article  Google Scholar 

  • Liu, Z., Qi, F. Y., Zhou, X., Ren, H. Q., & Shi, P. (2014). Parallel sites implicate functional convergence of the hearing gene prestin among echolocating mammals. Molecular Biology and Evolution, 31, 2415–2424.

    Article  CAS  PubMed  Google Scholar 

  • Lloyd, G. T., & Slater, G. J. (2021). A total-group phylogenetic metatree for cetacea and the importance of fossil data in diversification analyses. Systematic Biology, 70, 922–939.

    Article  PubMed  Google Scholar 

  • Manoussaki, D., Chadwick, R. S., Ketten, D. R., Arruda, J., Dimitriadis, E. K., & O’Malley, J. T. (2008). The influence of cochlear shape on low-frequency hearing. Proceedings of the National Academy of Sciences of the United States of America, 105, 6162–6166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins, M. C. I., Park, T., Racicot, R., & Cooper, N. (2020). Intraspecific variation in the cochleae of harbour porpoises (Phocoena phocoena) and its implications for comparative studies across odontocetes. PeerJ, 8, e8916.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mourlam, M. J., & Orliac, M. J. (2017). Infrasonic and ultrasonic hearing evolved after the emergence of modern whales. Current Biology, 27, 1776–81 e9.

    Article  CAS  PubMed  Google Scholar 

  • Nicol, S., Bowie, A., Jarman, S., Lannuzel, D., Meiners, K. M., & Van Der Merwe, P. (2010). Southern Ocean iron fertilization by baleen whales and Antarctic krill. Fish and Fisheries, 11, 203–209.

    Article  Google Scholar 

  • Nummela, S., & Yamato, M. (2018). Hearing. In B. Würsig, J. G. M. Thewissen, & K. M. Kovacs (Eds.), Encyclopedia of marine mammals (3rd ed., pp. 462–470). Academic.

    Chapter  Google Scholar 

  • Park, T., Fitzgerald, E. M. G., & Evans, A. R. (2016). Ultrasonic hearing and echolocation in the earliest toothed whales. Biology Letters, 12, 20160060.

    Article  PubMed  PubMed Central  Google Scholar 

  • Park, T., Evans, A. R., Gallagher, S. J., & Fitzgerald, E. M. G. (2017a). Low-frequency hearing preceded the evolution of giant body size and filter feeding in baleen whales. Proceedings of the Royal Society B, 284, 20162528.

    Article  PubMed  PubMed Central  Google Scholar 

  • Park, T., Marx, F. G., Fitzgerald, E. M., & Evans, A. R. (2017b). The cochlea of the enigmatic pygmy right whale Caperea marginata informs mysticete phylogeny. Journal of Morphology, 278(6), 801–809.

    Article  PubMed  Google Scholar 

  • Park, T., Mennecart, B., Costeur, L., Grohé, C., & Cooper, N. (2019). Convergent evolution in toothed whale cochleae. BMC Evolutionary Biology, 19(1), 1–11.

    Article  Google Scholar 

  • Parker, J., Tsagkogeorga, G., Cotton, J. A., Liu, Y., Provero, P., Stupka, E., & Rossiter, S. J. (2013). Genome-wide signatures of convergent evolution in echolocating mammals. Nature, 502, 228–231.

    Article  CAS  PubMed  Google Scholar 

  • Parks, S. E. (2003). Response of North Atlantic right whales (Eubalaena glacialis) to playback of calls recorded from surface active groups in both the North and South Atlantic. Marine Mammal Science, 19, 563–580.

    Article  Google Scholar 

  • Perrin, W. F., Mallette, S. D., & Brownell, R. L., Jr. (2018). Minke whales. In B. Würsig, J. G. M. Thewissen, & K. M. Kovacs (Eds.), Encyclopedia of marine mammals (3rd ed., pp. 608–613). Academic.

    Chapter  Google Scholar 

  • Pivorunas, A. (1979). The feeding mechanisms of baleen whales. American Scientist, 67, 432–440.

    Google Scholar 

  • R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing.

    Google Scholar 

  • Racicot, R. A., Gearty, W., Kohno, N., & Flynn, J. J. (2016). Comparative anatomy of the bony labyrinth of extant and extinct porpoises (Cetacea: Phocoenidae). Biological Journal of the Linnean Society, 119, 831–846.

    Article  Google Scholar 

  • Racicot, R. A., Darroch, S. A., & Kohno, N. (2018). Neuroanatomy and inner ear labyrinths of the narwhal, Monodon monoceros, and beluga, Delphinapterus leucas (Cetacea: Monodontidae). Journal of Anatomy, 233(4), 421–439.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rankin, S., & Barlow, J. (2005). Source of the North Pacific “boing” sound attributed to minke whales. The Journal of the Acoustical Society of America, 118, 3346–3351.

    Article  PubMed  Google Scholar 

  • Ritsche, I. S., Fahlke, J. M., Wieder, F., Hilger, A., Manke, I., & Hampe, O. (2018). Relationships of cochlear coiling shape and hearing frequencies in cetaceans, and the occurrence of infrasonic hearing in Miocene Mysticeti. Foss Recycling, 21(1), 33–45.

    Article  Google Scholar 

  • Roman, J., & McCarthy, J. J. (2010). The whale pump: marine mammals enhance primary productivity in a coastal basin. PLoS One, 5, e13255.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stayton, C. T. (2008). Is convergence surprising? An examination of the frequency of convergence in simulated datasets. Journal of Theoretical Biology, 252, 1–14.

    Article  PubMed  Google Scholar 

  • Stayton, C. T. (2015). The definition, recognition, and interpretation of convergent evolution, and two new measures for quantifying and assessing the significance of convergence. Evology, 69, 2140–2153.

    Article  Google Scholar 

  • Tubelli, A., Zosuls, A., Ketten, D., & Mountain, D. C. (2012). Prediction of a mysticete audiogram via finite element analysis of the middle ear. In A. N. Popper & A. Hawkins (Eds.), The effects of noise on aquatic life (pp. 57–59). Springer.

    Chapter  Google Scholar 

  • Tyack, P. (1983). Differential response of humpback whales, Megaptera novaeangliae, to playback of song or social sounds. Behavioral Ecology and Sociobiology, 13, 49–55.

    Article  Google Scholar 

  • Urick, R. J. (1983). Principles of underwater sound for engineers. Tate McGraw-Hill Education.

    Google Scholar 

  • Viglino, M., Gaetán, M., Buono, M. R., Fordyce, R. E., & Park, T. (2021). Hearing from the ocean and into the river: the evolution of the inner ear of Platanistoidea (Cetacea: Odontoceti). Paleobiology, 1–21.

    Google Scholar 

  • Visualization Sciences Group—a FEI Company. (2016). Avizo: 3D analysis software for scientific and industrial data, standard edition.

    Google Scholar 

  • Volume Graphics, Part of Hexagon. (2012). VGStudio Max 2.2.

    Google Scholar 

  • Watkins, W. A., & Wartzok, D. (1985). Sensory biophysics of marine mammals. Marine Mammal Science, 1, 219–260.

    Article  Google Scholar 

  • Wiley. (2005). Landmark Editor 3.0. Institute for Data Analysis and Visualization.

    Google Scholar 

  • Yamato, M., & Pyenson, N. D. (2015). Early development and orientation of the acoustic funnel provides insight into the evolution of sound reception pathways in cetaceans. PLoS One, 10(3), e0118582.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamato, M., Ketten, D. R., Arruda, J., Cramer, S., & Moore, K. (2012). The auditory anatomy of the Minke whale (Balaenoptera acutorostrata): A potential fatty sound reception pathway in a baleen whale. The Anatomical Record, 295, 991–998.

    Article  PubMed  Google Scholar 

  • Yamato, M., Koopman, H., Niemeyer, M., & Ketten, D. (2014). Characterization of lipids in adipose depots associated with minke and fin whale ears: Comparison with “acoustic fats” of toothed whales. Marine Mammal Science, 30, 1549–1563.

    Article  Google Scholar 

  • Zelditch, M. L., Ye, J., Mitchell, J. S., & Swiderski, D. L. (2017). Rare ecomorphological convergence on a complex adaptive landscape: body size and diet mediate evolution of jaw shape in squirrels (Sciuridae). Evology, 71, 633–649.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Travis Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Park, T., Ekdale, E.G., Racicot, R.A., Marx, F.G. (2023). Testing for Convergent Evolution in Baleen Whale Cochleae. In: Bels, V.L., Russell, A.P. (eds) Convergent Evolution. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-11441-0_4

Download citation

Publish with us

Policies and ethics