Skip to main content

Mountains and Plunging Plates: Subduction Zones

  • Chapter
  • First Online:
The Formation of Mountains

Abstract

In subduction zones, oceanic crust plunges into the Earth’s mantle, with a chain of explosive volcanoes rising above. Such convergent plate boundaries exist both within oceans, forming an island arc, as well as on active continental margins, creating mountains like the Andes. In the Andes, long gaps within the “ring of fire” illustrate that some segments of active continental margins have a completely different dynamic. The Rocky Mountains in the USA show that mountains can even be formed far away from plate boundaries. Several examples introduce the effects of a collision of an island arc with a continental margin. As we will see later, this chapter provides an important basis for understanding most mountain ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acocella V, Vezzoli L, Omarini R, Matteini M, Mazzuoli R (2007) Kinematic variations across Eastern Cordillera at 24°S (Central Andes): Tectonic and magmatic implications. Tectonophysics 434:81–92

    Article  Google Scholar 

  • Adam J, Reuther CD (2000) Crustal dynamics and active fault mechanics during subduction erosion. Application of frictional wedge analysis on to the North Chilean Forearc. Tectonophysics 321:297–325

    Article  Google Scholar 

  • Alden A (1999) Today’s Mantle, a Guided Tour. https://web.archive.org/web/20060408180506/http://geology.about.com/library/weekly/aa031598.htm, Last Access 22 Feb 2022

  • Allmendinger RW, Jordan TE, Kay SM, Isacks BL (1997) The evolution of the Altiplano-Puna Plateau of the Central Andes. Annu Rev Earth Planet Sci 25:139–174

    Article  Google Scholar 

  • Altenberger U, Oberhansli R, Putlitz B, Wemmer K (2003) Tectonic controls and cenozoic magmatism at the Torres del Paine, southern Andes (Chile, 51°10’S). Rev Geol Chile 30:65–81

    Article  Google Scholar 

  • Angelier J (1986) Geodynamics of the Eurasia-Philippine Sea Plate boundary: preface. Tectonophysics 125:9–10

    Article  Google Scholar 

  • Atherton MP (1990) The Coastal Batholith of Peru: the product of rapid recycling of ‘new’ crust formed within rifted continental margin. Geol J 25:337–349

    Article  Google Scholar 

  • Aurelio MA, Pena RE, Taguibao KJL (2013) Sculpting the Philippine archipelago since the Cretaceaous through rifting, oceanic spreading, subduction, obduction, collision and strike-slip faulting: contribution to IGMA5000. J Asian Earth Sci 72:102–107

    Google Scholar 

  • Bateman PC (1992) Plutonism in the Central Part of the Sierra Nevada Batholith, California. U.S. Geological Survey Professional Paper 1483

    Google Scholar 

  • Blumberg S, Lamy F, Arz HW, Echtler HP, Wiedicke M, Haug GH, Oncken O (2008) Turbiditic trench deposits at the South-Chilean active margin: a pleistocene-holocene record of climate and tectonics. Earth Planet Sci Lett 268:526–539

    Article  Google Scholar 

  • Bird P (1988) Formation of the rocky mountains, Western United States: a continuum computer model. Science 239:1501–1507

    Article  Google Scholar 

  • Boehler R (2000) High-pressure experiments and the phase diagram of lower mantle and core materials. Rev Geophys 3:221–245

    Article  Google Scholar 

  • Boschman LM, van Hinsbergen DJJ, Torsvik TH, Spakman W, Pindell JL (2014) Kinematic reconstruction of the Caribbean region since the Early Jurassic. Earth Sci Rev 138:102–136

    Article  Google Scholar 

  • Bourdon E, Eissen JP, Gutscher MA, Monzier M, Hall ML, Cotten J (2003) Magmatic response to early aseismic ridge subduction: the Ecuadorian margin case (South America). Earth Planet Sci Lett 205:123–138

    Article  Google Scholar 

  • Boutelier DA, Oncken O (2010) Role of the plate margin curvature in the plateau buildup: consequences for the central Andes. J Geophys Res 115:1–17

    Google Scholar 

  • Brink US, Miller NC, Andrews BD, Brothers DS, Haeussler PJ (2018) Deformation of the Pacific/North America plate boundaryat queen charlotte fault: the possible role of rheology. J Geophys Res: Solid Earth 123:4223–4242

    Article  Google Scholar 

  • Brooks BA, Bevis M, Whipple K, Arrowsmith J, Foster J, Zapata T, Kendrick E, Minaya E, Echalar A, Blanco M, Euillades P, Sandoval M, Smalley RJ Jr (2011) Orogenic-wedge deformation and potential for great earthquakes in the central Andean back-arc. Nat Geosci 4:380–383

    Article  Google Scholar 

  • Cardona A, Valencia VA, Bayona G, Duque J, Ducea M, Gehrels G, Jaramillo C, Montes C, Ojeda G, Ruiz J (2010) Early-subduction-related orogeny in the northern Andes: turonian to eocene magmatic and provenance record in the Santa Marta Massif and Rancheria Basin, northern Colombia. Terra Nova 23:26–34

    Article  Google Scholar 

  • Carrapa B, Bywater-Reyes S, DeCelles PG, Mortimer E, Gehrels G (2011) Late Eocene-Pliocene basin evolution in the Eastern Cordillera of northwestern Argentina (25°–26°S): regional implications for Andean orogenic wedge development. Basin Res 23:1–20

    Google Scholar 

  • Castro A, Moreno-Ventas I, Fernández C, Vujovich G, Gallastegui G, Heredia N, Martino RD, Becchio R, Corretgé LG, Díaz-Alvarado J, Such P, García-Arias M, Liu DY (2011) Petrology and SHRIMP U-Pb zircon geochronology of Cordilleran granitoids of the Bariloche area, Argentina. J S Am Earth Sci 32:508–530

    Article  Google Scholar 

  • CD-ROM Working Group (2003) Structure and evolution of the Lithosphere Beneath the rocky mountains: initial results from the CD-ROM experiment. GSA Today, March 2002, 4–10.

    Google Scholar 

  • Chapman AD, Saleeby JB, Eiler J (2013) Slab fl attening trigger for isotopic disturbance and magmatic flare-up in the southernmost Sierra Nevada batholith, California. Geology 41:1007–1010

    Article  Google Scholar 

  • Chew DM, Pedemonte G, Corbett E (2016) Proto-Andean evolution of the Eastern Cordillera of Peru. Gondwana Res 35:59–78

    Article  Google Scholar 

  • Chiaradia M, Muntener O, Beate B, Fontignie D (2009) Adakite-like volcanism of equador: lower crust magmatic evolution and recycling. Contrib Miner Petrol 158:563–588

    Article  Google Scholar 

  • Coleman DS, Gray W, Glazner AF (2004) Rethinking the emplacement and evolution of zoned plutons: geochronologic evidence for incremental assembly of the tuolumne intrusive suite, California. Geology 32:433–436

    Article  Google Scholar 

  • Copeland P, Currie CA, Lawton TF, Murphy MA (2017) Location, location, location: the variable lifespan of the Laramide orogeny. Geology 45:223–226

    Article  Google Scholar 

  • Cottam MA, Hall R, Sperber C, Kohn BP, Forster MA, Batt GE (2013) Neogene rock uplift and erosion in northern Borneo: evidence from the Kinabalu granite, Mount Kinabalu. J Geol Soc 170:805–816

    Article  Google Scholar 

  • Cowan RJ, Searle MP, Waters DJ (2014) Structure of the metamorphic sole to the Oman Ophiolite, Sumeini Window and Wadi Tayyin: implications for ophiolite obduction processes. In: Rollinson HR, Searle MP, Abbasi IA, Al-Lazki A, Al Kindi MH (Hrsg.) Tectonic evolution of the Oman Mountains, vol 392. Geological Society, London, Special Publications, pp 155–175

    Google Scholar 

  • Cristallini EO, Ramos VA (2000) Thick-skinned and thinskinned thrusting in the La Ramada fold and thrust belt: crustal evolution of the High Andes of San Juan, Argentina (32°SL). Tectonophysics 317:205–235

    Article  Google Scholar 

  • Davies BJ, Darvill CM, Lovell H, Bendle JM, Dowdeswell JA, Fabele D, García JL, Geiger A, Glasser NF, Gheorghiu DM, Harrison S, Heini AS, Kaplan MR, Martin JRV, Mendelova M, Palmera A, Pelto M, Rodés A, Sagredo EA, Smedley RK, Smellie JL, Thorndycraft VR (2020) The evolution of the Patagonian Ice Sheet from 35 ka to the present day (PATICE). Earth Sci Rev 204:103152

    Article  Google Scholar 

  • DeCelles PG (2004) Late Jurassic to Eocene evolution of the Cordilleran Thrust Belt and foreland basin sytem, Western U.S.A. Am J Sci 304:105–168

    Article  Google Scholar 

  • DeCelles PG, Ducea MN, Kapp P, Zandt G (2009) Cyclicity in Cordilleran orogenic systems. Nat Geosci 2:251–257

    Article  Google Scholar 

  • De Silva S, Kay SM (2019) Turning up the heat: high-flux magmatism in the Central Andes. Elements 14:245–250

    Article  Google Scholar 

  • Dilek Y, Furnes H (2009) Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems. Lithos 113:1–20

    Article  Google Scholar 

  • Dickerson PW (2003) Intraplate mountain building in response to continent–continent collision—the Ancestral Rocky Mountains (North America) and inferences drawn from the Tien Shan (Central Asia). Tectonophysics 365:129–142

    Article  Google Scholar 

  • Ducea MN, Barton MD (2007) Igniting fl are-up events in Cordilleran arcs. Geology 35:1047–1050

    Article  Google Scholar 

  • Echaurren A, Folguera A, Gianni G, Orts D, Tassara A, Encinas A, Giménez M, Valencia V (2016) Tectonic evolution of the North Patagonian Andes (41°–44° S) through recognition of syntectonic strata. Tectonophysics 677:99–114

    Article  Google Scholar 

  • Ewart A (1982) The mineralogy and petrology of tertiary–recent orogenic volcanic rocks: with special reference to the andesitic-basaltic compositional range. In: Thorpe RS (Hrsg.) Andesites. Wiley, New York

    Google Scholar 

  • Faccenna C, Oncken O, Holt AF, Becker TW (2017) Initiation of the Andean orogeny by lower mantle subduction. Earth Planet Sci Lett 463:189–201

    Article  Google Scholar 

  • Fan J, Zhao D (2018) Evolution of the southern segment of the Philippine Trench: constraints from seismic tomography. Geochem Geophys Geosyst 19:4612–4627

    Article  Google Scholar 

  • Farris DW, Jaramillo C, Bayona G, Restrepo-Moreno SA, Montes C, Cardona A, Mora A, Speakman RJ, Glascock MD, Valencia V (2011) Fracturing of the Panamanian Isthmus during initial collision with South America. Geology 39:1007–1010

    Article  Google Scholar 

  • Ferrari L (2004) Slab detachment control on mafic volcanic pulse and mantle heterogeneity in central Mexico. Geology 32:77–80

    Article  Google Scholar 

  • Figueiredo J, Hoorn C, van der Ven P, Soares E (2009) Late miocene onset of the Amazon river and the Amazon deep-sea fan: evidence from the Foz do Amazonas Basin. Geology 37:619–622

    Article  Google Scholar 

  • Fitz-Diaz E, Lawton TF, Juarez-Arriaga E, Chavez-Cabello G (2018) The cretaceous-paleogene mexican orogen: structure, basin development, magmatism and tectonics. Earth Sci Rev 183:56–84

    Article  Google Scholar 

  • Fukao Y, Obayashi M (2013) Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. J Geophys Res 118:5920–5938

    Article  Google Scholar 

  • Gans CR, Beck SL, Zandt G, Gilbert H, Alvarado P, Anderson M, Linkimer L (2011) Continental and oceanic crustal structure of the Pampean flat slabregion, western Argentina, using receiver function analysis: new high-resolution results. Geophys J Int 186:45–58

    Article  Google Scholar 

  • García-Sansegundo J, Farias P, Gallastegui G, Giacosa RE, Heredia N (2009) Structure and metamorphism of the Gondwanan basement in the Bariloche region (North Patagonian Argentine Andes). Int J Earth Sci 98:1599–1608

    Article  Google Scholar 

  • Gerbault M, Martinod J, Herail G (2005) Possible orogeny parallel lower crustal flow and thickening in the Central Andes. Tectonophysics 399:59–72

    Article  Google Scholar 

  • Giambiagi LB, Alvarez PP, Godoy E, Ramos VA (2003) The control of pre-existing extensional structures on the evolution of the southern sector of the Aconcagua fold and thrust belt, southern Andes. Tectonophysics 369:1–19

    Article  Google Scholar 

  • Giese P, Scheuber E, Schilling F, Schmitz M, Wigger P (1999) Crustal thickening processes in the Central Andes and the different natures of the Moho-discontinuity. J S Am Earth Sci 12:201–220

    Article  Google Scholar 

  • Glasser NF, Jansson KN, Duller GAT, Singarayer J, Holloway M, Harrison S (2016) Glacial lake drainage in Patagonia (13–8 kyr) and response of the adjacent Pacific Ocean. Nat Sci Rep 6:1–7

    Google Scholar 

  • Glen RA, Meffre S (2009) Styles of Cenozoic collisions in the western and southwestern Pacific and their applications to Palaeozoic collisions in the Tasmanides of eastern Australia. Tectonophysics 479:130–149

    Article  Google Scholar 

  • Glodny J, Echtler H, Figueroa O, Franz G, Gräfe K, Kemnitz H, Kramer W, Krawczyk C, Lohrmann J, Lucassen F, Melnick D, Rosenau M, Seibert W (2006) Long-term geological evolution and mass-flow balance of the South-Central Andes. In: Oncken O, Chong G, Franz G, Giese P, Götze HJ, Ramos VA (eds) The Andes. Active subduction orogeny. Springer, Berlin.

    Google Scholar 

  • Garzione CN, Hoke GD, Libarkin JC, Withers S, MacFadden B, Eiler J, Gosh P, Mulch A (2008) Rise of the andes. Science 320:1304–1307

    Article  Google Scholar 

  • Godoy E, Yanez G, Vera E (1999) Inversion of an Oligocene volcano-tectonic basin and uplifting of its superimposed Miocene magmatic arc in the Chilean Central Andes: first seismic and gravity evidences. Tectonophysics 306:217–236

    Article  Google Scholar 

  • Gutscher MA (2002) Andean subduction styles and their effect on thermal structure and interplate coupling. J S Am Earth Sci 15:3–10

    Article  Google Scholar 

  • Gutscher MA, Olivet JL, Aslanian D, Eissen JP, Maury R (1999) The lost Inca Plateau: cause of flat subduction beneath Peru? Earth Planet Sci Lett 171:335–341

    Article  Google Scholar 

  • Hall R (2009) Indonesia, geology. In: Gillespie R, Clague D (Hrsg.) Encyclopedia of Islands. University of California Press, Berkeley

    Google Scholar 

  • Hall R (2013) Contraction and extension in northern Borneo driven by subduction rollback. J Asian Earth Sci 76:399–411

    Article  Google Scholar 

  • Hall R (2021) The subduction initiation stage of the Wilson cycle. In: Wilson RW, Houseman GA, McCaffrey KJW, Doré AG, Buiter SJH (Hrsg.) Fifty years of the Wilson cycle concept in plate tectonics, vol 470. Geological Society, London, Special Publications

    Google Scholar 

  • Haschke M, Günther A, Melnick D, Echtler H, Reutter KJ, Scheuber E, Oncken O (2006) Central and Southern Andean Tectonic Evolution Inferred from Arc Magmatism. In: Oncken O, Chong G, Franz G, Giese P, Götze HJ, Ramos VA (eds) The Andes. Active Subduction Orogeny. Springer, Berlin

    Google Scholar 

  • Heller PL, Liu L (2015) Dynamic topography and vertical motion of the U.S. Rocky Mountain region prior to and during the Laramide orogeny. Geol Soc Am Bull 128:973–988

    Article  Google Scholar 

  • Hervé F, Pankhurst RJ, Fanning CM, Calderon M, Yaxley GM (2007) The South Patagonian batholith: 150 my of granite magmatism on a plate margin. Lithos 97:373–394

    Article  Google Scholar 

  • Hoorn C, Wesselingh FP, ter Steege H, Bermudez MA, Mora A, Sevink J, Sanmartín I, Sanchez-Meseguer A, Anderson CL, Figueiredo JP, Jaramillo C, Riff D, Negri FR, Hooghiems-tra H, Lundberg J, Stadler T, Särkinen T, Antonelli A (2010) Amazonia through time: Andean Uplift, climate change, landscape evolution, and biodiversity. Science 330:927–931

    Article  Google Scholar 

  • Huang CY, Wu WY, Chang CP, Tsao S, Yuan PB, Lin CW, Kuan-Yuan X (1997) Tectonic evolution of accretionary prism in the arc-continent collision terrane of Taiwan. Tectonophysics 281:31–51

    Article  Google Scholar 

  • Humboldt A (1810) Voyage de Humboldt et Bonpland. Premiere partie, Relation historique. Atlas pittoresque. Vues des Cordilleres, et monumens des peuples de l’Amerique. Paris: chez F. Schoell. Übersetzung nach HiN Online, Uni Potsdam.

    Google Scholar 

  • Jacobshagen V, Muller J, Wemmer K, Ahrendt H, Manutsoglu E (2002) Hercynian deformation and metamorphism in the Cordillera Oriental of Southern Bolivia, Central Andes. Tectonophysics 345:119–130

    Article  Google Scholar 

  • Jaffe LA, Hilton DR, Fischer TP, Hartono U (2004) Tracing magma sources in an arc-arc collision zone: Helium and carbon isotope and relative abundancesystematics of the Sangihe Arc, Indonesia. Geochem Geophys Geosyst 5:1–17

    Article  Google Scholar 

  • Kay RW, Kay SM (1993) Delamination and delamination magmatism. Tectonophysics 219:177–189

    Article  Google Scholar 

  • Khan PK, Chakraborty PP (2005) Two-phase opening of Andaman Sea: a new seismotectonic insight. Earth Planet Sci Lett 229:259–271

    Article  Google Scholar 

  • Kley J, Moaldi CR, Salfity JA (1999) Along-strike segmentation of the Andean foreland: causes and consequences. Tectonophysics 301:75–94

    Article  Google Scholar 

  • Kukowski N, Oncken O (2006) Subduction Erosion—the “Normal” Mode of Fore-Arc Material Transfer along the Chilean Margin? In: Oncken O, Chong G, Franz G, Giese P, Götze HJ, Ramos (Hrsg.) The Andes. Active Subduction Orogeny. Springer, Berlin.

    Google Scholar 

  • Kwon S, Mitra G (2004) Strain distribution, strain history, and kinematic evolution associated with the formation of arcuate salients in fold-thrust belts: the example of the Provo salient, Sevier orogen, Utah. In: Sussman AJ, Weil AB (Hrsg.) Orogenic curvature: integrating paleomagnetic and structural analyses. Geological Society of America Special Papers 383.

    Google Scholar 

  • Lackey JS, Valley JW, Chen JH, Stockli DF (2008) Dynamic magma systems, crustal recycling, and alteration in the Central Sierra Nevada Batholith: the Oxygen Isotope Record.

    Google Scholar 

  • Lagabrielle Y, Suarez M, Rossello EA, Héraild G, Martinod J, Régnier M, de la Cruz R (2004) Neogene to Quaternary tectonic evolution of the Patagonian Andes at the latitude of the Chile Triple Junction. Tectonophysics 385:211–241

    Article  Google Scholar 

  • Lai CK, Xia XP, Hall R, Meffre S, Tsikouras B, Balangue-Tarriela MIR, Idrus A, Ifani E, Norazme N (2021) Cenozoic evolution of the Sulu Sea Arc-Basin system: an overview. Tectonics 40:1–26

    Article  Google Scholar 

  • Leuthold J, Müntener O, Baumgartner LP, Putlitz B, Ovtcharova M, Schaltegger U (2012) Time resolved construction of a bimodal laccolith (Torres del Paine, Patagonia). Earth Planet Sci Lett 325:85–92

    Article  Google Scholar 

  • Li C, van der Hilst RD, Engdahl ER, Burdick S (2008) A new global model for P wave speed variations in Earth’s mantle. Geochem Geophys Geosyst 9:1–21

    Article  Google Scholar 

  • Lin CH (2000) Thermal modeling of continental subduction and exhumation constrained by heat flow and seismicity in Taiwan. Tectonophysics 324:189–201

    Article  Google Scholar 

  • Lin CH (2009) Compelling evidence of an aseismic slab beneath central Taiwan from a dense linear seismic array. Tectonophysics 466:205–212

    Article  Google Scholar 

  • Liu S, Currie CA (2016) Farallon plate dynamics prior to the Laramide orogeny: numerical models of flat subduction. Tectonophysics 666:33–47

    Article  Google Scholar 

  • Liu L, Gurnis M, Seton M, Saleeby J, Müller RD, Jackson JM (2010) The role of oceanic plateau subduction in the Laramide orogeny. Nat Geosci 3:353–357

    Article  Google Scholar 

  • Livermore R, Hillenbrand CD, Merendith M, Eagles G (2007) Drake passage and cenozoic climate: an open and shut case? Geochem Geophys Geosyst 8:1–11

    Article  Google Scholar 

  • Lohrmann J, Kukowski N, Krawczyk CM, Oncken O, Sick C, Sobiesiak M, Rietbrock A (2006) Subduction channel evolution in brittle fore-arc wedges—a combined study with scaled sandbox experiments, seismological and reflection seismic data and geological field evidence. In: Oncken O, Chong G, Franz G, Giese P, Götze HJ, Ramos VA (Hrsg.) The Andes. Active subduction orogeny. Springer, Berlin.

    Google Scholar 

  • Lucassen F, Becchio R, Harmon R, Kasemann S, Franz G, Trumbull R, Wilke HG, Romer RL, Dulski R (2001) Composition and density model of the continental crust at an active continental margin—the Central Andes between 21° and 27° S. Tectonophysics 341:195–223

    Article  Google Scholar 

  • Lunt DJ, Valdes PJ, Haywood A, Rutt IC (2008) Closure of the Panama Seaway during the Pliocene: implications for climate and Northern Hemisphere glaciation. Clim Dyn 30:1–18

    Article  Google Scholar 

  • Margirier A, Audin L, Robert X, Pecher A, Schwartz S (2017) Stress field evolution above the Peruvian flat-slab (Cordillera Blanca, northern Peru). J S Am Earth Sci 77:58–69

    Article  Google Scholar 

  • Martinod J, Husson L, Roperch P, Guillaume B, Espurt N (2010) Horizontal subduction zones, convergence velocity and the building of the Andes. Earth Planet Sci Lett 299:299–309

    Article  Google Scholar 

  • Marshak S, Karlstrom K, Timmons JM (2000) Inversion of Proterozoic extensional faults: an explanation for the pattern of Laramide and Ancestral Rockies intracratonic defromation, United States. Geology 28:735–738

    Article  Google Scholar 

  • McNulty B, Farber D (2002) Active detachment faulting above the Peruvian slab. Geology 30:567–570

    Article  Google Scholar 

  • Mlynarczyk M, Williams-Jones AE (2005) The role of collisional tectonics in the metallogeny of the Central Andean tin belt. Earth Planet Sci Lett 240:656–667

    Article  Google Scholar 

  • Montes C, Cardona A, Jaramillo C, Pardo A, Silva JC, Valencia V, Ayala C, Pérez-Angel LC, Rodriguez-Parra LA, Ramirez V, Niño H (2015) Middle Miocene closure of the Central American Seaway. Science 348:226–229

    Article  Google Scholar 

  • Mora JA, Oncken O, Le Breton E, Ibánez-Mejia M, Faccenna C, Veloza G, Vélez V, de Freitas M, Mesa A (2017) Linking late cretaceous to eocene tectonostratigraphy of the San Jacinto fold belt of NW Colombia with Caribbean plateau collision and flat subduction. Tectonics 36:1–31

    Article  Google Scholar 

  • Mora JA, Oncken O, Le Breton E, Mora A, Veloza G, Vélez V, de Freitas M (2018) Controls on forearc basin formation and evolution: insights from oligocene to recent tectono-stratigraphy of the lower Magdalena Valley basin of northwest Colombia. Mar Pet Geol 97:288–310

    Article  Google Scholar 

  • Moreno M, Melnick D, Roenau M, Bolte J, Klotz J, Echtler H, Baez J, Bataille K, Chen J, Bevis M, Hase H, Oncken O (2011) Heterogeneous plate locking in the South-Central Chile subduction zone: building up the next great earthquake. Earth Planet Sci Lett 305:413–424

    Article  Google Scholar 

  • Morra G, Regenauer-Lieb K, Giardini D (2006) Curvature of oceanic arcs. Geology 34:877–880

    Article  Google Scholar 

  • Nelson WR, Dorais MJ, Christiansen EH, Hart GL (2012) Petrogenesis of Sierra Nevada plutons inferred from the Sr, Nd, and O isotopic signatures of mafic igneous complexes in Yosemite Valley, California. Contrib Miner Petrol 165:397–417

    Article  Google Scholar 

  • Neukirchen F, Ries G (2020) The World of mineral deposits. A beginner’s guide to economic geology. Springer, Cham

    Google Scholar 

  • Oncken O, Chong G, Franz G, Giese P, Götze HJ, Ramos VA (2006) The Andes. Active subduction orogeny. Springer, Berlin

    Google Scholar 

  • Oncken O, Boutelier D, Dresen G, Schemmann K (2012) Strain accumulation controls failure of a plate boundary zone: Linking deformation of the Central Andes and lithosphere mechanics. Geochem Geophys Geosyst 13:1–22

    Article  Google Scholar 

  • Ort M, de Silva S, Jimenez N, Jicha BR, Singer BS (2013) Correlation of ignimbrites using characteristic remanent magnetization and anisotropy of magnetic susceptibility, Central Andes, Bolivia. Geochem Geophys Geosyst 14:1–17

    Article  Google Scholar 

  • Orts DL, Folguera A, Encinas A, Ramos M, Tobal J, Ramos VA (2012) Tectonic development of the North Patagonian Andes and their related Miocene foreland basin (41° 30′–43° S). Tectonics 31:1–24

    Article  Google Scholar 

  • Pana DI, Pluijm BA (2015) Orogenic pulses in the Alberta Rocky Mountains: radiometric dating of major faults and comparison with the regional tectono-stratigraphic record. GSA Bull 127:480–502

    Article  Google Scholar 

  • Pearce JA, Robinson PT (2010) The Troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting. Gondwana Res 18:60–81

    Article  Google Scholar 

  • Perkins JP, Ward KM, de Silva SL, Zandt G, Beck SL, Finnegan NJ (2016) Surface uplift in the Central Andes driven by growth of the Altiplano Puna Magma Body. Nat Commun 7:1–10

    Article  Google Scholar 

  • Poulsen CJ, Ehlers TA, Insel N (2010) Onset of convective rainfall during gradual late Miocence rise of the Central Andes. Science 328:490–493

    Article  Google Scholar 

  • Pfiffner OA, Gonzalez L (2013) Mesozoic–Cenozoic Evolution of the Western Margin of South America: Case Study of the Peruvian Andes. Geosciences 3:262–310

    Google Scholar 

  • Pubellier M, Monnier C, Maury R, Tamayo R (2004) Plate kinematics, origin and tectonic emplacement of supra-subduction ophiolites in SE Asia. Tectonophysics 392:9–36

    Article  Google Scholar 

  • Ramírez de Arellano C, Putlitz B, Müntener O, Ovtcharova M (2012) High precision U/Pb zircon dating of the Chaltén Plutonic Complex (Cerro Fitz Roy, Patagonia) and its relationship to arc migration in the southernmost Andes. Tectonics 31:1–18

    Article  Google Scholar 

  • Ramos VA (1999) Plate tectonic setting of the Andean Cordillera. Episodes 22:183–190

    Article  Google Scholar 

  • Ramos VA (2005) Seismic ridge subduction and topography: foreland deformation in the Patagonian Andes. Tectonophysics 399:73–86

    Article  Google Scholar 

  • Ramos VA, Kay SM (1992) Southern Patagonian plateau basalts and deformation: back-arc testimony of ridge collisions. Tectonophysics 205:261–282

    Article  Google Scholar 

  • Ramos VA, Ghiglione MC (2008) Tectonic evolution of the Patagonian Andes. Dev Quat Sci 11:57–71

    Google Scholar 

  • Ramos VA, Cristallini EO, Perez DJ (2002) The Pampean flat-slab of the Central Andes. J S Am Earth Sci 15:59–78

    Article  Google Scholar 

  • Ratajeski K, Sisson TW, Glaner AF (2005) Experimental and geochemical evidence for derivation of the El Capitan Granite, California, by partial melting of hydrous gabbroic lower crust. Contrib Miner Petrol 149:713–734

    Article  Google Scholar 

  • Roperch P, Sempere T, Macedo O, Arriagada C, Fornari M, Tapia C, Garcia M, Laj C (2006) Counterclockwise rotation of late Eocene-Oligocene fore-arc deposits in southern Peru and its significance for oroclinal bending in the central Andes. Tectonics 25:1–29

    Article  Google Scholar 

  • Rosenbaum G, Giles D, Saxon M, Betts PG, Weinberg RF, Duboz C (2005) Subduction of the Nazca Ridge and the Inca Plateau: insights into the formation of ore deposits in Peru. Earth Planet Sci Lett 239:18–32

    Article  Google Scholar 

  • Sakakibara D, Sugiyama S, Sawagaki T, Marinsek S, Skvarca P (2017) Rapid retreat, acceleration and thinning of Glaciar Upsala, Southern Patagonia Icefield, initiated in 2008. Ann Glaciol 54:131–138

    Article  Google Scholar 

  • Saleeby J (2003) Segmentation of the Laramide Slab—evidence from the southern Sierra Nevada region. GSA Bull 115:655–668

    Article  Google Scholar 

  • Saleeby J, Ducea MN, Busby C, Nadin E, Wetmore PH (2008) Chronology of pluton emplacement and regional deformation in the southern Sierra Nevada batholith, California. In: Wright JE, Shervais JW (Hrsg.) Ophiolites, arcs, and batholiths. Geological Society of America Special Paper 438

    Google Scholar 

  • Scalabrino B, Lagabrielle Y, de la Rupelle A, Malavieille J, Polve M, Espinoza F, Morata D, Suarez M (2009) Subduction of an active spreading ridge beneath southern South America: A review of the Cenozoic Geological Records from the Andean Foreland, Central Patagonia (46–47°S). In: Lallemand S, Funiciello F (Hrsg.), Subduction Zone Geodynamics. Springer, Berlin

    Google Scholar 

  • Schellart WP, Lister GS, Toy VG (2006) A Late Cretaceous and Cenozoic reconstruction of the Southwest Pacific region: tectonics controlled by subduction and slab rollback processes. Earth Sci Rev 76:191–233

    Article  Google Scholar 

  • Scherrenberg AF, Jacay J, Holcombe RJ, Rosenbaum G (2012) Stratigraphic variations across the Marañón Fold-Thrust Belt, Peru: implications for the basin architecture of the West Peruvian Trough. J S Am Earth Sci 38:147–158

    Article  Google Scholar 

  • Scherrenberg AF, Holcombe RJ, Rosenbaum G (2014) The persistence and role of basin structures on the 3D architecture of the Marañón Fold-Thrust Belt, Peru. J S Am Earth Sci 51:45–58

    Article  Google Scholar 

  • Scherrenberg AF, Kohn BP, Holcombe RJ, Rosenbaum G (2016) Thermotectonic history of the Marañón Fold-Thrust Belt, Peru: Insights into mineralisation in an evolving orogen. Tectonophysics 667:16–36

    Article  Google Scholar 

  • Schmidt DN (2007) The closure history of the Central American seaway: evidence from isotopes and fossils to models and molecules. In: Williams M, Haywood AM, Gregory FJ, Schmidt DN (Hrsg.) Deep-time perspectives on climate change: marrying the signal from computer models and biological proxies. The micropalaeontological society, Special Publications. The Geological Society, London

    Google Scholar 

  • Schurr B, Reitbrock A, Asch G, Kind R, Oncken O (2006) Evidence for lithospheric detachment in the central Andes from local earthquake tomography. Tectonophysics 415:203–223

    Article  Google Scholar 

  • Searle M, Cox J (1999) Tectonic setting, origin, and obduction of the Oman ophiolite. GSA Bull 111:104–122

    Article  Google Scholar 

  • Shephard GE, Müller RD, Liu L, Gunris M (2010) Miocene drainage reversal of the Amazon River driven by plate–mantle interaction. Nat Geosci 3:870–875

    Article  Google Scholar 

  • Spakman W, Hall R (2010) Surface deformation and slab–mantle interaction during Banda arc subduction rollback. Nat Geosci 3:562–566

    Article  Google Scholar 

  • Spikings R, Cochrane R, Villagomez D, Van der Lelij R, Vallejo C, Winkler W, Beate B (2015) The geological history of northwestern South America: from Pangaea to the early collision of the Caribbean Large Igneous Province (290–75 Ma). Gondwana Res 27:95–139

    Article  Google Scholar 

  • Stevens CH, Greene DC (1999) Stratigraphy, depositional history, and tectonic evolution of Paleozoic continental-margin rocks in roof pendants of the eastern Sierra Nevada, California. GSA Bull 111:919–933

    Article  Google Scholar 

  • Stuefer M, Rott H, Skvarca P (2007) Glaciar Perito Moreno, Patagonia: climate sensitivities and glacier characteristics preceding the 2003/04 and 2005/06 damming events. J Glaciol 53:3–16

    Article  Google Scholar 

  • Toro J, Roure F, Bordas-Le Floch N, Le Cornec-Lance S, Sassi W (2004) Thermal and kinematic evolution of the Eastern Cordillera fold and thrustbelt, Colombia. In: Swennen R, Roure F, Granath JW (Hrsg.) Deformation, fluid flow, and reservoir appraisal in foreland fold and thrust belts: AAPG Hedberg Series 1, pp 79–11

    Google Scholar 

  • Van der Meer DG, van Hinsbergen D, Spakman W (2018) Atlas of the underworld: slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity. Tectonophysics 723:309–448

    Article  Google Scholar 

  • Vietor T, Echtler H (2006) Episodic Neogene Southward Growth of the Andean Subduction Orogen between 30°S and 40°S—Plate Motions, Mantle Flow, Climate, and Upper-Plate Structure. In: Oncken O, Chong G, Franz G, Giese P, Götze HJ, Ramos VA (Hrsg.) The Andes. Active subduction orogeny. Springer, Berlin

    Google Scholar 

  • Villagómez D, Pindell J (2020) Cooling and uplift history of the Chiapas Massif and its influence on sedimentation and deformation in the adjacent Sierra de Chiapas Basin. In: Martens U, Molina Garza RS (Hrsg.) Southern and Central Mexico: Basement Framework, Tectonic Evolution, and Provenance of Mesozoic–Cenozoic Basins. Geological Society of America Special Paper 546

    Google Scholar 

  • Ward KM, Zandt G, Beck SL, Christensen DH, McFarlin H (2014) Seismic imaging of the magmatic underpinnings beneath the Altiplano-Puna volcanic complex from the joint inversion of surface wave dispersion and receiver functions. Earth Planet Sci Lett 404:43–53

    Article  Google Scholar 

  • Wells R, Bukry D, Friedman R, Pyle D, Duncan R, Haeussler P, Wooden J (2014) Geologic history of Siletzia, a large igneous province in the oregon and Washington coast range: correlation to the geomagnetic polarity time scale and implications for a long-lived yellowstone hotspot. Geosphere 10:692–719

    Article  Google Scholar 

  • Whattam SA (2009) Arc-continent collisional orogenesis in the SW Pacific and the nature, source and correlation of emplaced ophiolitic nappe components. Lithos 113:88–114

    Article  Google Scholar 

  • Willett CD, Ma KF, Brandon MT, Hourigan JK, Christeleit EC, Shuster DL (2020) Transient glacial incision in the Patagonian Andes from ~6 Ma to present. Sci Adv 6:1–9

    Article  Google Scholar 

  • Witt C, Brichau S, Carter A (2012) New constraints on the origin of the Sierra Madre de Chiapas (south Mexico) from sediment provenance and apatite thermochronometry. Tectonics 31:1–15

    Article  Google Scholar 

  • Yang T, Grand SP, Wilson D, Guzman-Speziale M, Gomez-Gonzalez JM, Dominguez-Reyes T, Ni J (2009) Seismic structure beneath the Rivera subduction zone from finite-frequency seismic tomography. J Geophys Res 114:1–12

    Google Scholar 

  • Yonkee A, Weil AB (2010) Reconstructing the kinematic evolution of curved mountain belts: internal strain patterns in the Wyoming salient, Sevier thrust belt, U.S.A. Geol Soc Am Bull 122:24–49

    Article  Google Scholar 

  • Yonkee A, Weil AB (2015) Tectonic evolution of the Sevier and Laramide belts within the North America Cordillera orogenic system. Earth-Sci Rev 150:531–593

    Article  Google Scholar 

  • Yuan X, Sobolev SV, Kind R, Oncken O, Bock G, Asch G, Schurr B, Graeber F, Rudloff A, Hanka W, Wylegalla K, Tibe R, Haberland C, Rietbrock A, Giese P, Wigger P, Rower P, Zandt G, Beck S, Wallace T, Pardo M, Comte D (2000) Subduction and collision processes in the Central Andes constrained by converted seismic phases. Nature 408:958–961

    Article  Google Scholar 

  • Yuan X, Asch G, Bataille K, Bock G, Bohm M, Echtler H, Kind R, Oncken O, Wölbern I (2006) Deep seismic images of the Southern Andes. Geological Society of America Special Paper 407

    Google Scholar 

  • Yumul GP, Dimalanta CB, Maglambayan VB, Marquez EJ (2008) Tectonic setting of a tectonic terrane: a review of the Philippine island arc system. Geosci J 12:7–17

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Neukirchen .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neukirchen, F. (2022). Mountains and Plunging Plates: Subduction Zones. In: The Formation of Mountains. Springer, Cham. https://doi.org/10.1007/978-3-031-11385-7_4

Download citation

Publish with us

Policies and ethics