Skip to main content

EDR: Enriched Deep Residual Framework with Image Reconstruction for Medical Image Retrieval

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1568))

Included in the following conference series:

  • 808 Accesses

Abstract

In recent times, the advancement of Artificial Intelligence (AI) attracted many researchers in medical image analysis. Analyzing the vast medical data through traditional approaches is a bit tedious and time-consuming in designing feature descriptors. Therefore, we presented an EDR: Enriched Deep Residual Framework for robust medical image retrieval in this paper. The proposed EDR framework consists of an image reconstruction module using a residual encoder and sequential decoder. Also, the image matching module is followed by retrieval to retrieve similar images from the database. The encoder module of the EDR framework consists of series of residual connections that encode the features from a given image and are forwarded to the reconstruction decoder module. The extracted encoded features provide the latent representation for the robust reconstruction of the input image. Further, this latent information is used in the image matching and retrieve similar images from the database. The performance of the proposed EDR framework is analyzed on benchmark medical image databases such as VIA/ELCAP-CT, ILD for image retrieval tasks. The proposed EDR framework is compared with the state-of-the-art approaches for average precision and recall over two datasets. The experiments and results show that the proposed framework outperformed existing works in medical image retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2. IEEE (1999)

    Google Scholar 

  2. Kulkarni, A., Patil, P.W., Murala, S.: Progressive subtractive recurrent lightweight network for video deraining. IEEE Signal Process. Lett. 29, 229–233 (2021)

    Article  Google Scholar 

  3. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  4. Patil, P., Murala, S.: FgGAN: a cascaded unpaired learning for background estimation and foreground segmentation. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1770–1778. IEEE (2019)

    Google Scholar 

  5. Mandal, M., et al.: ANTIC: ANTithetic isomeric cluster patterns for medical image retrieval and change detection. IET Comput. Vis. 13(1), 31–43 (2019)

    Google Scholar 

  6. Phutke, Sh.S., Murala, S.: Diverse receptive field based adversarial concurrent encoder network for image inpainting. IEEE Signal Process. Lett. 28, 1873–1877 (2021)

    Google Scholar 

  7. Nancy, M., Murala, S.: MSAR-Net: multi-scale attention based light-weight image super-resolution. Pattern Recognit. Lett. 151, 215–221 (2021)

    Article  Google Scholar 

  8. Patil, P.W., et al.: An unified recurrent video object segmentation framework for various surveillance environments. IEEE Trans. Image Process. 30, 7889–7902 (2021)

    Google Scholar 

  9. Akshay, D., Hambarde, P., Patil, P., Murala, S.: Deep underwater image restoration and beyond. IEEE Signal Process. Lett. 27, 675–679 (2020)

    Article  Google Scholar 

  10. Hambarde, P., Dudhane, A., Murala, S.: Single image depth estimation using deep adversarial training. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 989–993. IEEE (2019)

    Google Scholar 

  11. Hambarde, P., Dudhane, A., Patil, P.W., Murala, S., Dhall, A.: Depth estimation from single image and semantic prior. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 1441–1445. IEEE (2020)

    Google Scholar 

  12. Praful, H., Murala, S.: S2DNet: depth estimation from single image and sparse samples. IEEE Trans. Comput. Imaging 6, 806–817 (2020)

    Article  Google Scholar 

  13. Patil, P.W., Dudhane, A., Chaudhary, S., Murala, S.: Multi-frame based adversarial learning approach for video surveillance. Pattern Recognit. 122, 108350 (2022)

    Google Scholar 

  14. Vipparthi, S.K., et al.: Local directional mask maximum edge patterns for image retrieval and face recognition. IET Comput. Vis. 10(3), 182–192 (2016)

    Google Scholar 

  15. Vipparthi, S.K., et al.: Local Gabor maximum edge position octal patterns for image retrieval. Neurocomputing 167, 336–345 (2015)

    Google Scholar 

  16. Vipparthi, S.K., Murala, S., Nagar, S.K.: Dual directional multi-motif XOR patterns: a new feature descriptor for image indexing and retrieval. Optik 126(15-16), 1467–1473 (2015)

    Google Scholar 

  17. Murala, S., Maheshwari, R.P., Balasubramanian, R.: Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Trans. Image Process. 21(5), 2874–2886 (2012)

    Google Scholar 

  18. Vipparthi, S.K., Nagar, S.K.: Directional local ternary patterns for multimedia image indexing and retrieval. Int. J. Signal Imaging Syst. Eng. 8(3), 137–145 (2015)

    Google Scholar 

  19. Mohite, N., et al.: 3D local circular difference patterns for biomedical image retrieval. Int. J. Multimedia Inf. Retr. 8(2), 115–125 (2019)

    Google Scholar 

  20. Vipparthi, S.K., Nagar, S.K.: Integration of color and local derivative pattern features for content-based image indexing and retrieval. J. Inst. Eng. (India) Ser. B 96(3), 251–263 (2015)

    Google Scholar 

  21. Via/i-elcap database. http://www.via.cornell.edu/lungdb.html. Accessed 10 Mar 2019

  22. Depeursinge, A., et al.: Building a reference multimedia database for interstitial lung diseases. Comput. Med. Imaging Graph. 36(3), 227–238 (2012)

    Google Scholar 

  23. Vipparthi, S.K., Nagar, S.K.: Local extreme complete trio pattern for multimedia image retrieval system. Int. J. Autom. Comput. 13(5), 457–467 (2016). https://doi.org/10.1007/s11633-016-0978-2

  24. Murala, S., Wu, Q.M.J.: Local ternary co-occurrence patterns: a new feature descriptor for MRI and CT image retrieval. Neurocomputing 119, 399–412 (2013)

    Google Scholar 

  25. Biradar, K.M., et al.: Local Gaussian difference extrema pattern: a new feature extractor for face recognition. In: 2017 Fourth International Conference on Image Information Processing (ICIIP). IEEE (2017)

    Google Scholar 

  26. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: Brain tumor segmentation and radiomics survival prediction: contribution to the BRATS 2017 challenge. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 287–297. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_25

  27. Hambarde, P., et al.: Prostate lesion segmentation in MR images using radiomics based deeply supervised U-Net. Biocybern. Biomed. Eng. 40(4), 1421–1435 (2020)

    Google Scholar 

  28. Galshetwar, G.M., Waghmare, L.M., Gonde, A.B., Murala, S.: Multi-dimensional multi-directional mask maximum edge pattern for bio-medical image retrieval. Int. J. Multimedia Inf. Retr. 7(4), 231–239 (2018). https://doi.org/10.1007/s13735-018-0156-0

  29. Vipparthi, S.K., Nagar, S.K.: Expert image retrieval system using directional local motif XoR patterns. Expert Syst. Appl. 41(17), 8016–8026 (2014)

    Google Scholar 

  30. Isola, P., et al.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  31. Vipparthi, S.K., Nagar, S.K.: Multi-joint histogram based modelling for image indexing and retrieval. Comput. Electr. Eng. 40(8), 163–173 (2014)

    Google Scholar 

  32. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  33. He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  34. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  35. Dudhane, A., et al.: Varicolored image de-hazing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  36. Patil, P.W., et al.: MSFgNet: a novel compact end-to-end deep network for moving object detection. IEEE Trans. Intell. Transp. Syst. 20(11), 4066–4077 (2018)

    Google Scholar 

  37. Patil, P.W., et al.: An end-to-end edge aggregation network for moving object segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  38. Biradar, K.M., et al.: Challenges in time-stamp aware anomaly detection in traffic videos. arXiv preprint arXiv:1906.04574 (2019)

  39. Murala, S., Wu, Q.M.J.: Spherical symmetric 3D local ternary patterns for natural, texture and biomedical image indexing and retrieval. Neurocomputing 149, 1502–1514 (2015)

    Google Scholar 

  40. Biradar, K., Dube, S., Vipparthi, S.K.: DEARESt: deep convolutional aberrant behavior detection in real-world scenarios. In: 2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS). IEEE (2018)

    Google Scholar 

  41. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohini Pinapatruni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pinapatruni, R., Chigarapalle, S.B. (2022). EDR: Enriched Deep Residual Framework with Image Reconstruction for Medical Image Retrieval. In: Raman, B., Murala, S., Chowdhury, A., Dhall, A., Goyal, P. (eds) Computer Vision and Image Processing. CVIP 2021. Communications in Computer and Information Science, vol 1568. Springer, Cham. https://doi.org/10.1007/978-3-031-11349-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11349-9_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11348-2

  • Online ISBN: 978-3-031-11349-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics