Skip to main content

AI and Big Data for Therapeutic Strategies in Psychiatry

  • Chapter
  • First Online:
Trends of Artificial Intelligence and Big Data for E-Health

Part of the book series: Integrated Science ((IS,volume 9))

  • 544 Accesses

Abstract

Psychiatric illnesses are well known in the research community through scientific findings in the past few decades. The detection and treatment of psychiatric diseases are unsatisfactory despite significant advancements in research. Current methods for diagnosing psychiatric diseases are purely based on physician–patient questionnaires. In most cases, these questionnaires are inaccurate and cannot show reliable symptoms for a particular psychiatric disorder. Everybody recognizes this era as an ‘era of big data’. Nobody is unable to explain how big data are big data. In this digital age, a huge amount of data is generated every second in relation to human behavior, such as body gestures, messages from social media networks, non-human data such as weather, and global positioning system signals. In this chapter, we discuss the applicability of the artificial intelligence technique for recognizing psychiatric disorders. Brief introduction to the datasets and tools available in the literature. Finally, we explore the challenges and limitations of these technologies in future research directions.

There is hope, even when your brain tells you there isn’t. John Green.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rutledge RB, Chekroud AM, Huys QJ (2019) Machine learning and big data in psychiatry: toward clinical applications. Curr Opin Neurobiol 55:152–159

    Article  CAS  Google Scholar 

  2. Hahn T, Nierenberg AA, Whitfield-Gabrieli S (2017) Predictive analytics in mental health: applications, guidelines, challenges and perspectives. Mol Psychiatry 22:37–43

    Article  CAS  Google Scholar 

  3. Cecula P, Yu J, Dawoodbhoy FM, Delaney J, Tan J, Peacock I, Cox B (2021) Applications of artificial intelligence to improve patient flow on mental health inpatient units—narrative literature review. Heliyon 7:e06626

    Article  Google Scholar 

  4. Liu G-D, Li Y-C, Zhang W, Zhang L (2020) A brief review of artificial intelligence applications and algorithms for psychiatric disorders. Engineering 6:462–467

    Article  Google Scholar 

  5. Insel TR (2014) The NIMH research domain criteria (RDoC) project: precision medicine for psychiatry. Am J Psychiatry 171:395–397

    Article  Google Scholar 

  6. Kalmady SV, Greiner R, Agrawal R, Shivakumar V, Narayanaswamy JC (2019) Brown MRG towards artificial intelligence in mental health by improving schizophrenia prediction with multiple brain parcellation ensemble-learning. NPJ Schizophr 5(1):2

    Article  Google Scholar 

  7. Silverman BG, Hanrahan N, Huang L, Rabinowitz EF, Lim S (2016) Artificial intelligence in behavioral and mental health care

    Google Scholar 

  8. Rosen BR, Huang SY, Stufflebeam SM (2015) Pushing the limits of human neuroimaging. JAMA 314:993–994

    Article  CAS  Google Scholar 

  9. Hategan A, Bourgeois JA, Cheng T, Young J (2018) Neuropsychology and neuroimaging in clinical geriatric psychiatry. In: Geriatric psychiatry study guide. Springer, pp 23–38

    Google Scholar 

  10. Park MTM, Raznahan A, Shaw P, Gogtay N, Lerch JP, Chakravarty MM (2018) Neuroanatomical phenotypes in mental illness: identifying convergent and divergent cortical phenotypes across autism, ADHD and schizophrenia. J Psychiatry Neurosci JPN 43:201

    Article  Google Scholar 

  11. Arbabshirani MR, Plis S, Sui J, Calhoun VD (2017) Single subject prediction of brain disorders in neuroimaging: promises and pitfalls. Neuroimage 145:137–165

    Article  Google Scholar 

  12. Vieira S, Pinaya WH, Mechelli A (2017) Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: methods and applications. Neurosci Biobehav Rev 74:58–75

    Article  Google Scholar 

  13. Reneman L, van der Pluijm M, Schrantee A, van de Giessen E (2021) Imaging of the dopamine system with focus on pharmacological MRI and neuromelanin imaging. Eur J Radiol 140:109752

    Article  Google Scholar 

  14. Koike S, Tanaka SC, Okada T, Aso T, Yamashita A, Yamashita O, Asano M, Maikusa N, Morita K, Okada N (2021) Brain/MINDS beyond human brain MRI project: a protocol for multi-level harmonization across brain disorders throughout the lifespan. NeuroImage Clin 30:102600

    Article  Google Scholar 

  15. Wong EH, Yocca F, Smith MA, Lee C-M (2010) Challenges and opportunities for drug discovery in psychiatric disorders: the drug hunters’ perspective. Int J Neuropsychopharmacol 13:1269–1284

    Article  Google Scholar 

  16. Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, Niederehe G, Thase ME, Lavori PW, Lebowitz BD (2008) Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Focus 6:128–142

    Article  Google Scholar 

  17. Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y, Fetcho RN, Zebley B, Oathes DJ, Etkin A (2017) Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med 23:28–38

    Article  CAS  Google Scholar 

  18. Huys QJ, Maia TV, Frank MJ (2016) Computational psychiatry as a bridge from neuroscience to clinical applications. Nat Neurosci 19:404–413

    Article  CAS  Google Scholar 

  19. Woo C-W, Chang LJ, Lindquist MA, Wager TD (2017) Building better biomarkers: brain models in translational neuroimaging. Nat Neurosci 20:365–377

    Article  CAS  Google Scholar 

  20. Bzdok D, Meyer-Lindenberg A (2018) Machine learning for precision psychiatry: opportunities and challenges. Biol Psychiatry Cogn Neurosci Neuroimaging 3:223–230

    Google Scholar 

  21. Van Os J (2016) “Schizophrenia” does not exist. BMJ 352

    Google Scholar 

  22. Squeglia LM, Ball TM, Jacobus J, Brumback T, McKenna BS, Nguyen-Louie TT, Sorg SF, Paulus MP, Tapert SF (2017) Neural predictors of initiating alcohol use during adolescence. Am J Psychiatry 174:172–185

    Article  Google Scholar 

  23. Eyre HA, Singh AB, Reynolds C III (2016) Tech giants enter mental health. World Psychiatry 15:21

    Article  Google Scholar 

  24. Manyika J, Chui M, Bisson P, Woetzel J, Dobbs R, Bughin J, Aharon D (2015) Unlocking the potential of the internet of things. McKinsey Glob Inst 1

    Google Scholar 

  25. Weinberger DR, Radulescu E (2016) Finding the elusive psychiatric “lesion” with 21st-century neuroanatomy: a note of caution. Am J Psychiatry 173:27–33

    Article  Google Scholar 

  26. Verma S (2019) Weapons of math destruction: how big data increases inequality and threatens democracy. Vikalpa 44:97–98

    Article  Google Scholar 

  27. Tai AM, Albuquerque A, Carmona NE, Subramanieapillai M, Cha DS, Sheko M, Lee Y, Mansur R, McIntyre RS (2019) Machine learning and big data: implications for disease modeling and therapeutic discovery in psychiatry. Artif Intell Med 99:101704

    Article  Google Scholar 

  28. Peng H, Gong W, Beckmann CF, Vedaldi A, Smith SM (2021) Accurate brain age prediction with lightweight deep neural networks. Med Image Anal 68:101871

    Article  Google Scholar 

  29. Quaak M, van de Mortel L, Thomas RM, van Wingen G (2021) Deep learning applications for the classification of psychiatric disorders using neuroimaging data: systematic review and meta-analysis. NeuroImage Clin 30

    Google Scholar 

  30. Heinsfeld AS, Franco AR, Craddock RC, Buchweitz A, Meneguzzi F (2018) Identification of autism spectrum disorder using deep learning and the ABIDE dataset. NeuroImage Clin 17:16–23

    Article  Google Scholar 

  31. Liang Y, Zheng X, Zeng DD (2019) A survey on big data-driven digital phenotyping of mental health. Inf Fusion 52:290–307

    Article  Google Scholar 

  32. Costa J, Adams AT, Jung MF, Guimbretière F, Choudhury T (2016) EmotionCheck: leveraging bodily signals and false feedback to regulate our emotions. In: Proceedings of the 2016 ACM international joint conference on pervasive and ubiquitous computing, pp 758–769

    Google Scholar 

  33. Voida S, Matthews M, Abdullah S, Xi M, Green M, Jang WJ, Hu D, Weinrich J, Patil P, Rabbi M (2013) Moodrhythm: tracking and supporting daily rhythms. In: Proceedings of the 2013 ACM conference on pervasive and ubiquitous computing adjunct publication, pp 67–70

    Google Scholar 

  34. Wang R, Aung MS, Abdullah S, Brian R, Campbell AT, Choudhury T, Hauser M, Kane J, Merrill M, Scherer EA (2016) CrossCheck: toward passive sensing and detection of mental health changes in people with schizophrenia. In: Proceedings of the 2016 ACM international joint conference on pervasive and ubiquitous computing, pp 886–897

    Google Scholar 

  35. Stewart R, Davis K (2016) ‘Big data’ in mental health research: current status and emerging possibilities. Soc Psychiatry Psychiatr Epidemiol 51:1055–1072

    Article  Google Scholar 

  36. Murdoch TB, Detsky AS (2013) The inevitable application of big data to health care. JAMA 309:1351–1352

    Article  CAS  Google Scholar 

  37. Titiunik R (2015) Can big data solve the fundamental problem of causal inference? PS Polit Sci Polit 48:75–79

    Article  Google Scholar 

  38. Fan J, Han F, Liu H (2014) Challenges of big data analysis. Natl Sci Rev 1:293–314

    Article  Google Scholar 

  39. Srinivasan S, Moser RP, Willis G, Riley W, Alexander M, Berrigan D, Kobrin S (2015) Small is essential: importance of subpopulation research in cancer control

    Google Scholar 

  40. Monteith S, Glenn T, Geddes J, Bauer M (2015) Big data are coming to psychiatry: a general introduction. Int J Bipolar Disord 3:1–11

    Article  Google Scholar 

  41. McIntyre RS, Cha DS, Jerrell JM, Swardfager W, Kim RD, Costa LG, Baskaran A, Soczynska JK, Woldeyohannes HO, Mansur RB (2014) Advancing biomarker research: utilizing ‘big data’ approaches for the characterization and prevention of bipolar disorder. Bipolar Disord 16:531–547

    Article  Google Scholar 

  42. Koul A, Becchio C, Cavallo A (2018) PredPsych: a toolbox for predictive machine learning-based approach in experimental psychology research. Behav Res Methods 50:1657–1672

    Article  Google Scholar 

  43. Barrera A, Gee C, Wood A, Gibson O, Bayley D, Geddes J (2020) Introducing artificial intelligence in acute psychiatric inpatient care: qualitative study of its use to conduct nursing observations. Evid Based Ment Health 23:34–38

    Article  Google Scholar 

  44. Stamate D, Katrinecz A, Stahl D, Verhagen SJ, Delespaul PA, van Os J, Guloksuz S (2019) Identifying psychosis spectrum disorder from experience sampling data using machine learning approaches. Schizophr Res 209:156–163

    Article  Google Scholar 

  45. Eyler LT, Aebi ME, Daly RE, Hansen K, Tatsuoka C, Young RC, Sajatovic M (2019) Understanding aging in bipolar disorder by integrating archival clinical research datasets. Am J Geriatr Psychiatry 27:1122–1134

    Article  Google Scholar 

  46. Cao K-X, Ma M-L, Wang C-Z, Iqbal J, Si J-J, Xue Y-X, Yang J-L (2021) TMS-EEG: an emerging tool to study the neurophysiologic biomarkers of psychiatric disorders. Neuropharmacology 108574

    Google Scholar 

  47. Horev S, Stukalin YS, Hagin M, Harazi R, Popovic D (2019) P.266 automated tool for psychiatric diagnosis based on free speech. Eur Neuropsychopharmacol 29:S198–S199

    Article  Google Scholar 

  48. Bhargav H, Jasti N, More P, Kumar V, Chikkanna U, Kumar RK, Varambally S (2021) Correlation of prakriti diagnosis using AyuSoft prakriti diagnostic tool with clinician rating in patients with psychiatric disorders. J Ayurveda Integr Med 12:365–368

    Article  Google Scholar 

  49. Malfait S, Vandewalle J, Eeckloo K, Colman R, Van Hecke A (2017) The development and validation of the patient participation culture tool for inpatient psychiatric wards (PaCT-PSY). Arch Psychiatr Nurs 31:463–469

    Article  Google Scholar 

  50. Shen Y, Zhang W, Chan BSM, Zhang Y, Meng F, Kennon EA, Wu HE, Luo X, Zhang X (2020) Detecting risk of suicide attempts among Chinese medical college students using a machine learning algorithm. J Affect Disord 273:18–23

    Article  Google Scholar 

  51. Watts D, Moulden H, Mamak M, Upfold C, Chaimowitz G, Kapczinski F (2021) Predicting offenses among individuals with psychiatric disorders—a machine learning approach. J Psychiatr Res 138:146–154

    Article  Google Scholar 

  52. Zulfiker MS, Kabir N, Biswas AA, Nazneen T, Uddin MS (2021) An in-depth analysis of machine learning approaches to predict depression. Curr Res Behav Sci 2:100044

    Article  Google Scholar 

  53. Chiong R, Budhi GS, Dhakal S, Chiong F (2021) A textual-based featuring approach for depression detection using machine learning classifiers and social media texts. Comput Biol Med:104499

    Google Scholar 

  54. Amoretti S, Verdolini N, Mezquida G, Rabelo-da-Ponte FD, Cuesta MJ, Pina-Camacho L, Gomez-Ramiro M, De-la-Cámara C, González-Pinto A, Díaz-Caneja CM (2021) Identifying clinical clusters with distinct trajectories in first-episode psychosis through an unsupervised machine learning technique. Eur Neuropsychopharmacol 47:112–129

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guggari, S. (2022). AI and Big Data for Therapeutic Strategies in Psychiatry. In: Sakly, H., Yeom, K., Halabi, S., Said, M., Seekins, J., Tagina, M. (eds) Trends of Artificial Intelligence and Big Data for E-Health. Integrated Science, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-031-11199-0_9

Download citation

Publish with us

Policies and ethics