Skip to main content

Incorporating Hydromorphological Assessments in the Fluvial Geomorphology Domain for Transitioning Towards Restorative River Science—Context, Concepts and Criteria

  • Chapter
  • First Online:
Fluvial Systems in the Anthropocene

Abstract

Almost every civilization has seen rivers from an utilitarian perspective, resulting in a series of irreversible hydromorphic changes that have disrupted all former balances between the human use of rivers and their natural flow dynamics. Rivers have been dammed, channelized and managed to meet societal developmental needs. However, with time the environmental costs of such river channel management was realised, which has led to the formulation of river restoration techniques, with the ultimate aim to bring rivers back to their pristine state. While traditional frameworks have always focussed on structural measures to restore rivers, they have invariably resulted in altering the natural stream functions, mostly by disrupting the channel longitudinal and lateral connectivity. Consequently, ecological restoration techniques with a greater emphasis on river health aspect, have been put forth that consider the interactions between river biota and the hydro-geochemical environment as the key parameter to promoting overall stream management. This concept of river health was slowly mainstreamed with the introduction of the term Hydromorphology by the European Union Water Framework Directive, which tried to combine the three elements of morphological functionality, hydrological regimes and river continuity to assess stream health. This paper provides a brief review of such ideas that are embedded into the concept of hydromorphology, focussing on the various methods and frameworks devised to assess stream health. Such methods have been conveniently classified into four categories depending on the major stream functions that are usually targeted to restore stream health. A few case studies where such frameworks have been successfully used to examine stream health are also discussed. As the human footprint becomes ever larger across the Anthropocene, it is contended that such holistic, hydromorphological assessment based restorative river science can provide the curricula needed for future river scientists and a collaborative platform for investigations by different disciplines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abernethy, B., & Rutherfurd, I. D. (1999). Guidelines for stabilising streambanks with Riparian vegetation. Cooperative Research Centre for Catchment Hydrology. Technical Report Number: 99/10.

    Google Scholar 

  • Addy, S., Cooksley, S., Dodd, N., Waylen, K., Stockan, J., Byg, A., & Holstead, K. (2016). River restoration and biodiversity: Nature–based solutions for restoring the rivers of the UK and Republic of Ireland. IUCN National Committee UK (NCUK) and CREW. www.crew.ac.uk/publications

  • Agouridis, C. T., Wrightman, S. J., Barton, C. D., & Gumbert, A. A. (2010). Planting a riparian buffer. University of Kentucky Cooperative Extension Service: ID–185.

    Google Scholar 

  • Anderson, E. P., Jackson, S., Tharme, R. E., Douglas, M., Flotemersch, J. E., Zwarteveen, M., Lokgariwar, C., Montoya, M., Wali, A., Tipa, G. T., et al. (2019). Understanding rivers and their social relations: A critical step to advance environmental water management. Wires Water, 6(6), e1381.

    Article  Google Scholar 

  • Arboleya, E., Fernandez, S., Clusa, L., Dopico, E., & Garcia–Vazcuez, E. (2021). River connectivity is crucial for safeguarding biodiversity but may be socially overlooked. Insights from Spanish University Students. Frontiers in Environmental Science, 9, 643820.

    Google Scholar 

  • Arif, M., Tahir, M., Jie, Z., & Changxiao, L. (2021). Impacts of riparian width and stream channel width on ecological networks in main waterways and tributaries. Science of the Total Environment, 792, 148457.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Asakawa, S., Yoshida, K., & Yabe, K. (2004). Perceptions of urban stream corridors within the greenway system of Sapporo, Japan. Landscape and Urban Planning, 68(2–3), 167–182.

    Google Scholar 

  • Augusta Hermida, M., Cabrera-Jara, N., Osorio, P., & Cabrera, S. (2019). Methodology for the assessment of connectivity and comfort of urban rivers. Cities, 95, 102376.

    Article  Google Scholar 

  • Azlak, M., Yildirim, E., Faydaoglu, E., Anul, N., & Dikmen, B. (2017). An approach for monitoring and assessment of hydromorphological water quality at different waterbody types by using standard method. Proceedings of the International Water Resources Association (IWRA), Mexico.

    Google Scholar 

  • Baird, D. C., & Klumpp, C. C. (2012). Review of river restoration methodologies. Proceedings of the World Environmental and Water Resources Congress, New Mexico, United States. https://ascelibrary.org/doi/10.1061/9780784412312.265

  • Banerji, D., & Patel, P. P. (2019). Morphological aspects of the Bakreshwar River Corridor, West Bengal, India. In B. Das, S. Ghosh, & A. Islam (Eds.), Advances in micro geomorphology of lower Ganga basin—Part I: Fluvial geomorphology (pp. 155–189). Springer International Publishing.

    Google Scholar 

  • Barbarossa, V., Schmitt, R. J. P., Huijbregts, M. A. J., Zarfl, C., King, H., & Schipper, A. M. (2020). Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 117(7), 3648–3655.

    Article  ADS  CAS  Google Scholar 

  • Baruah, D., Borah, S., Hazarika, L. P., Dutta, R., Bakalial, B., Biswas, S. P., & Sarma, S. K. (2011). A simple diagnostic tool for measuring river health—Example from a tropical snow fed river. Annals of Biological Research, 2(5), 432–443.

    Google Scholar 

  • Bear Creek Environmental. (2012). Gunstock brook watershed stream geomorphic assessment, Gilford, New Hampshire. https://winnipesaukeegateway.org/wp-content/uploads/2012/07/Gunstock_Brook-SGA-Report_final_July09_2012.pdf

  • Bechtol, V., & Laurian, L. (2005). Restoring straightened rivers for sustainable flood mitigation. Disaster Prevention and Management: An International Journal, 14(1), 6–19.

    Article  Google Scholar 

  • Bedarkar, M., Dhingra, U., Mishra, M., & Gopalkrishnan, S. (2018). Analysis of global river restoration experiences: Learning and policy measures in the Indian context. Asian Journal of Water, Environment and Pollution, 15(2), 203–215.

    Article  Google Scholar 

  • Beechie, T. J., Sear, D. A., Olden, J. D., Pess, G. R., Buffington, J. M., Moir, H., Roni, P., & Pollock, M. M. (2010). Process—Based principles for restoring river ecosystems. BioScience, 60(3), 209–222.

    Article  Google Scholar 

  • Behbahani, S. M., Moradi, M., Basiri, R., & Mirzaei, J. (2017). Sand mining disturbances and their effects on the diversity of arbuscular mycorrhizal fungi in a riparian forest of Iran. Journal of Arid Land, 9(6), 837–849.

    Article  Google Scholar 

  • Belletti, B., Rinaldi, M., Buijse, A. D., Gurnell, A. M., & Mosselman, E. (2015). A review of assessment methods for river hydromorphology. Environmental Earth Sciences, 73, 2079–2100.

    Article  Google Scholar 

  • Bhatt, C. (2016). Ahmedabad: Reclaiming the Sabarmati riverfront. In R. Amirtahmasebi, M. Orloff, S. Wahba, & A. Altman (Eds.), Regenerating urban land: A practitioner's guide to leveraging private investment. The World Bank, Washington, DC.

    Google Scholar 

  • Bhatti, M. T., & Latif, M. (2011). Assessment of water quality of a river using an indexing approach during the low-flow season. Irrigation and Drainage, 60(1), 103–114.

    Article  Google Scholar 

  • Bhowmik, A. V., Metz, M., & Schafer, R. B. (2015). An automated, objective and open source tool for stream threshold selection and upstream riparian corridor delineation. Environmental Modelling and Software, 63, 240–250.

    Article  Google Scholar 

  • Boon, P. J., Holmes, N. T. H., & Raven, P. J. (2010). Developing standard approaches for recording and assessing river hydromorphology: The role of the European Committee for Standardization (CEN). Aquatic Conservation: Marine and Freshwater Ecosystems, 20(S1), S55–S61.

    Article  Google Scholar 

  • Boulton, A. J. (1999). An overview of river health assessment: Philosophies, practice, problems and prognosis. Freshwater Biology, 41(2), 469–479.

    Article  Google Scholar 

  • Brandt, S. A. (2000). Classification of geomorphological effects downstream of dams. CATENA, 40, 375–401.

    Article  Google Scholar 

  • Brierley, G. J., & Fryirs, K. A. (2005). Geomorphology and river management: Applications of the river styles framework. Blackwell Publishing.

    Google Scholar 

  • Brierley, G., Fryirs, K., Marcal, M., & Lima, R. (2019). The use of the river styles framework as a tool to ‘work with nature’ in managing rivers in Brazil: Examples from the macae catchment. Revista Brasileira De Geomorfologia, 20(4), 751–771.

    Article  Google Scholar 

  • Brooker, M. P. (1985). The ecological effects of channelization. The Geographical Journal, 151(1), 63–69.

    Article  Google Scholar 

  • Brookes, A. (1985). River channelization: Traditional engineering methods, physical consequences and alternative practices. Progress in Physical Geography, 9(1), 44–73.

    Article  Google Scholar 

  • Burt, T., Pinay, G., Grimm, N., & Harms, T. (2013). Between the land and the river: River conservation and the Riparian zone. In S. Sabater & A. Elosegi (Eds.), River conservation: Challenges and opportunities (pp. 217–240). Fundacion BBVA.

    Google Scholar 

  • Cartwright, L. (2005). An examination of flood damage data trends in the United States. Journal of Contemporary Water Research and Education, 130, 20–25.

    Article  Google Scholar 

  • Chatterjee, S., & Patel, P. P. (2016). Quantifying landscape structure and ecological risk analysis in Subarnarekha Sub-watershed, Ranchi. In D. K. Mondol (Ed.), Application of geospatial technology for sustainable development (pp. 54–76). University of North Bengal, India, North Bengal University Press.

    Google Scholar 

  • Chaudhuri, S., Chaudhuri, P., & Ghosh, R. (2020). The impacts of embankments on the geomorphic and ecological evolution of the deltaic landscape of the Indo–Bangladesh Sundarbans. In A. J. Manning (Eds.), River deltas: Recent advances (pp. 1–21). IntechOpen Book Series.

    Google Scholar 

  • Chavan, A. D., Sharma, M. P., & Bhargava, R. (2009). Water quality assessment of the Godavari River. Hydro Nepal: Journal of Water, Energy and Environment, 5, 31–34.

    Article  Google Scholar 

  • Collier, M., Webb, R. H., & Schmidt, J. C. (2000). Dams and rivers: A primer on the downstream effects of dams. US department of the Interior, US Geological Survey. Report number: Circular 1126.

    Google Scholar 

  • Congdon, J. C. (1971). Fish populations of channelized and unchannelized sections of the Chariton River, Missouri. North Central Division, American Fisheries Society. Report number: Special Publication number 2.

    Google Scholar 

  • Cornejo-Denman, L., Romo-Leon, J. R., Castellanos, A. E., Diaz-Caravantes, R. E., Moreno-Vazquez, J. L., & Mendez-Estrella, R. (2018). Assessing riparian vegetation condition and function in disturbed sites of the arid Northwestern Mexico. Land, 7, 13.

    Article  Google Scholar 

  • da Silva, G. C. X., de Abrue, C. H. M., Ward, N. D., Belucio, L. P., Brito, D. C., Cunha, H. F. A., & da Cunha, A. C. (2020). Environmental impacts of dam reservoir filling in the East Amazon. Frontiers in Water, 2, 11.

    Article  Google Scholar 

  • del Tanago, M. G., Martinez-Fernandez, V., Aguiar, F. C., Bertoldi, W., Dufour, S., de Jalon, D. G., Garofano-Gomez, V., Mandzukovski, D., & Rodriguez-Gonzalez, P. (2021). Improving river hydromorphological assessment through better integration of riparian vegetation: Scientific evidence and guidelines. Journal of Environmental Management, 292, 112730.

    Article  Google Scholar 

  • Dissanayake, L. (2020). Stream corridor encroachment and its consequences: The case of Pinga Oya tributary in the upper Mahaweli River in Sri Lanka. Modelling Earth Systems and Environment, 7, 1907–1916.

    Article  Google Scholar 

  • Dutta, V., Sharma, U., Iqbal, K., Adeeba, Kumar, R., & Pathak, A. K. (2018). Impact of river channelization and riverfront development on fluvial habitat: Evidence from Gomti River, a tributary of Ganges, India. Environmental Sustainability, 1, 167–184.

    Google Scholar 

  • Dwivedi, V. K., Gupta, S. K., & Pandey, S. N. (2010, November). A study of environmental impact due to construction and operation of dam. In Proceedings of the national conference on eco friendly manufacturing for sustainable development (pp. 19–21). GLA University, paper number: 31.

    Google Scholar 

  • Fang, Y., & Jawitz, J. W. (2019). The evolution of human population distance to water in the USA from 1790 to 2010. Nature Communications, 10, 430.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Feld, C. K., Birk, S., Bradley, D. C., Hering, D., Kail, J., Marzin, A., Melcher, A., Nemitz, D., Pedersen, M. L., et al. (2011). From natural to Degraded Rivers and back again: A test of restoration ecology theory and practice. Advances in Ecological Research, 44, 119–209.

    Article  Google Scholar 

  • Feld, C. K., Fernandes, M. R., Ferreira, M. T., Hering, D., Ormerod, S. J., Venohr, M., & Gutierrez-Canovas, C. (2018). Evaluating riparian solutions to multiple stressor problems in river ecosystems—A conceptual study. Water Research, 139, 381–394.

    Article  CAS  PubMed  Google Scholar 

  • FISRWG. (10/1998; 2001). Stream corridor restoration: Principles, processes and practices. Federal Interagency Stream Restoration Working Group, GPO Item No. 0120–A; SuDocs No. A 57.6/2:EN 3/PT.653.

    Google Scholar 

  • Fryirs, K. A., & Brierley, G. (2012). Geomorphic analysis of river systems: An approach to reading the landscape. Blackwell.

    Book  Google Scholar 

  • Gann, G. D., McDonald, T., Walder, B., Aronson, J., Nelson, C. R., Jonson, J., Hallet, J. G., Eisenberg, C., Gaurigauta, M. R., et al. (2019). International principles and standards for the practice of ecological restoration. Second Edition. Restoration Ecology, 27(S1), S1–S46.

    Article  Google Scholar 

  • Giddings, J. S. (2011). Village of the damned: The biophysical and socioeconomic impact of small dams and their removal—A case study of Eden Mills (Ph.D. Thesis). The University of Guelph, Ontario, viewed 25 December, 2019.

    Google Scholar 

  • Gilbert, J. T., Macfarlane, W. W., & Wheaton, J. M. (2016). The Valley Bottom Extraction Tool (V–BET): A GIS tool for delineating valley bottoms across entire drainage networks. Computers & Geosciences, 97, 1–14.

    Article  ADS  Google Scholar 

  • Graham, P. M., Dickens, C. W. S., & Taylor, R. J. (2010). miniSASS—A novel technique for community participation in river health monitoring and management. African Journal of Aquatic Science, 29(1), 25–35.

    Article  Google Scholar 

  • Granzotti, R. V., Miranda, L. E., Agostinho, A. A., & Gomes, L. C. (2018). Downstream impacts of dams: Shifts in benthic invertivorous fish assemblages. Aquatic Sciences, 80, 28.

    Article  Google Scholar 

  • GRBMP. (2014). Hydrological flow health assessment of the River Ganga. Ganga River Basin Management Plan. Consortium of the Indian Institute of Technology. Report number: 056_GBP_IIT_WRM_ANL_01_Ver 1_Jun 2014.

    Google Scholar 

  • Gregory, K. J. (2006). The human role in changing river channels. Geomorphology, 79, 172–191.

    Article  ADS  Google Scholar 

  • Gurnell, A. M., Corenblit, D., de Jalon, G., del Tanago, M. G., Grabowski, R. C., O’Hare, M. T., & Szewczyk, M. (2016). A conceptual model of vegetation–hydrogeomorphology Interactions within Riparian Corridors. River Research and Applications, 32(2), 142–163.

    Article  Google Scholar 

  • Habersack, H., Hein, T., Stanica, A., Liska, I., Mair, R., Jager, E., Hauer, C., & Bradley, C. (2016). Challenges of river basin management: Current status of, and prospects for, the River Danube from a river engineering perspective. Science of the Total Environment, 543(A), 828–845.

    Google Scholar 

  • Hajdukiewicz, H., Wyzga, B., Zawiejska, J., Amirowicz, A., Oglecki, P., & Radecki-Pawlik, A. (2017). Assessment of river hydromorphological quality for restoration purposes: An example of the application of RHQ method to a Polish Carpathian River. Acta Geophysica, 65, 423–440.

    Article  ADS  Google Scholar 

  • Harman, W., Starr, R., Carter, M., Tweedy, K., Clemmons, M., Suggs, K., & Miller, C. (2012). A function–based framework for stream assessment and restoration projects. US Environmental Protection Agency. Report number: EPA 843–K–12–006.

    Google Scholar 

  • Harvey, J., & Gooseff, M. (2015). River corridor science: Hydrologic exchange and ecological consequences from bedforms to basins. Water Resources Research, 51, 6893–6922.

    Article  ADS  Google Scholar 

  • Harvey, J. W., & Schmadel, N. M. (2021). The River Corridor’s evolving connectivity of lotic and lentic waters. Frontiers in Water, 2, 580727.

    Article  Google Scholar 

  • Hawes, E., & Smith, M. (2005). Riparian buffer zones: Functions and recommended widths. Yale School of Forestry and Environmental Studies for the Eightmile River, Wild and Scenic Study Committee, New Haven.

    Google Scholar 

  • Hooper, L., & Hubbart, J. A. (2016). A rapid physical habitat assessment of wadeable streams for mixed-land-use watersheds. Hydrology, 3, 37.

    Article  Google Scholar 

  • Horsak, M., Bojkova, J., Zahradkova, S., Omesova, M., & Helesik, J. (2009). Impact of reservoirs and channelization on lowland river macroinvertebrates: A case study from Central Europe. Limnologica, 39, 140–151.

    Article  Google Scholar 

  • Hupp, C. R., & Osterkamp, W. R. (2013). Vegetation ecogeomorphology, Dynamic equilibrium, and disturbance. In D. R. Butler & C. R. Hupp (Eds.), Treatise on geomorphology (Vol. 12, pp. 94–106). Academic Press.

    Chapter  Google Scholar 

  • India Climate Collaborative. (2022). India advancing with nature: The current state of play of nature-based solutions 2022.

    Google Scholar 

  • Jacobson, R. B. (2013). Riverine habitat dynamics. In J. F. Shroder (Ed.), Treatise on geomorphology (Vol. 12, pp. 6–19). Academic Press.

    Chapter  Google Scholar 

  • Jain, S. K., & Kumar, P. (2014). Environmental flows in India: Towards sustainable water management. Hydrological Sciences Journal, 59(3–4), 751–769.

    Article  Google Scholar 

  • Jeong, S., Kim, H. G., Thorne, J. H., Lee, H., Cho, Y.-H., Lee, D. K., Park, C. H., & Seo, C. (2018). Evaluating connectivity for two mid–sized mammals across modified riparian corridors with wildlife crossing monitoring and species distribution modeling. Global Ecology and Conservation, 16, e00485.

    Article  Google Scholar 

  • Johnson, B., & Beardsley, M. (2015). A holistic health assessment tool for stream management and restoration planning. Colorado Stream Health Assessment Programme, Colorado.

    Google Scholar 

  • Johnson, M. F., Thorne, C. R., Castro, J. M., Kondolf, G. M., Mazzacano, C. S., Rood, S. B., & Westbrook, C. (2020). Biomic river restoration: A new focus for river management. River Research and Applications, 36(1), 3–12.

    Article  Google Scholar 

  • Jones, N. (2017). A participatory modelling approach to developing a numerical sediment dynamics model (Ph.D. Thesis). University of the West of England, viewed 20 December, 2018. https://uwe-repository.worktribe.com/output/883372/a-participatory-modelling-approach-to-developing-a-numerical-sediment-dynamics-model

  • Karr, J. R. (1999). Defining and measuring river health. Freshwater Biology, 41(2), 221–234.

    Article  Google Scholar 

  • Kennedy, T. L., & Turner, T. F. (2011). River channelization reduces nutrient flow and macroinvertebrate diversity at the aquatic terrestrial transition zone. Ecosphere, 2(3), 1–13.

    Article  CAS  Google Scholar 

  • Keogh, J., Wilkes, R., & O’Boyle, S. (2020). A new index for the assessment of hydromorphology in transitional and coastal waters around Ireland. Marine Pollution Bulletin, 151, 110802.

    Article  CAS  PubMed  Google Scholar 

  • Klapproth, J. C., & Johnson, J. E. (2009). Understanding the science behind Riparian Forest buffers: Effects on water quality. Virginia Cooperative Extension, Virginia State University, US. Report number: 420–151.

    Google Scholar 

  • Kline, M., Jaquith, S., Sprinston, G., Cahoon, B., & Becker, L. (2009). Vermont stream geomorphic assessment phase 3 handbook survey assessment. Field and Data Analysis Protocols. Vermont Agency of Natural Resources, USA.

    Google Scholar 

  • Ko, N. T., Suter, P., Conallin, J., Rutten, M., & Bogaard, T. (2020). The urgent need for river health biomonitoring tools for large tropical rivers in developing countries: Preliminary development of a river health monitoring tool for Myanmar rivers. Water, 12, 1408.

    Article  Google Scholar 

  • Kondolf, G. M., & Pinto, P. J. (2017). The social connectivity of urban rivers. Geomorphology, 277, 182–196.

    Article  ADS  Google Scholar 

  • Kumar, A. U., & Jayakumar, K. V. (2018). Assessment of hydrological alteration and environmental flow requirements for Srisailam Dam on Krishna River, India. Water Policy, 20(6), 1176–1190.

    Article  Google Scholar 

  • Lafaye de Micheaux, F. (2015). Review of draft Indian water legislation and comparison with the European water framework firective. Luxembourg, Publications Office of the European Union. Report number: N° ENV.E.1/SER/2015/ARES REF.3379540.

    Google Scholar 

  • Lau, J. K., Lauer, T. E., & Weinman, M. L. (2006). Impact of channelization on stream habitats and associated fish assemblages in East Central Indiana. The American Midland Naturalist, 156(2), 319–330.

    Article  Google Scholar 

  • Liaghat, A., Adib, A., & Gafouri, H. R. (2017). Evaluating the effects of dam construction on the morphological changes of downstream meandering rivers (Case study: Karkheh River). Engineering, Technology and Applied Science Research, 7(2), 1515–1522.

    Article  Google Scholar 

  • Lind, L., Hasselquist, E. M., & Laudon, H. (2019). Towards ecologically functional riparian zones: A meta–analysis to develop guidelines for protecting ecosystem functions and biodiversity in agricultural landscapes. Journal of Environmental Management, 249, 109391.

    Article  PubMed  Google Scholar 

  • Logar, I., Brouwer, R., & Paillex, A. (2019). Do the societal benefits of river restoration outweigh their costs? A cost–benefit analysis. Journal of Environmental Management, 232, 1075–1085.

    Article  PubMed  Google Scholar 

  • Looy, K. V., Honnay, O., Bossuyt, B., & Hermy, M. (2003). The effects of river embankment and forest fragmentation on the plant species richness and composition of floodplain forests in the Meuse Valley, Belgium. Belgian Journal of Botany, 136(2), 97–108.

    Google Scholar 

  • Luke, S. H., Slade, E. M., Gray, C. L., Annammala, K. V., Drewer, J., Williamson, J., Agama, A. L., Ationg, M., Mitchell, S. L., Vairappan, C. S., & Struebig, M. J. (2018). Riparian buffers in tropical agriculture: Scientific support, effectiveness and directions for policy. Journal of Applied Ecology, 56, 85–92.

    Article  Google Scholar 

  • Ma, D., Luo, W., Yang, G., Lu, J., & Fan, Y. (2019). A study on a river health assessment method based on ecological flow. Ecological Modelling, 401, 144–154.

    Google Scholar 

  • May, R. (2006). “Connectivity” in urban rivers: Conflict and convergence between ecology and design. Technology in Society, 28(4), 477–488.

    Article  Google Scholar 

  • Meier, G., Zumbroich, T., & Roehrig, J. (2013). Hydromorphological assessment as a tool for river basin management: The German field survey method. Journal of Natural Resources and Development, 03, 14–26.

    Google Scholar 

  • Michel, J., Shen, Y. K., Aiden, A. P., Veres, A., Gray, M. K., Team, T. G. B., Pickett, J. P., Hoiberg, D., Clancy, D., Norvig, P., Orwant, J., Pinker, S., Nowak, M. A., & Aiden, E. L. (2011). Quantitative analysis of culture using millions of digitised books. Science, 331(6014), 176–182.

    Google Scholar 

  • Molla, H. R. (2011). Embankment and changing micro-topography of Lower Ajoy Basin in Eastern India. Ethiopian Journal of Environmental Studies and Management, 4(4), 50–61.

    Google Scholar 

  • Mondal, S., & Patel, P. P. (2018). Examining the utility of river restoration approaches for flood mitigation and channel stability enhancement: A recent review. Environmental Earth Sciences, 77, 195.

    Article  Google Scholar 

  • Mondal, S., & Patel, P. P. (2020). Implementing Vetiver grass-based riverbank protection programmes in rural West Bengal, India. Natural Hazards, 103, 1051–1076. https://doi.org/10.1007/s11069-020-04025-5

    Article  Google Scholar 

  • Mondal, S., & Patel, P. P. (2021). Mapping, measuring and modelling common fluvial hazards in Riparian zones: A brief review of relevant concepts and methods. In P. K. Shit, H. R. Pourghasemi, G. S. Bhunia, P. Das, & A. Narsimha (Eds.), Geospatial technology for environmental hazards (pp. 353–389). Springer. https://doi.org/10.1007/978-3-030-75197-5_16

  • MoWR, RD, & GR. (2015). Assessment of environmental flows [E–Flows]. Report of the Three Member Committee. Government of India, New Delhi.

    Google Scholar 

  • Mulyono, A., Subardja, A., Ekasari, I., Lailati, M., Sudirja, R., & Ningrum, W. (2018). The hydrodynamics of vegetation for slope stabilization. IOP Conference Series: Earth and Environmental Science, 118, 012038.

    Google Scholar 

  • Nandi, I., Tewari, A., & Shah, K. (2016). Evolving human dimensions and the need for continuous health assessment of Indian rivers. Current Science, 111(2), 263–271.

    Article  Google Scholar 

  • New, T., & Xie, Z. (2008). Impacts of large dams on riparian vegetation: Applying global experience to the case of China’s Three Gorges Dam. Biodiversity and Conservation, 17, 3149–3163.

    Article  Google Scholar 

  • O’Brien, G. R., Wheaton, J. M., Fryirs, K., Macfarlane, W. W., Brierley, G., Whitehead, K., Gilbert, J., & Volk, C. (2019). Mapping valley bottom confinement at the network scale. Earth Surface Processes and Landforms, 44, 1828–1845.

    Google Scholar 

  • Olokeogun, O. S., & Kumar, M. (2020). An indicator based approach for assessing the vulnerability of riparian ecosystem under the influence of urbanization in the Indian Himalayan city, Dehradun. Ecological Indicators, 119, 106796.

    Article  Google Scholar 

  • Oscoz, J., Leunda, P. M., Miranda, R., Garcia-Fresca, C., Campos, F., & Escala, M. C. (2005). River channelization effects on fish population structure in the Larraun River (Northern Spain). Hydrobiologia, 543, 191–198.

    Article  Google Scholar 

  • Oswalt, S. N., & King, S. L. (2005). Channelization and floodplain forests: Impacts of accelerated sedimentation and valley plug formation on floodplain forests of the Middle Fork Forked Deer River, Tennessee, USA. Forest Ecology and Management, 215, 69–83.

    Article  Google Scholar 

  • Ozcan, C., Kentel, E., & Alp, E. (2018). Assessment of hydromorphological characteristics in Sakarya Watershed, Turkey. In G. Loggia, G. Freni, V. Puleo & M. de Marchis (Eds.), Proceedings of the 13th International Conference on Hydroinformatics (Vol. 3, pp. 2465–2471).

    Google Scholar 

  • Palmer, M. A., & Bernhardt, E. S. (2006). Hydroecology and river restoration: Ripe for research and synthesis. Water Resources Research, 42(3), W03S07.

    Google Scholar 

  • Palmer, M. A., Bernhardt, E. S., Allan, J. D., Lake, P. S., Alexander, G., Brooks, S., Carr, J., Clayton, S., Shah, J. F., Galat, G. L., Loss, S. G., Goodwin, P., Hart, D. D., Hassett, B., Jenkinson, R., Kondolf, G. M., Lave, R., Meyer, J. L., O’DOnnell, T. K., Pagano, L., & Sudduth, E. (2005). Standards for ecologically successful river restoration. Journal of Applied Ecology, 42, 208–217.

    Google Scholar 

  • Palmer, M. A., Hondula, K. L., & Koch, B. J. (2014). Ecological restoration of streams and rivers: Shifting strategies and shifting goals. Annual Review of Ecology, Evolution, and Systematics, 45, 247–269.

    Article  Google Scholar 

  • Pan, B., Yuan, J., Zhang, X., Wang, Z., Lu, J., Yang, W., Chen, J., Li, Z., Zhao, N., & Xu, M. (2016). A review of ecological restoration techniques in fluvial rivers. International Journal of Sediment Research, 31(2), 110–119.

    Article  Google Scholar 

  • Pasternack, G. B. (2013). Geomorphologist’s guide to participating in river rehabilitation. In J. F. Shroder (Ed.), Treatise on geomorphology (Vol. 9, pp. 843–860). Academic Press.

    Chapter  Google Scholar 

  • Patel, P. P., Mondal, S., & Prasad, R. (2020). Modifications of the geomorphic diversity by anthropogenic interventions in the Silabati River Basin. In B. C. Das, S. Ghosh, A. Islam, & S. Roy (Eds.), Anthropogeomorphology of Bhagirathi-Hooghly River System in India (pp. 331–356). Routledge.

    Google Scholar 

  • Pathak, D., Whitehead, P. G., Futter, M. N., & Sinha, R. (2018). Water quality assessment and catchment–scale nutrient flux modeling in the Ramganga River Basin in north India: An application of INCA model. Science of the Total Environment, 631–632, 201–215.

    Article  ADS  PubMed  Google Scholar 

  • Pedroli, B., Blust, G. D., Loo, K. V., & Rooij, S. V. (2002). Setting targets in strategies for river restoration. Landscape Ecology, 17(1), 5–18.

    Article  Google Scholar 

  • Potter, K. (2013). Battle for the floodplains: An institutional analysis of water management and spatial planning in England (Ph.D. Thesis) University of Liverpool, England, viewed 25 December, 2019. https://livrepository.liverpool.ac.uk/11853/

  • Ramachandra, T. V., Vinay, S., Bharath, S., & Shashishankar, A. (2018). Eco-hydrological footprint of a river basin in Western Ghats. Yale Journal of Biology and Medicine, 91, 431–444.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rao, M. S. (2014). An alternative perspective: Sabarmati riverfront development: A critical review of the Sabarmati Riverfront Development Project, Ahmadabad, from an environmental perspective. India Water Portal. https://www.indiawaterportal.org/articles/sabarmati-river-point-view. Viewed December 25, 2021.

  • Raven, P. J., Holmes, N. T. H., Charrier, P., Dawson, F. H., Naura, M., & Boon, P. J. (2002). Towards a harmonized approach for hydromorphological assessment of rivers in Europe: A qualitative comparison of three survey methods. Aquatic Conservation: Marine and Freshwater Ecosystems, 12, 405–424.

    Article  Google Scholar 

  • Rempel, A., & Buckley, M. (2018). The economic value of Riparian buffers in the Delaware River Basin. Final Report. ECONorthwest. https://www.delawareriverkeeper.org/sites/default/files/Riparian%20Benefits%20ECONW%200818.pdf.

  • Richardson, J. S., Naiman, R. J., & Bisson, P. A. (2012). How did fixed–width buffers become standard practice for protecting freshwaters and their riparian areas from forest harvest practices. Freshwater Science, 31(1), 232–238.

    Article  Google Scholar 

  • Rinaldi, M., Belletti, B., Bund, W., Bertoldi, W., Gurnell, A., Buijse, T., & Mosselman, E. (2013). Review on eco–hydromorphological methods. REFORM (REstoring Rivers FOR effective catchment Management). Report number: Deliverable 1.1.

    Google Scholar 

  • Saha, D., Das, D., Dasgupta, R., & Patel, P. P. (2020). Application of ecological and aesthetic parameters for riparian quality assessment of a small tropical river in eastern India. Ecological Indicators, 117, 106627.

    Article  Google Scholar 

  • Sammen, S. S., Mohammad, T. A., & Majeed, Q. G. (2019). Environmental consideration in flood mitigation and river restoration. IOP Conference Series: Materials Science and Engineering, 518(2), 022088.

    Article  CAS  Google Scholar 

  • Sardi–Caromile, K., Bates, K., Skidmore, P., Barenti, J., & Pineo, D. (2004). Stream Habitat Restoration Guidelines: Final Draft. Washington Departments of Fish and Wildlife and Ecology and the U.S. Fish and Wildlife Service. Olympia, Washington.

    Google Scholar 

  • Sayers, P., Walsh, C., & Dawson, R. (2015). Climate impacts on flood and coastal erosion infrastructure. Infrastructure Asset Management Paper number: 1400040.

    Google Scholar 

  • Shafer, C. S., Scott, D., Baker, J., & Winemiller, K. (2013). Recreation and amenity values of urban stream corridors: Implications for green infrastructure. Journal of Urban Design, 18(4), 478–493.

    Article  Google Scholar 

  • Sharda, A. K., & Sharma, M. P. (2013). Water quality assessment of Swan River in Himachal Pradesh, India. International Journal of Environmental Sciences, 4(3), 402–414.

    CAS  Google Scholar 

  • Sharma, M. P., Goel, V., & Kumar, A. (2008, March 3–7). Water quality mapping of Kosi River using benthic macroinvertebrates. In O. Moog, D. Hering, S. Sharma, I. Stubauer & T. Korte (Eds.), ASSESS-HKH: Proceedings of the Scientific Conference Rivers in the Hindu Kush-Himalaya-Ecology & Environmental Assessment (pp. 179–188).

    Google Scholar 

  • Sharma, U., & Dutta, V. (2020). Establishing environmental flows for intermittent tropical rivers: Why hydrological methods are not adequate? International Journal of Environmental Science and Technology, 17, 2949–2966.

    Article  Google Scholar 

  • Shields, F. D., & Brooks, A. (2014). Stream restoration. In Reference module in earth systems and environmental sciences. Elsevier.

    Google Scholar 

  • Singh, M., & Sinha, R. (2019). Evaluating dynamic hydrological connectivity of a floodplain wetland in North Bihar, India using geostatistical methods. Science of the Total Environment, 651, 2473–2488.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Sinha, R., Mohanta, H., Jain, V., & Tandon, S. K. (2017). Geomorphic diversity as a river management tool and its application to the Ganga River. India. River Research and Applications, 33(7), 1156–1176.

    Article  Google Scholar 

  • Smakhtin, V., & Anputhas, M. (2006). An assessment of environmental flow requirements of Indian river basins. International Water Management Institute, Colombo, Sri Lanka. Report number: 107.

    Google Scholar 

  • Soja, R., & Wiejaczka, L. (2014). The impact of a reservoir on the physicochemical properties of water in a mountain river. Water and Environment Journal, 28(4), 473–482.

    Article  CAS  Google Scholar 

  • Sonkar, G. K., Gaurav, K., Dasgupt, N., Hussain, S. A., & Sinha, R. (2019). Eco–geomorphic assessment of the Varanasi Turtle Sanctuary and its implication for Ganga River conservation. Current Science, 116(12), 2063–2071.

    Article  Google Scholar 

  • Spackman, S. C., & Hughes, J. W. (1995). Assessment of minimum stream corridor width for biological conservation: Species richness and distribution along mid–order streams in Vermont, USA. Biological Conservation, 71, 325–332.

    Article  Google Scholar 

  • Stefanidis, K., Latsiou, A., Kouvarda, T., Lompou, A., Kalaitzakis, N., Gritzalis, K., & Dimitriou, E. (2020). Disentangling the main components of hydromorphological modifications at reach scale in rivers of Greece. Hydrology, 7, 22.

    Article  Google Scholar 

  • Tahmiscioglu, M. S., Anul, N., Ekmekci, F., & Durmus, N. (2007). Positive and negative impacts of dams on the environment. International Congress on River Basin Management, pp. 759–769. https://cvc.ca/wp-content/uploads/2011/02/60.pdf

  • Tare, V., Gurjar, S. K., Mohanta, H., Kapoor, V., Modi, A., Mathur, R. P., & Sinha, R. (2017). Eco–geomorphological approach for environmental flows assessment in monsoon–driven highland rivers: A case study of Upper Ganga, India. Journal of Hydrology: Regional Studies, 13, 110–121.

    Google Scholar 

  • Tare, V., Kaushal, N., Gosain, A. K., Murthy, B. S., Behara, M. D., Balaji, N., Prasad, P. M., Tyagi, P., Sidduqui, R. H., Mathur, R. P., Sinha, R., Chopra, R., Kumar, R., Jain, S. K., Behera, S., Tripathi, S., Asolekar, S., & Jain, V. (2011). Environmental flows: State–of–the–Art with special reference to Rivers in the Ganga River Basin (GRB EMP: Ganga River Basin Environment Management Plan). Report Code: 022_GBP_IIT_EFL_SOA_01_Ver 1_Dec_2011. Indian Institutes of Technology (Bombay, Delhi, Guwahati, Kanpur, Kharagpur, Madras, Roorkee).

    Google Scholar 

  • Thomas, G. (2014). Improving restoration practice by deriving appropriate techniques for analysing the spatial organization of river networks. Limnologica, 45, 50–60.

    Google Scholar 

  • USDA NRCS. (1999). Conservation corridor planning at the landscape level: Managing for Wildlife Habitat. National Biology Handbook, Part 190.

    Google Scholar 

  • Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., & Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130–137.

    Article  Google Scholar 

  • Verry, E. S., Hornbeck, J. W., & Dolloff, C. A. (Eds.). (2000). Riparian management in forests to the continental Eastern United States (pp. 125–138). Lewis Publishers.

    Google Scholar 

  • Vigiak, O., Malago, A., Bouraoui, F., Grizzetti, B., Weissteiner, C. J., & Pastori, M. (2016). Impact of current riparian land on sediment retention in the Danube River Basin. Sustainability of Water Quality and Ecology, 8, 30–49.

    Article  Google Scholar 

  • Vogel, R. M. (2011). Hydromorphology. Journal of Water Resources Planning and Management, 137, 147–149.

    Article  Google Scholar 

  • Walters, C. (1997). Challenges in adaptive management of riparian and coastal systems. Conservation Ecology, 1(2), 1.

    Article  Google Scholar 

  • Ward, A. S., Schmadel, N. M., Wondzell, S. M., Gooseff, M. N., & Singha, K. (2017). Dynamic hyporheic and riparian flow path geometry through base flow recession in two headwater mountain stream corridors. Water Resources Research, 53, 3988–4003.

    Article  ADS  Google Scholar 

  • Wenger, S. (1999). A review of the scientific literature on Riparian buffer width, extent and vegetation. Institute of Ecology, University of Georgia, Athens.

    Google Scholar 

  • WFD. (2006). WFD and hydromorphological pressures: Good practice in managing the ecological impacts of hydropower schemes; flood protection works; and works designed to facilitate navigation under the Water Framework Directive: Technical Report. https://circabc.europa.eu/sd/a/68065c2b-1b08-462d-9f07-413ae896ba67/HyMo_Technical_Report.pdf

  • Wheaton, J. M. (2005). Review of river restoration motives and objectives. Unpublished Review, Southampton, UK, pp. 12. https://www.geog.soton.ac.uk/users/wheatonj/downloads/motivesandobjectives.pdf

  • Wheaton, J. M., Fryirs, K. A., Brierley, G., Bangen, S. G., Bouwes, N., & O’Brien, G. (2015). Geomorphic mapping and taxonomy of fluvial landforms. Geomorphology, 248, 273–295.

    Article  ADS  Google Scholar 

  • Wiatkowski, M., & Tomczyk, P. (2018). Comparative assessment of the hydromorphological status of the rivers Odra, Bystrzyca, and Sleza Using the RHS, LAWA, QBR, and HEM methods above and below the hydropower plants. Water, 10, 855.

    Article  Google Scholar 

  • Wilcock, D. N., & Essery, C. I. (1991). Environmental impacts of channelization on the River Main, County Antrim, Northern Ireland. Journal of Environmental Management, 32, 127–143.

    Article  Google Scholar 

  • Williams, G. P. (1986). River meanders and channel size. Journal of Hydrology, 88, 147–164.

    Google Scholar 

  • Wohl, E. (2012). Identifying and mitigating dam–induced declines in river health: Three case studies from the western United States. International Journal of Sediment Research, 27, 271–287.

    Article  Google Scholar 

  • Wohl, E. (2017a). Connectivity in rivers. Progress in Physical Geography, 41(3), 345–362.

    Article  Google Scholar 

  • Wohl, E. (2017b). Sustaining river ecosystems and water resources. Springer.

    Google Scholar 

  • Wohl, E., Angermeier, P. L., Bledsoe, B., Kondolf, G. M., Macdonnell, L., Merritt, D. M., Palmer, M. A., Poff, N. L., & Tarboton, D. (2005). River restoration. Water Resources Research, 41, 1–12.

    Article  Google Scholar 

  • Wohl, E., Lane, S. N., & Wilcox, A. C. (2015). The science and practice of river restoration. Water Resources Research, 51, 5974–5997.

    Article  ADS  Google Scholar 

  • Xu, H., Cao, L., Wang, L., & Zheng, X. (2021). Development of a new water ecological health assessment method for small rivers in Shanghai, China. Journal of Water and Climate Change, 12(4), 1123–1134.

    Article  Google Scholar 

  • Yadav, N. S., Sharma, M. P., & Kumar, A. (2015). Ecological health assessment of Chambal River, India. Journal of Materials and Environmental Science, 6(3), 613–618.

    CAS  Google Scholar 

  • Yu, X., He, D., & Phousavanh, P. (2019). Balancing river health and hydropower requirements in the Langcan River Basin. Springer.

    Book  Google Scholar 

  • Zheren, D. (2008). Theories and practices of river restoration. Presentation, APHW Workshop, Beijing.

    Google Scholar 

Download references

Acknowledgements

This research has been funded by a Department of Science & Technology and Biotechnology, Government of West Bengal Grant (256(Sanc)/ST/P/S & T/10G-13/2017 dated 25.03.2018) awarded to Priyank Pravin Patel. The UGC-SRF Award of Sayoni Mondal is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyank Pravin Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mondal, S., Patel, P.P. (2022). Incorporating Hydromorphological Assessments in the Fluvial Geomorphology Domain for Transitioning Towards Restorative River Science—Context, Concepts and Criteria. In: Islam, A., Das, P., Ghosh, S., Mukhopadhyay, A., Das Gupta, A., Kumar Singh, A. (eds) Fluvial Systems in the Anthropocene. Springer, Cham. https://doi.org/10.1007/978-3-031-11181-5_4

Download citation

Publish with us

Policies and ethics