Skip to main content

Artificial Intelligence for the Future of Medicine

  • Chapter
  • First Online:
Artificial Intelligence and Machine Learning for Healthcare

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 229))

  • 1013 Accesses

Abstract

Since its origins, medicine has been more linked to the cure of diseases than to their prevention. This is due to multiple factors, training of health professionals aimed at curing diseases, lack of quality data, processing capacity, poor multidisciplinary approach, etc. However, this paradigm is changing, focusing on maintaining the health of individuals to avoid diseases, improving social welfare. To achieve this, the new approach proposes that medicine must be Preventive, Participatory, Predictive, and Personalized (P4 Medicine). In this chapter, we will analyze how artificial intelligence can convincingly contribute to the construction of P4 Medicine, through the processing of key data such as DNA, electronic medical records and environmental variables to which people have been exposed. Here we can find complex data such as Computed Tomography images, electroencephalograms, free text in electronic medical records, pharmacological data, etc. These data have grown exponentially and efforts to improve their quality are already paying off. However, it is no longer possible for a health professional to analyze them to provide a better diagnosis or carry out preventive work on diseases, requiring the formation of multidisciplinary teams to find new solutions to ancient problems, such as healthcare, where data processing, knowledge extraction and its subsequent parameterization in support systems for medical decision-making are vital to save lives. In this sense, artificial intelligence, together with new methods for processing complex data and computational resources to process massive data, will be key to improving the humanity health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Turing, A. Computing machinery and intelligence. Mind (1950)

    Google Scholar 

  2. McCarthy, J., Minsky, M.L., Rochester, N., Shannon, C.E.: A proposal for the Dartmouth summer research project on artificial intelligence, 31 Aug 1955. AI Mag. 27(4), 12–12 (2006)

    Google Scholar 

  3. Thorndike, E.I.: Intelligence and its measurement: a symposium–i. J. Educ. Psychol. 12(3), 124 (1921)

    Google Scholar 

  4. Terman, L.M.: Intelligence and its measurement: a symposium–ii. J. Educ. Psychol. 12(3), 127 (1921)

    Google Scholar 

  5. Anastasi, A.: What counselors should know about the use and interpretation of psychological tests. J. Counsel. Dev. 70(5), 610–615 (1992)

    Article  Google Scholar 

  6. Gardner, H.: Frames of mind: theory of multiple intelligences. Fontana Press (1993)

    Google Scholar 

  7. Subbarayappa, B.V.: The roots of ancient medicine: an historical outline. J. Biosci. Bangalore 26(2), 135–143 (2001)

    Article  Google Scholar 

  8. Hood, L., Friend, S.H.: Predictive, personalized, preventive, participatory (p4) cancer medicine. Nat. Rev. Clin. Oncol. 8(3), 184–187 (2011)

    Google Scholar 

  9. Koteluk, O., Wartecki, A., Mazurek, S., Kołodziejczak, I., Mackiewicz, A.: How do machines learn? artificial intelligence as a new era in medicine. J. Person. Med. 11(1), 32 (2021)

    Article  Google Scholar 

  10. Thrun, S., Pratt, L. Learning to Learn. Springer (2012)

    Google Scholar 

  11. Mitchell, T.: Learning to Learn. McGraw-Hill (1997)

    Google Scholar 

  12. Samuel, A.L.: Machine learning. Technol. Rev. 62(1), 42–45 (1959)

    Google Scholar 

  13. Ray, S.: A quick review of machine learning algorithms. In 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), pp. 35–39. IEEE (2019)

    Google Scholar 

  14. Janiesch, C., Zschech, P., Heinrich, K.: Machine learning and deep learning. Electron. Markets 31(3), 685–695 (2021)

    Article  Google Scholar 

  15. Gudivada, V., Apon, A., Ding, J.: Data quality considerations for big data and machine learning: going beyond data cleaning and transformations. Int. J. Adv. Softw. 10(1), 1–20 (2017)

    Google Scholar 

  16. Awaysheh, A., Wilcke, J., Elvinger, F., Rees, L., Fan, W., Zimmerman, K.I.: Review of medical decision support and machine-learning methods. Veterinary Pathol. 56(4), 512–525 (2019)

    Google Scholar 

  17. Garg, A., Mago, V.: Role of machine learning in medical research: a survey. Comput. Sci. Rev. 40, 100370 (2021)

    Article  MathSciNet  Google Scholar 

  18. Das, S., Roy, S.D., Malakar, S., Velásquez, J.D., Sarkar, R.: Bi-level prediction model for screening covid-19 patients using chest X-ray images. Big Data Res. 25, 100233 (2021)

    Google Scholar 

  19. Tao, X., Velásquez, J.D.: Multi-source information fusion for smart health with artificial intelligence. Inf. Fusion 83–84, 93–95 (2022)

    Article  Google Scholar 

  20. Lee, C.H., Yoon, H.-J.: Medical big data: promise and challenges. Kidney Res. Clin. Practice 36(1), 3 (2017)

    Google Scholar 

  21. Garain, A., Basu, A., Giampaolo, F., Velasquez, J.D., Sarkar, R.: Detection of covid-19 from CT scan images: a spiking neural network-based approach. Neural Comput. Appl. 33(19), 12591–12604 (2021)

    Google Scholar 

  22. Buch, V.H., Ahmed, I., Maruthappu, M.: Artificial intelligence in medicine: current trends and future possibilities. Bri. J. General Practice 68(668), 143–144 (2018)

    Google Scholar 

  23. CB Insights Research: Healthcare remains the hottest AIcategory for deals (2017)

    Google Scholar 

  24. Chan, K.S., Fowles, J.B., Weiner, J.P.: Electronic health records and the reliability and validity of quality measures: a review of the literature. Med. Care Res. Rev. 67(5), 503–527 (2010)

    Google Scholar 

  25. Wang, Z.-G., Zhang, L., Zhao, W.-J.: Definition and application of precision medicine. Chin. J. Traumatol. 19(05), 249–250 (2016)

    Article  Google Scholar 

  26. Flavia Guinazu, M., Cortes, V., Ibanez, C.F., Velasquez, J.D.: Employing online social networks in precision-medicine approach using information fusion predictive model to improve substance use surveillance: a lesson from twitter and marijuana consumption. Inf. Fusion 55, 150–163 (2020)

    Google Scholar 

  27. González, F., Vera, F., González, F., Velásquez, J.D.: Kefuri: a novel technological tool for increasing organ donation in Chile. In: 2020 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), pp. 470–475. IEEE (2020)

    Google Scholar 

  28. Knoppers, B.M., Thorogood, A.M.: Ethics and big data in health. Curr. Opin. Syst. Biol4, 53–57 (2017)

    Google Scholar 

  29. Morley, J., Machado, C.C.V., Burr, C., Cowls, J., Joshi, I., Taddeo, M., Floridi, L.: The ethics of AI in health care: a mapping review. Soc. Sci. Med. 260, 113172 (2020)

    Google Scholar 

  30. Mann, J.M., Gostin, L.O., Gruskin, S., Brennan, T., Lazzarini, Z., Fineberg, H.V.: Health and human rights. In: Health and Human Rights in a Changing World, pp. 16–31. Routledge (2013)

    Google Scholar 

  31. Douali, N., Jaulent, M.-C.: Genomic and personalized medicine decision support system. In: 2012 IEEE International Conference on Complex Systems (ICCS), pp. 1–4 (2012)

    Google Scholar 

  32. Hood, L., Flores, M.: A personal view on systems medicine and the emergence of proactive p4 medicine: predictive, preventive, personalized and participatory. New Biotechnol. 29(6), 613–624 (2012)

    Article  Google Scholar 

  33. Gifari, M.W., Samodro, P., Kurniawan, D.W.: Artificial intelligence toward personalized medicine. Pharmaceut. Sci. Res. 8(2), 1 (2021)

    Google Scholar 

  34. Lin B., Wu, S.: Digital transformation in personalized medicine with artificial intelligence and the internet of medical things. Omics: J. Integr. Biol. 26(2), 77–81 (2022)

    Google Scholar 

  35. Zellweger, M.J., Tsirkin, A., Vasilchenko, V., Failer, M., Dressel, A., Kleber, M.E., Ruff, P., März, W.: A new non-invasive diagnostic tool in coronary artery disease: artificial intelligence as an essential element of predictive, preventive, and personalized medicine. EPMA J. 9(3), 235–247 (2018)

    Google Scholar 

  36. Flores, M., Glusman, G., Brogaard, K., Price, N.D., Hood, L.: P4 medicine: how systems medicine will transform the healthcare sector and society. Pers. Med. 10(6), 565–576 (2013)

    Google Scholar 

  37. Doherty, T.M., Di Pasquale,A., Michel, J.-P., Del Giudice, G.: Precision medicine and vaccination of older adults: from reactive to proactive (a mini-review). Gerontology 66(3), 238–248

    Google Scholar 

  38. Taylor, C.A., Draney, M.T., Ku, J.P., Parker, D., Steele, B.N., Wang, K., Zarins, C.K.: Predictive medicine: computational techniques in therapeutic decision-making. Comput. Aided Surgery: Off. J. Int. Soc. Comput. Aided Surgery (ISCAS) 4(5), 231–247 (1999)

    Google Scholar 

  39. Jen, M.Y., Shahrokhi, M., Varacallo, M.: Predictive medicine. In: StatPearls. StatPearls Publishing, Treasure Island (FL) (2022)

    Google Scholar 

  40. Deo, R.C.: Machine learning in medicine. Circulation 132(20), 1920–1930 (2015)

    Google Scholar 

  41. Yang, Christopher C.: Explainable artificial intelligence for predictive modeling in healthcare. J. Healthcare Inform. Res. 6(2), 228–239 (2022)

    Article  Google Scholar 

  42. Xue, Y., Klabjan, D., Luo, Y.: Predicting ICU readmission using grouped physiological and medication trends. Artif. Intell. Med. 95, 27–37 (2019)

    Article  Google Scholar 

  43. Yang, H., Yang, C.C.: Using health-consumer-contributed data to detect adverse drug reactions by association mining with temporal analysis. ACM Trans. Intell. Syst. Technol. 6(4), 1–55 (2015)

    Google Scholar 

  44. Krieg, S.J., Robertson, D.H., Pradhan, M.P., Chawla, N.V.: Higher-order networks of diabetes comorbidities: disease trajectories that matter. In: 2020 IEEE International Conference on Healthcare Informatics (ICHI), pp. 1–11 (2020)

    Google Scholar 

  45. Martinez-Ríos, E., Montesinos, L., Alfaro-Ponce, M., Pecchia, L.: A review of machine learning in hypertension detection and blood pressure estimation based on clinical and physiological data. Biomed. Signal Process. Control 68, 102813 (2021)

    Article  Google Scholar 

  46. Goh, K.H., Wang, L., Kwang Yeow, A.Y., Poh, H., Li, K., Lin Yeow, J.J., Heng Tan, GY.: Artificial intelligence in sepsis early prediction and diagnosis using unstructured data in healthcare. Nature Commun. 12(1), 1–10 (2021)

    Google Scholar 

  47. D’Haese, P.-F., Finomore, V., Lesnik, D., Kornhauser, L., Schaefer, T., Konrad, P.E., Hodder, S., Marsh, C., Rezai, A.R.: Prediction of viral symptoms using wearable technology and artificial intelligence: a pilot study in healthcare workers. PLOS ONE 16(10), e0257997 (2021) (Public Library of Science)

    Google Scholar 

  48. Elujide, I., Fashoto, S.G., Fashoto, B., Mbunge, E., Folorunso, S.O., Olamijuwon, J.O.: Application of deep and machine learning techniques for multi-label classification performance on psychotic disorder diseases. Inf. Med. Unlocked 23, 100545 (2021)

    Google Scholar 

  49. Noor, S.T., Asad, S.T., Khan, M.M., Gaba, G.S., Al-Amri, J.F., Masud, M.: Predicting the risk of depression based on ECG using RNN. Comput. Intell. Neurosci. (2021)

    Google Scholar 

  50. Vijayalaxmi, A., Sridevi, S., Sridhar, N., Ambesange, S.: Multi-disease prediction with artificial intelligence from core health parameters measured through non-invasive technique. In: 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 1252–1258. IEEE (2020)

    Google Scholar 

  51. Lauritsen, S.M., Kristensen, M., Olsen,M.V., Larsen, M.S., Lauritsen, K.M., Jørgensen, M.J., Lange, J., Thiesson, B.: Explainable artificial intelligence model to predict acute critical illness from electronic health records. Nat. Commun. 11(1), 3852 (2020) (Nature Publishing Group)

    Google Scholar 

  52. Jiang, X., Coffee, M., Bari, A., Wang, J., Jiang, X., Huang, J., Shi, J., Dai, J., Cai, J., Zhang, T., Zhengxing, W., He, G., Huang, Y.: Towards an artificial intelligence framework for data-driven prediction of coronavirus clinical severity. Comput. Mater. Continua 62, 537–551 (2020)

    Article  Google Scholar 

  53. Kanegae, H., Suzuki, K., Fukatani, K., Ito, T., Harada, N., Kario, K.: Highly precise risk prediction model for new-onset hypertension using artificial intelligence techniques. J. Clin. Hypertension 22(3), 445–450 (2020)

    Article  Google Scholar 

  54. Rebane, J., Karlsson, I., Papapetrou, P.: An investigation of interpretable deep learning for adverse drug event prediction. In: 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS), pp. 337–342. IEEE (2019)

    Google Scholar 

  55. Kalmady, S.V., Greiner, R., Agrawal, R., Shivakumar, V., Narayanaswamy, J.C., Brown, M.R.G., Greenshaw, A.J., Dursun, S.M., Venkatasubramanian, G.: Towards artificial intelligence in mental health by improving schizophrenia prediction with multiple brain parcellation ensemble-learning. NPJ Schizophrenia 5(1), 1–11 (2019)

    Google Scholar 

  56. Schmidt-Erfurth, U., Waldstein, S.M., Klimscha, S., Sadeghipour, A., Hu, X., Gerendas, B.S., Osborne, A., Bogunović, H.: Prediction of individual disease conversion in early amd using artificial intelligence. Invest. Ophthalmol. Vis. Sc. 59(8), 3199–3208 (2018)

    Google Scholar 

  57. Choi, E., Bahadori, M.T., Schuetz, A., Stewart, W.F., Sun, J.: Doctor AI: Predicting clinical events via recurrent neural networks. In: Machine Learning for Healthcare Conference, pp. 301–318. PMLR (2016)

    Google Scholar 

  58. Esteban, C., Staeck, O., Baier, S., Yang, Y., Tresp, V.: Predicting clinical events by combining static and dynamic information using recurrent neural networks. In: 2016 IEEE International Conference on Healthcare Informatics (ICHI), pp. 93–101. IEEE (2016)

    Google Scholar 

  59. Francis, N.K., Luther, A., Salib, E., Allanby, L., Messenger, D., Allison, A.S., Smart, N.J., Ockrim, J.B.: The use of artificial neural networks to predict delayed discharge and readmission in enhanced recovery following laparoscopic colorectal cancer surgery. Tech. Coloproctol. 19(7), 419–428 (2015)

    Google Scholar 

  60. Ng, E.Y.-K., Fok, S.C., Peh, Y.C., Ng, F.C., Sim, L.S.J.: Computerized detection of breast cancer with artificial intelligence and thermograms. J. Med. Eng. Technol. 26(4), 152–157 (2002)

    Article  Google Scholar 

  61. Swan, M.: Health 2050: The realization of personalized medicine through crowdsourcing, the quantified self, and the participatory biocitizen. J. Pers. Med. 2(3), 93–118 (2012)

    Article  Google Scholar 

  62. DeBronkart, D.: From patient centred to people powered: autonomy on the rise. BMJ 350 (2015)

    Google Scholar 

  63. Millenson, M.L.: When “patient centred” is no longer enough: the challenge of collaborative health: an essay by Michael L Millenson. BMJ 358 (2017)

    Google Scholar 

  64. Coughlin, S., Roberts, D., O’Neill, K., Brooks, P.: Looking to tomorrow’s healthcare today: a participatory health perspective. Internal Med. J. 48(1), 92–96 (2018)

    Article  Google Scholar 

  65. Gonzalez-Hernandez, G., Sarker, A., O’Connor, K., Savova, G.: Capturing the patient’s perspective: a review of advances in natural language processing of health-related text. Yearbook Med. inform. 26(01), 214–227 (2017)

    Article  Google Scholar 

  66. Wright, M.T., Springett, J., Kongats, K.: What is participatory health research? In Participatory Health Research, pp. 3–15. Springer (2018)

    Google Scholar 

  67. Denecke, K., Gabarron, E., Grainger, R., Th Konstantinidis, S., Lau, A., Rivera-Romero, O., Miron-Shatz, T., Merolli, M.: Artificial intelligence for participatory health: applications, impact, and future implications. Yearbook Med. Inform. 28(01), 165–173 (2019)

    Google Scholar 

  68. Almalki, M., Gray, K., Sanchez, K.M.: The use of self-quantification systems for personal health information: big data management activities and prospects. Health Inf. Sci. Syst. 3(1), 1–11 (2015)

    Google Scholar 

  69. Staccini, P., Fernandez-Luque, L., et al.: Secondary use of recorded or self-expressed personal data: consumer health informatics and education in the era of social media and health apps. Yearbook Med. Inform. 26(01), 172–177 (2017)

    Article  Google Scholar 

  70. Adikari, A., Nawaratne, R., De Silva, D., Ranasinghe, S., Alahakoon, O., Alahakoon, D., et al.: Emotions of covid-19: content analysis of self-reported information using artificial intelligence. J. Med. Internet Res. 23(4), e27341 (2021)

    Article  Google Scholar 

  71. Amin, S., Irfan Uddin, M., Hassan, S., Khan, A., Nasser, N., Alharbi, A., Alyami, H.: Recurrent neural networks with TF-IDF embedding technique for detection and classification in tweets of dengue disease. IEEE Access 8, 131522–131533 (2020)

    Google Scholar 

  72. Mann, P., Paes, A., Matsushima, E.H.: See and read: detecting depression symptoms in higher education students using multimodal social media data. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 14, pp. 440–451 (2020)

    Google Scholar 

  73. Wang, T., Brede, M., Ianni, A., Mentzakis, E.: Social interactions in online eating disorder communities: A network perspective. PloS One 13(7), e0200800 (2018)

    Article  Google Scholar 

  74. Nguyen, T., Larsen, M.E., O’Dea, B., Phung, D., Venkatesh, S., Christensen, H.: Estimation of the prevalence of adverse drug reactions from social media. In. J. Med. Informa. 102, 130–137 (2017)

    Google Scholar 

  75. Adams, D.Z., Gruss, R., Abrahams, A.S.: Automated discovery of safety and efficacy concerns for joint & muscle pain relief treatments from online reviews. Int. J. Med. Inform. 100, 108–120 2017

    Google Scholar 

  76. Yang, F.C., Lee, A.J.T., Kuo, S.-C.: Mining health social media with sentiment analysis. J. Med. Syst. 40(11), 1–8 (2016)

    Google Scholar 

  77. Rastegar-Mojarad, M., Ye, Z., Wall, D., Murali, N., Lin, S., et al.: Collecting and analyzing patient experiences of health care from social media. JMIR Res. Protocols 4(3), e3433 (2015)

    Article  Google Scholar 

  78. Lin, Y.J., Chuang, C.-W., Yen, C.-Y., Huang, S.-H., Huang, P.-W., Chen, J.-Y., Lee, S.-Y.: Artificial intelligence of things wearable system for cardiac disease detection. In: 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), pp. 67–70 (2019)

    Google Scholar 

  79. Mathew, R.B., Varghese, S., Joy, S.E. Alex, S.S.: Chatbot for disease prediction and treatment recommendation using machine learning. In: 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), pp. 851–856 (2019)

    Google Scholar 

  80. Sullivan B.: Pilot trial of the first conversational agent for smoking cessation (QuitBot). In: Clinical Research Trial Listing (Smoking Cessation) (NCT03585231)

    Google Scholar 

  81. Wall, D.P.: Superpower glass project: a mobile at-home intervention for children with autism. Clinical Trial Registration NCT03569176, clinicaltrials.gov, July 2018. Submitted: 14 June 2018

    Google Scholar 

  82. Stein, N., Brooks, K., et al.: A fully automated conversational artificial intelligence for weight loss: longitudinal observational study among overweight and obese adults. JMIR Diabetes 2(2), e8590 (2017)

    Article  Google Scholar 

  83. Fitzpatrick, K.K., Darcy, A., Vierhile, M.: Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (Woebot): a randomized controlled trial. JMIR Mental Health 4(2), e7785

    Google Scholar 

  84. Boston Medical Center: Conversational agents to improve quality of life in palliative care. Clinical Trial Registration NCT02750865, clinicaltrials.gov, December 2021. submitted: March 30, 2016

    Google Scholar 

  85. Bates, S.: Progress towards personalized medicine. Drug Discovery Today 15(3–4), 115–120 (2010)

    Article  Google Scholar 

  86. Schork, N.J.: Personalized medicine: time for one-person trials. Nature 520(7549):609–611 (2015)

    Google Scholar 

  87. Vogenberg, F.R.,, Barash, C.I., Pursel, M.: Personalized medicine. Pharm. Therapeut. 35(10):560–576 (2010)

    Google Scholar 

  88. Bollati, V., Ferrari, L., Leso, V., Iavicoli, I.: Personalised medicine: implication and perspectives in the field of occupational health. La Medicina del Lavoro 111(6), 425 (2020)

    Google Scholar 

  89. Orlando, L.A., Ryanne Wu, R., Myers, R.A., Neuner, J., McCarty, C., Haller, I.V., Harry, M., Fulda, K.G., Dimmock, D., Rakhra-Burris, T., et al.: At the intersection of precision medicine and population health: an implementation-effectiveness study of family health history based systematic risk assessment in primary care. BMC Health Services Res. 20(1), 1–10 (2020)

    Google Scholar 

  90. Dilsizian, S.E., Siegel, E.L.: Artificial intelligence in medicine and cardiac imaging: harnessing big data and advanced computing to provide personalized medical diagnosis and treatment. Curr. Cardiol. Rep. 16(1), 1–8 (2014)

    Google Scholar 

  91. Ullah, M., Akbar, A., Yannarelli, G.G.: Applications of artificial intelligence in early detection of cancer, clinical diagnosis and personalized medicine (2020)

    Google Scholar 

  92. Sollini, M., Bartoli, F., Marciano, A., Zanca, R., Slart, R.H.J.A., Erba, P. A.: Artificial intelligence and hybrid imaging: the best match for personalized medicine in oncology. Eur. J. Hybrid Imaging 4(1), 1–22 (2020)

    Google Scholar 

  93. Alagappan, M., Glissen Brown, J.R., Mori, Y., Berzin, T.M.: Artificial intelligence in gastrointestinal endoscopy: the future is almost here. World J. Gastrointest. Endosc. 10(10), 239 (2018)

    Google Scholar 

  94. Patel, D., Kher, V., Desai, B., Lei, X., Cen, S., Nanda, N., Gholamrezanezhad, A., Duddalwar, V., Varghese, B., Oberai, A.A.: Machine learning based predictors for covid-19 disease severity. Sci. Rep. 11(1), 1–7 (2021)

    Google Scholar 

  95. Murugan, R., Goel, T.: E-diconet: extreme learning machine based classifier for diagnosis of covid-19 using deep convolutional network. J. Ambient Intell. Hum. Comput. 12(9), 8887–8898 (2021)

    Google Scholar 

  96. Bibi, N., Sikandar, M., Ud Din, I., Almogren, A., Ali, S.: IoMT-based automated detection and classification of leukemia using deep learning. J. Healthcare Eng. (2020)

    Google Scholar 

  97. Nanmaran, R., Srimathi, S., Yamuna, G., Thanigaivel, S., Vickram, A.S., Priya, A.K., Karthick, A., Karpagam, J., Mohanavel, V., Muhibbullah, M.: Investigating the role of image fusion in brain tumor classification models based on machine learning algorithm for personalized medicine. Comput. Math. Methods Med. (2022)

    Google Scholar 

  98. McKinney, S.M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., Back, T., Chesus, M., Corrado, G.S., Darzi, A., et al.: International evaluation of an AI system for breast cancer screening. Nature 577(7788), 89–94 (2020)

    Google Scholar 

  99. Franzmeier, N., Koutsouleris, N., Benzinger, T., Goate, A., Karch, C.M., Fagan, A.M., McDade, E., Duering, M., Dichgans, M., Levin, J., et al.: Predicting sporadic Alzheimer’s disease progression via inherited Alzheimer’s disease-informed machine-learning. Alzheimer’s Dementia 16(3), 501–511 (2020)

    Google Scholar 

  100. Zhou, T., Thung, K.-H., Zhu, X., Shen, D.: Effective feature learning and fusion of multimodality data using stage-wise deep neural network for dementia diagnosis. Hum. Brain Map. 40(3), 1001–1016 (2019)

    Article  Google Scholar 

  101. Long, E., Lin, H., Liu, Z., Xiaohang, W., Wang, L., Jiang, J., An, Y., Lin, Z., Li, X., Chen, J., et al.: An artificial intelligence platform for the multihospital collaborative management of congenital cataracts. Nat. Biomed. Eng. 1(2), 1–8 (2017)

    Article  Google Scholar 

  102. Tan, W.K., Hassanpour, S., Heagerty, P.J., Rundell, S.D., Suri, P., Huhdanpaa, H.T., James, K., Carrell, D.S., Langlotz, C.P., Organ, N.L., et al.: Comparison of natural language processing rules-based and machine-learning systems to identify lumbar spine imaging findings related to low back pain. Acad. Radiol. 25(11), 1422–1432

    Google Scholar 

  103. Frunza, O., Inkpen, D., Tran, T.: A machine learning approach for identifying disease-treatment relations in short texts. IEEE Tran. Knowl. Data Eng. 23(6), 801–814 (2011)

    Article  Google Scholar 

  104. Khan, I.Y., Zope, P., Suralkar, S.R.: Importance of artificial neural network in medical diagnosis disease like acute nephritis disease and heart disease. Int. J. Eng. Sci. Innovat. Technol. 2, 210–217 (2013)

    Google Scholar 

  105. Kumar, K., Abhishek, B.: Artificial Neural Networks for Diagnosis of Kidney Stones Disease, vol. 10. GRIN Verlag Germany (2012)

    Google Scholar 

  106. Yang, C., An, B., Yin, S.: Heart-disease diagnosis via support vector machine-based approaches. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3153–3158 (2018)

    Google Scholar 

  107. Orunesu, E., Bagnasco, M., Salmaso, C., Altrinetti, V., Bernasconi, D., Del Monte, P., Pesce, G., Marugo, M., Mela, G.S.: Use of an artificial neural network to predict graves’ disease outcome within 2 years of drug withdrawal. Eur. J. Clin. Invest. 34(3), 210–217 (2004)

    Article  Google Scholar 

  108. Clarke, E.A.: What is preventive medicine? Can. Fam.Phys. 20(11), 65 (1974)

    Google Scholar 

  109. Chang, A.: The role of artificial intelligence in digital health. In: Digital Health Entrepreneurship, pp. 71–81. Springer (2020)

    Google Scholar 

  110. Schwalbe, N., Wahl, B.: Artificial intelligence and the future of global health. Lancet 395(10236), 1579–1586 (2020)

    Article  Google Scholar 

  111. Gastounioti, A., Desai, S., Ahluwalia, V.S., Conant, E.F., Kontos, D.: Artificial intelligence in mammographic phenotyping of breast cancer risk: a narrative review. Breast Cancer Res. 24(1), 1–12 (2022)

    Google Scholar 

  112. Johnson, K.W., Soto J.T., Glicksberg, B.S., Shameer, K., Miotto, R., Ali, M., Ashley, E., Dudley, J.T.: Artificial intelligence in cardiology. J. Am. Col. Cardiol. 71(23), 2668–2679 (2018)

    Google Scholar 

  113. Ahn, J.C., Connell, A., Simonetto, D., Hughes, C., Shah, V.H.: Application of artificial intelligence for the diagnosis and treatment of liver diseases. Hepatology 73(6), 2546–2563 (2021)

    Article  Google Scholar 

  114. Greco, M., Caruso, P.F., Cecconi, M.: Artificial intelligence in the intensive care unit. Seminars Respirat. Crit. Care Med. 42(1) (2021) (Thieme Medical Publishers, Inc.)

    Google Scholar 

  115. Damen, J.A.A.G., Hooft, L., Schuit, E., Debray, T.P.A., Collins, G.S., Tzoulaki, I., Lassale, C.M., Siontis, G.C.M., Chiocchia, V., Roberts, C.: et al.: Prediction models for cardiovascular disease risk in the general population: systematic review (2016)

    Google Scholar 

  116. Ravaut, M., Sadeghi, H., Leung, K.K., Volkovs, M., Kornas, K., Harish, V., Watson, T., Lewis, G.F., Weisman, A., Poutanen, T., et al.: Predicting adverse outcomes due to diabetes complications with machine learning using administrative health data. NPJ Digit. Med. 4(1), 1–12 (2021)

    Google Scholar 

  117. Nejra, K., Lejla, K., Nermana, K., Amina, K., Božana, L., Amina, L., Almir, B.: Application of artificial intelligence techniques to predict effects of cigarette smoking on hematological parameters and attributable diseases. In: International Conference on Medical and Biological Engineering, pp. 313–318. Springer (2021)

    Google Scholar 

  118. Mora-Jiménez, I., Tarancón-Rey, J., Álvarez-Rodríguez, J., Soguero-Ruiz, C.: Artificial intelligence to get insights of multi-drug resistance risk factors during the first 48 hours from ICU admission. Antibiotics 10(3), 239 (2021)

    Article  Google Scholar 

  119. Yang, N.I., Yeh, C.-H., Tsai, T.-H., Chou, Y.-J., Hsu, P.W.-C., Li, C.-H., Chan, Y.-H., Kuo, L.-T., Mao, C.-T., Shyu, Y.-C., et al.: Artificial intelligence-assisted identification of genetic factors predisposing high-risk individuals to asymptomatic heart failure. Cells 10(9), 2430 (2021)

    Google Scholar 

  120. Lu, Y., Stathopoulou, T., Vasiloglou, M.F., Pinault, L.F., Kiley, C., Spanakis, E.K., Mougiakakou, S.: goFOODTM: an artificial intelligence system for dietary assessment. Sensors 20(15), 4283 (2020)

    Google Scholar 

  121. Regalia, G., Onorati, F., Lai, M., Caborni, C., Picard, R.W.: Multimodal Wristworn devices for seizure detection and advancing research: focus on the Empatica wristbands. Epilepsy Res. 153, 79–82 (2019)

    Google Scholar 

  122. Christiansen, M.P., Garg, S.K., Brazg, R., Bode, B.W., Bailey, T.S., Slover, R.H., Sullivan, A., Huang, S., Shin, J., Lee, S.W., et al.: Accuracy of a fourth-generation subcutaneous continuous glucose sensor. Diabetes Technol. Therapeut. 19(8), 446–456 (2017)

    Google Scholar 

  123. Liu, Q., Cui, X., Chou, Y.-C., Abbod, M.F., Lin, J., Shieh, J.-S.: Ensemble artificial neural networks applied to predict the key risk factors of hip bone fracture for elders. Biomed. Signal Process. Control, 21, 146–156 (2015)

    Google Scholar 

  124. Irena Spasić, Pete Burnap, Mark Greenwood, and Michael Arribas-Ayllon. A naïve bayes approach to classifying topics in suicide notes. Biomedical informatics insights, 5:BII–S8945, 2012

    Google Scholar 

  125. Jang, K.J., Balakrishnan, G., Syed, Z., Verma, N.: Scalable customization of atrial fibrillation detection in cardiac monitoring devices: Increasing detection accuracy through personalized monitoring in large patient populations. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2184–2187. IEEE (2011)

    Google Scholar 

  126. Zhang, Y., Szolovits, P.: Patient-specific learning in real time for adaptive monitoring in critical care. J. Biomed. Inform. 41(3), 452–460 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from ANID PIA/APOYO AFB180003. This work was supported by projects ANID (National Research and Development Agency of Chile) Doctorado Nacional #2116137

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan D. Velásquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ruiz, R.B., Velásquez, J.D. (2023). Artificial Intelligence for the Future of Medicine. In: Lim, C.P., Vaidya, A., Chen, YW., Jain, V., Jain, L.C. (eds) Artificial Intelligence and Machine Learning for Healthcare. Intelligent Systems Reference Library, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-031-11170-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11170-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11169-3

  • Online ISBN: 978-3-031-11170-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics