Skip to main content

Data Processing Methods for Onboard Gravity Anomaly Measurements

  • Chapter
  • First Online:
Methods and Technologies for Measuring the Earth’s Gravity Field Parameters

Part of the book series: Earth Systems Data and Models ((ESDM,volume 5))

  • 279 Accesses

Abstract

This Chapter gives an overview of data processing methods used in measuring gravity anomalies on a moving base. Data processing and software of Russian mobile relative gravimeters Chekan and GT-2 are described. Information is given on optimal and suboptimal filtering and smoothing algorithms for estimation of gravity anomalies, and the methods used to identify the models needed for the algorithm design. The method of designing suboptimal smoothing algorithms with a constant delay is considered as applied to marine gravity measurements. Fusion of airborne gravimetric data and the global EGF models by multiscale representation of an anomalous gravity field using wavelet expansion on the sphere is addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akimov PA, Derevyankin AV, Matasov AI (2012) Garantiruyushchii podhod i L1-approksimatsiya v zadachakh otsenivaniya parametrov BINS pri stendovykh ispytaniyakh (Guaranteed approach and L1-norm approximation in estimation of SINS parameters in bench tests). Moscow State University, Moscow

    Google Scholar 

  • Beloglazov IN, Kazarin SN (1998) Joint optimal estimation, identification, and hypothesis testing in discrete dynamic systems. J Comput Syst Sci Int 37(4):534–550

    Google Scholar 

  • Berzhitsky VN, Bolotin YV, Golovan AA, Iljin VN, Parusnikov NA, Smoller YL, Yurist SS (2002) GT-1A inertial gravimeter system. Results of flight tests. Center of Applied Research Publishing House, Faculty of Mechanics and Mathematics, MSU, Moscow

    Google Scholar 

  • Bolotin YV, Doroshin DR (2011) Adaptive filtering in airborne gravimetry with hidden Markov chains. In: Proceedings 18th IFAC world congress, Milan, Italy, pp 9996–10001

    Google Scholar 

  • Bolotin YuV, Golovan AA (2013) Methods of inertial gravimetry. Moscow Univ Mech Bull 68(5):117–125

    Article  Google Scholar 

  • Bolotin YV, Popelensky MY (2007) Accuracy analysis of airborne gravity when gravimeter parameters are identified in flight. J Math Sci 146(3):5911–5919

    Article  Google Scholar 

  • Bolotin YV, Vyazmin VS (2015) Gravity anomaly estimation by airborne gravimetry data using LSE and minimax optimization and spherical wavelet expansion. Gyrosc Navig 6(4):310–317

    Article  Google Scholar 

  • Bolotin YV, Yurist SS (2011) Suboptimal smoothing filter for the marine gravimeter GT-2M. Gyrosc Navig 2(3):152–155

    Article  Google Scholar 

  • Bolotin YV, Golovan AA, Kruchinin PA et al (1999) Airborne gravimetry problem. Some test results, Vestnik Moskovskogo universiteta. Seriya 1: Matematika. Mekhanika 2:36–41

    Google Scholar 

  • Bolotin YV, Golovan AA, Parusnikov NA (2002) Uravneniya aerogravimetrii. Algoritmy i rezul’taty ispytanii (Airborne gravimetry equations. Test algorithms and results). Publishing House of the Faculty of Mechanics and Mathematics of the Moscow State University, Moscow

    Google Scholar 

  • Brown RG, Hwang PYC (1977) Introduction to random signals and applied Kalman filtering with MatLab exercises and solutions, 3rd edn. Wiley & Sons, New York

    Google Scholar 

  • Demyanenkov VV, Krasnov AA, Sokolov AV, Elinson LS (2014) Real-time gravimetric and navigation data acquisition and processing software. Certificate of State Registration of Computer Software No. 2014617747

    Google Scholar 

  • Dmitriev SP, Stepanov OA (2000) Noninvariant algorithms for inertial navigation system data processing. Giroskopiya i Navigatsiya 1(28):24–38

    Google Scholar 

  • Dmitriev SP, Stepanov OA (2004) Multiple model filtering for navigation problems of information processing. Radiotekhnika 7:11–17

    Google Scholar 

  • Doucet A, de Freitas N, Gordon NJ (2001) Sequential Monte Carlo methods in practice. Springer-Verlag, New York

    Book  Google Scholar 

  • Dudevich NA, Krasnov AA, Sokolov AV, Elinson LS (2007) AIRGRAV computer software. Certificate of State Registration of Computer Software No. 2007610458

    Google Scholar 

  • Dudevich NA, Krasnov AA, Sokolov AV, Elinson LS (2014) Gravimetric data acquisition and processing software in gravimeter calibration mode. Certificate of State Registration of Computer Software No. 2014617784

    Google Scholar 

  • Forsberg R, Kenyon S (2004) Gravity and geoid in the Arctic region—The northern gap now filled. In: Proceedings of the Second International GOCE user workshop, Italy

    Google Scholar 

  • Freeden W, Michel V (2004) Multiscale potential theory (with applications to geoscience). Birkhäuser Verlag

    Google Scholar 

  • Golovan AA, Parusnikov NA (2012) Matematicheskie osnovy navigatsionnykh sistem (Mathematical foundations of navigation systems), Part 2. Maks Press, Moscow

    Google Scholar 

  • Groves PD (2013) Principles of GNSS, inertial, and multisensor integrated navigation systems, 2nd edn. Artech House

    Google Scholar 

  • Hein G (1995) Progress in airborne gravimetry: solved, open and critical problems. In: Proceedings IAG Symposium on airborne gravity field determination, Calgary, August 1995

    Google Scholar 

  • Jordan SK (1972) Self-consistent statistical models for gravity anomaly and undulation of the geoid. J Geophys Res 77(20):3660–3670

    Article  Google Scholar 

  • Kailath T, Sayed AH, Hassibi B (2000) Linear estimation. Prentice-Hall

    Google Scholar 

  • Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME—J Basic Eng 82:34–45

    Google Scholar 

  • Kalman RE, Bucy RS (1961) New results in linear filtering and prediction theory. Trans ASME—J Basic Eng 83:95–107

    Google Scholar 

  • Kern M, Schwarz KP, Sneeuw N (2003) A study on the combination of satellite, airborne, and terrestrial gravity data. J Geodesy 77:217–225

    Article  Google Scholar 

  • Koshaev DA, Stepanov OA (2010) Analysis of filtering and smoothing techniques as applied to aerogravimetry. Gyrosc Navig 1(1):19–25

    Article  Google Scholar 

  • Krasnov AA, Sokolov AV (2013) Methods and software for office processing of airborne gravity measurements. Trudy Instituta prikladnoi astronomii RAN 27

    Google Scholar 

  • Krasnov AA, Sokolov AV (2015) A modern software system of a mobile Chekan-AM gravimeter. Gyrosc Navig 6(4):278–287

    Article  Google Scholar 

  • Krasnov AA, Sokolov AV, Elinson LS (2014) A new air-sea shelf gravimeter of the Chekan series. Gyrosc Navig 3:131–137

    Article  Google Scholar 

  • Lainiotis DG (1976) Partitioning: A unifying framework for adaptive systems. I: Estimation, II: Control. IEEE Trans 64(8), I. Estimation, pp 1126–1140, II. Control, pp 1182–1198

    Google Scholar 

  • Loparev AV, Stepanov OA, Chelpanov IB (2012) Using frequency approach to time-variant filtering for processing of navigation information. Gyrosc Navig 3(1):9–19

    Article  Google Scholar 

  • Meditch J (1969) Stochastic optimal linear estimation and control. McGraw-Hill Inc

    Google Scholar 

  • Motorin AV, Nosov AS (2019) Accuracy and sensitivity analysis for marine gravimetry algorithms in dependence of survey conditions. In: 2019 IEEE conference of Russian young researchers in electrical and electronic engineering (EIConRus), St. Petersburg and Moscow, Russia. IEEE, pp 1210–1215

    Google Scholar 

  • Motorin AV, Stepanov OA (2015) Designing an error model for navigation sensors using Bayesian approach. In: Proceedings 2015 IEEE International conference on Multisensor fusion and integration, pp 54–58

    Google Scholar 

  • Mudrov VI, Kushko VL (1971) Metod naimen’shikh modulei (Least absolute deviations method). Znaniye, Moscow

    Google Scholar 

  • Nesenyuk LP, Khodorkovsky YI (2010) Synthesis of the structure and parameters of the submarine meter of submergence depth, vertical speed, and vertical acceleration, Pamyati professora L.P. Nesenyuka. Izbrannye trudy i vospominaniya (In memory of Professor L.P. Nesenyuk. Selected papers and memoirs), Concern CSRI Elektropribor, JSC, St. Petersburg, pp 42–50

    Google Scholar 

  • Panteleev VL (1983) Osnovy morskoi gravimetrii (Fundamentals of marine gravimetry). Nedra, Moscow

    Google Scholar 

  • Peshekhonov VG, Sokolov AV, Elinson LS, Krasnov AA (2015) A new air-sea gravimeter: Development and test results. In: 22nd St. Petersburg International conference on integrated navigation systems, St. Petersburg: Elektropribor

    Google Scholar 

  • Rauch HE, Tung F, Striebel CT (1965) Maximum likelihood estimates of linear dynamic systems. AIAA J 3(8):1445–1450

    Article  Google Scholar 

  • Schmidt M, Fengler M, Mayer-Gurr T, Eicker A, Kusche J, Sanchez L, Han S-C (2007) Regional gravity modeling in terms of spherical base functions. J Geodesy 81(1):17–38

    Article  Google Scholar 

  • Simon D (2006) Optimal state estimation: Kalman, H-infinity, and nonlinear approaches. John Wiley & Sons Inc., New York

    Book  Google Scholar 

  • Smoller YL, Yurist SS, Fedorova IP, Bolotin YV, Golovan AA, Koneshov VN et al (2013) Using airborne gravimeter GT2A in polar areas. In: Proceedings of IAG Symposium on terrestrial gravimetry: Static and mobile measurements, TG-SMM 2013, St. Petersburg, Russia

    Google Scholar 

  • Sokolov AV, Krasnov AA, Elinson LS, Vasil’ev VA, Zheleznyak LK (2015) Calibration of the Chekan-AM gravimeter by a tilting method. Gyrosc Navig 6(4):288–293

    Google Scholar 

  • Sokolov AV, Stepanov OA, Krasnov AA, Motorin AV, Koshaev DA (2016) Comparison of stationary and nonstationary adaptive filtering and smoothing algorithms for gravity anomaly estimation on board the aircraft. In: Proceedings of 4th IAG Symposium on terrestrial gravimetry: Static and mobile measurements, TG-SMM 2016, St. Petersburg, Russia, pp 53–60

    Google Scholar 

  • Stepanov OA (1998) Primenenie teorii nelineinoi fil’tratsii v zadachakh obrabotki navigatsionnoi informatsii (Application of nonlinear filtering theory to navigation data processing). CSRI Elektropribor, St. Petersburg

    Google Scholar 

  • Stepanov OA (2016) Optimal and suboptimal filtering in integrated navigation systems. In: Nebylov A, Watson J (eds) Aerospace navigation systems. Wiley

    Google Scholar 

  • Stepanov OA (2017a) Osnovy teorii otsenivaniya s prilozheniyami k zadacham obrabotki navigatsionnoi informatsii (Fundamentals of the estimation theory with applications to the problems of navigation information processing). Part 1, Vvedenie v teoriyu otsenivaniya (Introduction to the estimation theory). Concern CSRI Elektropribor, St. Petersburg

    Google Scholar 

  • Stepanov OA (2017b) Osnovy teorii otsenivaniya s prilozheniyami k zadacham obrabotki navigatsionnoi informatsii (Fundamentals of the estimation theory with applications to the problems of navigation information processing). Part 2, Vvedenie v teoriyu fil’tratsii (Introduction to the filtering theory). Concern CSRI Elektropribor, St. Petersburg

    Google Scholar 

  • Stepanov OA, Koshaev DA (2011) A program for designing linear filtering algorithms for integrated navigation systems. IFAC Proc Vol (IFAC-PapersOnline) 44:4256–4259

    Google Scholar 

  • Stepanov OA, Motorin AV (2019) Performance criteria for the identification of inertial sensor error models. Sensors 19(9):1997

    Article  Google Scholar 

  • Stepanov OA, Blazhnov BA, Koshaev DA (2002) Studying the effectiveness of using satellite measurements in airborne gravity determination. Giroskopiya i Navigatsiya 3(38):33–47

    Google Scholar 

  • Stepanov OA, Loparev AV, Chelpanov IB (2014) Time-and-frequency approach to navigation information processing. Autom Remote Control 75(6):1090–1108

    Article  Google Scholar 

  • Stepanov OA, Koshaev DA, Motorin AV (2015) Identification of gravity anomaly model parameters in airborne gravimetry problems using nonlinear filtering methods. Gyrosc Navig 6(4):318–323

    Article  Google Scholar 

  • Tikhonov AN, Arsenin VY (1979) Metody resheniya nekorrektnykh zadach (Methods for solving ill-posed problems). Nauka, Moscow

    Google Scholar 

  • Torge W (1989) Gravimetry. de Gruyter, Berlin

    Google Scholar 

  • Toropov AB, Motorin AV, Stepanov OA, Vasiliev VA (2016) Identification of total errors of digital maps and sensors of geophysical fields. In: Proceedings of 4th IAG Symposium on terrestrial gravimetry: Static and mobile measurements, TG-SMM 2016, St. Petersburg, Russia, pp 213–216

    Google Scholar 

  • Vavilova NB, Golovan AA, Parusnikov NA, Trubnikov SA (2009) Matematicheskie modeli i algoritmy obrabotki izmerenii sputnikovoi navigatsionnoi sistemy GPS. Standartnyi regim (Mathematical models and processing algorithms for GPS satellite navigation system measurements. Standard mode). MSU Publishing House, Moscow

    Google Scholar 

  • Wei M, Ferguson S, Schwarz KP (1991) Accuracy of GPS-derived acceleration from moving platform tests. Proc IAG Symp 110:235–249

    Google Scholar 

  • Zamakhov EY, Krasnov AA, Sokolov AV, Elinson LS (2013) Gravimetric data office processing software. Certificate of State Registration of Computer Software No. 2013660223

    Google Scholar 

  • Zheleznyak LK, Elinson LS (1982) Calibration of gravimeter with two torsion-type elastic systems using the tilting method. In: Fiziko-tekhnicheskaya gravimetriya (Physical-technical gravimetry). Nauka, Moscow, pp 110–124

    Google Scholar 

  • Zheleznyak LK, Krasnov AA, Sokolov AV (2010) Effect of the inertial accelerations on the accuracy of the CHEKAN-AM gravimeter. Izvestiya. Phys Solid Earth 46(7):580–583

    Article  Google Scholar 

Download references

Acknowledgements

The research activities described in Sections 2.1 and 2.3 were supported by the Russian Science Foundation (project № 18-19-00627, https://rscf.ru/project/18-19-00627/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Stepanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krasnov, A. et al. (2022). Data Processing Methods for Onboard Gravity Anomaly Measurements. In: Peshekhonov, V.G., Stepanov, O.A. (eds) Methods and Technologies for Measuring the Earth’s Gravity Field Parameters. Earth Systems Data and Models, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-031-11158-7_2

Download citation

Publish with us

Policies and ethics