Skip to main content

Longitudinal Meta-Analysis of Multiple Effect Sizes

  • Chapter
  • First Online:
Modern Biostatistical Methods for Evidence-Based Global Health Research

Abstract

Meta-analysis methods for univariate effect sizes are well-known and developed. However, multiple outcomes are increasingly being measured and reported in medical research studies, which may lead to multiple effect sizes being estimated. The estimated effect sizes could be correlated because they are measured from the same studies. Additionally, the outcomes are often measured longitudinally, resulting in multiple effect sizes estimated repeatedly over time. Thus, the estimated effect sizes could be correlated within studies both cross-sectionally and serially due to the repeated estimation of the same effect over time in the same study. This results into longitudinal multiple effect sizes. This chapter proposes methods for statistical meta-analysis combining summary data from more than one longitudinal study with multiple effect sizes. The proposed methods are illustrated by an analysis of an example involving longitudinal meta-analysis of HIV studies assessing the effect of some antiretroviral drugs in improving viral load suppression and increasing CD4 count at weeks 4, 8, 12, 16, 20, 24, 32, 40, and 48 after start of treatment assignment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agresti, A. (1996). An introduction to categorical data analysis. New York: John Wiley & Sons, Inc.

    MATH  Google Scholar 

  • Ahn, J. E., & French, J. L. (2010). Longitudinal aggregate data model-based meta-analysis with NONMEM: approaches to handling within treatment arm correlation. Journal of Pharmacokinetics and Pharmacodynamics, 37(2), 179–201. https://doi.org/10.1007/s10928-010-9152-6. PMID: 20358280.

    Article  Google Scholar 

  • Arends, L. R., Vokó, Z., & Stijnen, T. (2003). Combining multiple outcome measures in a meta-analysis: an application. Statistics in Medicine, 22(8), 1335–1353.

    Article  Google Scholar 

  • Bax, L., Yu, L. M., Ikeda, N., Tsuruta, N., Moons, K. G. M. (2006). MIX: Comprehensive Free Software for Meta-analysis of Causal Research Data—Version 1.5.

    Google Scholar 

  • Berkey, C. S., Anderson, J. J., & Hoaglin, D. C. (1996). Multiple-outcome meta-analysis of clinical trials. Statistics in Medicine, 15(5), 537–557.

    Article  Google Scholar 

  • Berkey, C. S., Hoaglin, D. C., Antczak-Bouckoms, A., Mosteller, F., & Colditz, G. A. (1998). Meta-analysis of multiple outcomes by regression with random effects. Statistics in Medicine, 17(22), 2537–2550.

    Article  Google Scholar 

  • Borenstein, M., Hedges, L. V., Higgins, J. P. T., Rothstein, H. R. (2005). Comprehensive Meta-Analysis Version 2. Englewood, NJ: Biostat.

    Google Scholar 

  • Borenstein, M., Hedges, L. V., Higgins, J. P. T., Rothstein, H. R. (2009). Introduction to Meta-Analysis. Chichester, U.K.: Wiley.

    Book  MATH  Google Scholar 

  • Bradburn, M., Deeks, J., Altman, D. (1998). Metan—an alternative meta-analysis command. Stata Technical Bulletin, 44, 1–44.

    Google Scholar 

  • Chevarier, P., Cucherat, M., Freiburger, T., Maupas, J., Visele, N., Bugnard, F., Bazog, P., & Weasy, M. A. (2000). Lyon.

    Google Scholar 

  • Clotet, B., Bellos, N., Molina, J. M., Cooper, D., Goffard, J. C., Lazzarin, A., Wöhrmann, A., Katlama, C., Wilkin, T., Haubrich, R., & Cohen, C. (2007). Efficacy and safety of darunavir-ritonavir at week 48 in treatment-experienced patients with HIV-1 infection in POWER 1 and 2: a pooled subgroup analysis of data from two randomised trials. The Lancet, 369(9568), 1169–1178.

    Article  Google Scholar 

  • Cooper, H., Hedges, L. V., & Valentine, J. C. (Eds.). (2009). The Handbook of Research Synthesis and Meta-analysis (2nd edn.). New York: Russell Sage Foundation.

    Google Scholar 

  • Davison, A. C., & Hinkley, D. V. (1997). Bootstrap methods and their application (Vol. 1). Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Egger, M., Smith, G. D., Altman, D. (Eds.). (2008). Systematic Reviews in Health Care: Meta-analysis in Context (2nd edn.). New York: Wiley.

    Google Scholar 

  • Farlow, M. R., Small, G. W, Quarg, P, & Krause, A. (2005). Efficacy of Rivastigmine in Alzheimer’s disease patients with rapid disease progression: results of a meta-analysis. Dement Geriatr Cogn Disord, 20, 192–197.

    Article  Google Scholar 

  • Fine, H. A., Dear, K. B., Loeffler, J. S., Black, P. M., & Canellos, G. P. (1993). Meta-analysis of radiation therapy with and without adjuvant chemotherapy for malignant gliomas in adults. Cancer, 71(8), 2585–2597.

    Article  Google Scholar 

  • Gleser, L. J., & Olkin, I. (1994). Stochastically dependent effect sizes. In H. Cooper, & L. V. Hedges (Eds.). The handbook of research synthesis and meta-analysis (pp. 339-355). New York: Russell Sage Foundation.

    Google Scholar 

  • Gulick, R. M., Lalezari, J., Goodrich, J., Clumeck, N., DeJesus, E., Horban, A., Nadler, J., Clotet, B., Karlsson, A., Wohlfeiler, M., & Montana, J. B. (2008). Maraviroc for previously treated patients with R5 HIV-1 infection. New England Journal of Medicine, 359(14), 1429–1441.

    Article  Google Scholar 

  • Hedges, L. V. & Olkin I. (1985). Statistical Methods for Meta-analysis. New York: Academic Press.

    MATH  Google Scholar 

  • Hicks, C. B., Cahn, P., Cooper, D. A., Walmsley, S. L., Katlama, C., Clotet, B., Lazzarin, A., Johnson, M.A., Neubacher, D., Mayers, D., & Valdez, H. (2006). Durable efficacy of tipranavir-ritonavir in combination with an optimised background regimen of antiretroviral drugs for treatment-experienced HIV-1-infected patients at 48 weeks in the Randomized Evaluation of Strategic Intervention in multi-drug reSistant patients with tipranavir (RESIST) studies: an analysis of combined data from two randomised open-label trials. The Lancet, 368 (9534), 466–475.

    Google Scholar 

  • Higgins, J. P. T., & Green, S. (Eds.). (2008). Cochrane Handbook for Systematic Reviews of Interventions. Chichester: Wiley.

    Google Scholar 

  • Ishak, K. J., Platt, R. W., Joseph, L., Hanley, J. A., Caro, I. J. (2007). Meta-analysis of longitudinal studies. Clinical Trials, 4, 525–539.

    Article  Google Scholar 

  • Jackson, D., Riley, R., & White, I. R. (2011). Multivariate meta-analysis: Potential and promise. Statistics in Medicine, 30(20), 2481–2498.

    Article  Google Scholar 

  • Kalaian, H. A., & Raudenbush, S. W. (1996). A multivariate mixed linear model for meta-analysis. Psychological Methods, 1(3), 227–235.

    Article  Google Scholar 

  • Laird, N. M., & Ware, J. H. (1982). Random effects models for longitudinal data. Biometrics, 38, 963–974.

    Article  MATH  Google Scholar 

  • Lipsey, M. W., & Wilson, D. B. (2001). Practical Meta-analysis. Thousand Oaks, CA: Sage.

    Google Scholar 

  • Litell, J., Corcoran, J., Pillai, V. (2008). Systematic Reviews and Meta-analysis. New York: Oxford University Press.

    Book  Google Scholar 

  • Lopes, H. F., Muller, P., Rosner, G. L. (2003). Bayesian meta-analysis for longitudinal data models using multivariate mixture priors. Biometrics, 59, 66–75.

    Article  MATH  Google Scholar 

  • Mavridis, D., & Salanti, G. (2012). A practical introduction to multivariate meta-analysis. Statistical Methods in Medical Research, 22(2), 1–26.

    Google Scholar 

  • Musekiwa, A., Manda, S. O., Mwambi, H. G., & Chen, D. G. (2016). Meta-Analysis of Effect Sizes Reported at Multiple Time Points Using General Linear Mixed Model. PLoS One, e0164898. https://doi.org/10.1371/journal.pone.0164898.

  • Nam, I. S., Mengersen, K., & Garthwaite, P. (2003). Multivariate meta-analysis. Statistics in Medicine, 22(14), 2309–2333.

    Article  Google Scholar 

  • Pichenot, M., Deuffic-Burban, S., Cuzin, L., & Yazdanpanah, Y. (2011). Efficacy of new antiretroviral drugs in treatment-experienced HIV-infected patients: a systematic review and meta-analysis of recent randomized controlled trials. HIV Medicine, 13(3), 148–155.

    Google Scholar 

  • Pigott, T. D. (2012). Advances in Meta-analysis. New York: Springer.

    Book  MATH  Google Scholar 

  • Raudenbush, S. W., Becker, B. J., & Kalaian, H. (1988). Modeling multivariate effect sizes. Psychological Bulletin, 103(1), 111–119.

    Article  Google Scholar 

  • Review Manager (RevMan) (2014). [Computer program]. Version 5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration.

    Google Scholar 

  • Riley, R. D. (2009). Multivariate meta-analysis: The effect of ignoring within-study correlation. Journal of the Royal Statistical Society, Series A, 172(4), 789–811.

    Article  Google Scholar 

  • Rosenberg, M. S., Adams, D. C., Gurevitch, J. (2000). Statistical Software for Meta-Analysis Version 2. Massachusetts: Sunderland.

    Google Scholar 

  • Rosenthal, R., & Rubin, D. B. (1986). Meta-analytic procedures for combining studies with multiple effect sizes. Psychological Bulletin, 99(3), 400–406.

    Article  Google Scholar 

  • Saag, M., Goodrich, J., Fätkenheuer, G., Clotet, B., Clumeck, N., Sullivan, J., Westby, M., Van Der Ryst, E., & A4001029 Study Group. (2009). A double-blind, placebo-controlled trial of maraviroc in treatment-experienced patients infected with non-R5 HIV-1. Journal of Infectious Diseases, 199(11), 1638–1647.

    Article  Google Scholar 

  • SAS Institute Inc. (2013). SAS/STAT 9.3 user’s guide. Cary, NC: SAS Institute Inc.

    Google Scholar 

  • Suleiman, J., Zingman, B. S., Diaz, R. S., Madruga, J. V. R., DeJesus, E., Slim, J., Mak, C., Lee, E., McCarthy, M. C., Dunkle, L. M., & Walmsley, S. (2010). Vicriviroc in combination therapy with an optimized regimen for treatment-experienced subjects: 48-week results of the VICTOR-E1 phase 2 trial. Journal of Infectious Diseases, 201(4), 590–599.

    Article  Google Scholar 

  • Sutton, A. J., Abrams, K. A., Jones, D. R., Sheldon, T. A., Song, F. (2000). Methods for Meta-analysis in Medical Research. Chichester, UK: Wiley.

    Google Scholar 

  • Van Houwelingen, H. C., Arends, L. R., & Stijnen, T. (2002). Advanced methods in meta-analysis: multivariate approach and meta-regression. Statistics in Medicine, 21(4), 589–624.

    Article  Google Scholar 

  • Verbeke, G. & Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. New York: Springer.

    MATH  Google Scholar 

  • Verbeke, G., Fieuws, S., Molenberghs, G., & Davidian, M. (2014). The analysis of multivariate longitudinal data: A review. Statistical Methods in Medical Research, 23(1), 42–59.

    Article  Google Scholar 

  • Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software 36(3), 1–48.

    Article  Google Scholar 

  • Wallace, B. C., Schimd, C. H., Lau, J.,Trikalinos, T. A. (2009). Meta-analyst: software for meta-analysis of binary, continuous and diagnostic data. BMC Medical Research Methodology 9(1), 80. https://doi.org/10.1186/1471-2288-9-80.

    Article  Google Scholar 

  • Wallace, B. C., Dahabreh, I. J., Trikalinos, T. A., Lau, J., Trow, P., Schimd, C. H. (2012). Closing the Gap between Methodologists and End-Users: R as a Computational Back-End. Journal of Statistical Software, 49(5), 1–15.

    Article  Google Scholar 

  • West, B. T., Welch, K. B., & Galecki, A. T. (2014). Linear mixed models: A practical guide using statistical software (2nd edn.). New York: Chapman and Hall/CRC.

    Book  MATH  Google Scholar 

  • Whitehead, A. (2002). Meta-analysis of Controlled Clinical Trials. New York: Wiley.

    Book  Google Scholar 

Download references

Acknowledgements

This chapter is part of a PhD in Statistics entitled “Meta-analysis of longitudinal studies with multiple effect sizes” by one of the chapter authors (Alfred Musekiwa). The full PhD thesis can be accessed from the University of KwaZulu-Natal Library.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred Musekiwa .

Editor information

Editors and Affiliations

Appendix: SAS Code

Appendix: SAS Code

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Musekiwa, A. et al. (2022). Longitudinal Meta-Analysis of Multiple Effect Sizes. In: Chen, DG.(., Manda, S.O.M., Chirwa, T.F. (eds) Modern Biostatistical Methods for Evidence-Based Global Health Research. Emerging Topics in Statistics and Biostatistics . Springer, Cham. https://doi.org/10.1007/978-3-031-11012-2_8

Download citation

Publish with us

Policies and ethics