Skip to main content

TBI Sports Related Injury

  • Chapter
  • First Online:
Functional Neuroradiology

Abstract

Sports-related traumatic brain injury (TBI) is a major cause of brain injury worldwide, with an estimated 1.6–3.8 million injuries occurring yearly in the United States alone [1, 2]. In contrast to non-sports-related mechanisms of TBI, a larger percentage of sports-related TBI—nearly 90% by some estimates—are classified as mild on the Glasgow Coma Scale (GCS of 13–15), as opposed to moderate (GCS 9–12) or severe (GCS 8–3) [1, 3]. Although disagreement remains regarding the appropriate terminology for use in research and clinical care, sports-related mild TBI (mTBI) will also be referred to as sports-related concussion (SRC) in accordance with colloquial usage and a substantial portion of relevant scientific literature. Despite increasing awareness among the general population over the last decade, sport-related concussion likely remains insufficiently recognized and underreported, confounding accurate estimates of incidence among those who participate in some form of impact-prone athletic activity [4–9]. Hospital-based studies place the incidence of SRC from 3.5 to 31.5 per 100,000, accounting for 1.2–30.3% of all TBIs [1, 10]. Estimates of SRC per athlete exposure range from 0.17 to 0.99 per 1000 depending on the sport, and may be a more relevant measure of risk [11–13]. In particular, male predominant sports including football, rugby, soccer, wrestling, and lacrosse carry the highest risk of injury per athlete-exposure; among female predominant sports, soccer, rugby, lacrosse and basketball carry the highest risk of injury per athlete-exposure [6, 11, 14–16]. SRC is likely the most common cause of TBI in adolescents and young adults, accounting for half of emergency department visits for mTBI among those aged 14–18 [9, 17]. In the pediatric population, incidences as high as 304 per 100,000 have been reported, and SRC represents 8.9% of all injuries associated with high-school athletic participation in the United States [14, 17–19].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peterson AB, Zhou H, Thomas KE, Daugherty J. Surveillance report of traumatic brain injury-related hospitalizations and deaths by age group, sex, and mechanism of injury—United States, 2016 and 2017. Atlanta: Centers For Disease Control and Prevention; 2021.

    Google Scholar 

  2. Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil. 2006;21(5):375–8.

    PubMed  Google Scholar 

  3. Selassie AW, Wilson DA, Pickelsimer EE, Voronca DC, Williams NR, Edwards JC. Incidence of sport-related traumatic brain injury and risk factors of severity: a population-based epidemiologic study. Ann Epidemiol. 2013;23(12):750–6.

    PubMed  PubMed Central  Google Scholar 

  4. Stopa BM, Harary M, Jhun R, et al. Divergence in the epidemiological estimates of traumatic brain injury in the United States: comparison of two national databases. J Neurosurg. 2020;135:584–93.

    Google Scholar 

  5. Lumba-Brown A, Yeates KO, Sarmiento K, et al. Centers for Disease Control and Prevention guideline on the diagnosis and management of mild traumatic brain injury among children. JAMA Pediatr. 2018;172(11):e182853.

    PubMed  PubMed Central  Google Scholar 

  6. Guskiewicz KM, Broglio SP. Acute sports-related traumatic brain injury and repetitive concussion. Handb Clin Neurol. 2015;127:157–72.

    PubMed  Google Scholar 

  7. McCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concussion in high school football players: implications for prevention. Clin J Sport Med. 2004;14(1):13–7.

    PubMed  Google Scholar 

  8. Register-Mihalik JK, Guskiewicz KM, McLeod TCV, Linnan LA, Mueller FO, Marshall SW. Knowledge, attitude, and concussion-reporting behaviors among high school athletes: a preliminary study. J Athl Train. 2013;48(5):645–53.

    PubMed  PubMed Central  Google Scholar 

  9. Bakhos LL, Lockhart GR, Myers R, Linakis JG. Emergency department visits for concussion in young child athletes. Pediatrics. 2010;126(3):e550–6.

    PubMed  Google Scholar 

  10. McCrory P, Meeuwisse W, Dvorak J, et al. Consensus statement on concussion in sport—the 5th international conference on concussion in sport held in Berlin, October 2016. Br J Sports Med. 2017;51:838–47.

    PubMed  Google Scholar 

  11. Kerr ZY, Roos KG, Djoko A, et al. Epidemiologic measures for quantifying the incidence of concussion in National Collegiate Athletic Association Sports. J Athl Train. 2017;52(3):167–74.

    PubMed  PubMed Central  Google Scholar 

  12. Kerr ZY, Zuckerman SL, Register-Mihalik JK, et al. Estimating concussion incidence using sports injury surveillance systems: complexities and potential pitfalls. Neurol Clin. 2017;35(3):409–34.

    PubMed  Google Scholar 

  13. Zuckerman SL, Kerr ZY, Yengo-Kahn A, Wasserman E, Covassin T, Solomon GS. Epidemiology of sports-related concussion in NCAA athletes from 2009–2010 to 2013–2014. Am J Sports Med. 2015;43(11):2654–62.

    PubMed  Google Scholar 

  14. Gessel LM, Fields SK, Collins CL, Dick RW, Comstock RD. Concussions among United States high school and collegiate athletes. J Athl Train. 2007;42(4):495–503.

    PubMed  PubMed Central  Google Scholar 

  15. Master CL, Katz BP, Arbogast KB, et al. Differences in sport-related concussion for female and male athletes in comparable collegiate sports: a study from the NCAA-DoD Concussion Assessment, Research and Education (CARE) Consortium. Br J Sports Med. 2020;55:1387–94.

    PubMed  Google Scholar 

  16. Lincoln AE, Caswell SV, Almquist JL, Dunn RE, Norris JB, Hinton RY. Trends in concussion incidence in high school sports. Am J Sports Med. 2011;39(5):958–63.

    PubMed  Google Scholar 

  17. Baldwin GT, Breiding MJ, Dawn CR. Epidemiology of sports concussion in the United States. Handb Clin Neurol. 2018;158:63–74.

    PubMed  Google Scholar 

  18. Kirkwood MW, Yeates KO, Wilson PE. Pediatric sport-related concussion: a review of the clinical management of an oft-neglected population. Pediatrics. 2006;117(4):1359–71.

    PubMed  Google Scholar 

  19. Koepsell TD, Rivara FP, Vavilala MS, et al. Incidence and descriptive epidemiologic features of traumatic brain injury in King County, Washington. Pediatrics. 2011;128(5):946–54.

    PubMed  PubMed Central  Google Scholar 

  20. McCrory P, Meeuwisse WH, Aubry M, et al. Consensus statement on concussion in sport: the 4th international conference on concussion in sport held in Zurich, November 2012. Br J Sports Med. 2013;47(5):250–8.

    PubMed  Google Scholar 

  21. Asken BM, McCrea MA, Clugston JR, Snyder AR, Houck ZM, Bauer RM. “Playing through it”: delayed reporting and removal from athletic activity after concussion predicts prolonged recovery. J Athl Train. 2016;51(4):329–35.

    PubMed  PubMed Central  Google Scholar 

  22. Brett BL, Walton SR, Kerr ZY, et al. Distinct latent profiles based on neurobehavioural, physical and psychosocial functioning of former National Football League (NFL) players: an NFL-LONG study. J Neurol Neurosurg Psychiatry. 2021;92(3):282–90.

    PubMed  Google Scholar 

  23. Ling H, Hardy J, Zetterberg H. Neurological consequences of traumatic brain injuries in sports. Mol Cell Neurosci. 2015;66:114–22.

    CAS  PubMed  Google Scholar 

  24. Romeu-Mejia R, Giza CC, Goldman JT. Concussion pathophysiology and injury biomechanics. Curr Rev Musculoskelet Med. 2019;12(2):105–16.

    PubMed  PubMed Central  Google Scholar 

  25. McCrea M, Broglio S, McAllister T, et al. Return to play and risk of repeat concussion in collegiate football players: comparative analysis from the NCAA Concussion Study (1999–2001) and CARE Consortium (2014–2017). Br J Sports Med. 2020;54(2):102–9.

    PubMed  Google Scholar 

  26. Kamins J, Bigler E, Covassin T, et al. What is the physiological time to recovery after concussion? A systematic review. Br J Sports Med. 2017;51(12):935–40.

    PubMed  Google Scholar 

  27. Barlow KM, Crawford S, Stevenson A, Sandhu SS, Belanger F, Dewey D. Epidemiology of postconcussion syndrome in pediatric mild traumatic brain injury. Pediatrics. 2010;126(2):e374–81.

    PubMed  Google Scholar 

  28. Quinn DK, Mayer AR, Master CL, Fann JR. Prolonged postconcussive symptoms. Am J Psychiatry. 2018;175(2):103–11.

    PubMed  PubMed Central  Google Scholar 

  29. Zetterberg H, Winblad B, Bernick C, et al. Head trauma in sports—clinical characteristics, epidemiology and biomarkers. J Intern Med. 2019;285(6):624–34.

    CAS  PubMed  Google Scholar 

  30. Manley G, Gardner AJ, Schneider KJ, et al. A systematic review of potential long-term effects of sport-related concussion. Br J Sports Med. 2017;51(12):969–77.

    PubMed  Google Scholar 

  31. Raichle ME, Mintun MA. Brain work and brain imaging. Annu Rev Neurosci. 2006;29:449–76.

    CAS  PubMed  Google Scholar 

  32. Blockley NP, Griffeth VE, Simon AB, Buxton RB. A review of calibrated blood oxygenation level-dependent (BOLD) methods for the measurement of task-induced changes in brain oxygen metabolism. NMR Biomed. 2013;26(8):987–1003.

    PubMed  Google Scholar 

  33. Shen Q, Ren H, Duong TQ. CBF BOLD CBV and CMRO2 fMRI signal temporal dynamics at 500-msec resolution. J Magn Reson Imaging. 2008;27(3):599–606.

    PubMed  PubMed Central  Google Scholar 

  34. Medaglia JD. Functional neuroimaging in traumatic brain injury: from nodes to networks. Front Neurol. 2017;8:407.

    PubMed  PubMed Central  Google Scholar 

  35. McCrory P, Meeuwisse W, Dvorak J, et al. Consensus statement on concussion in sport—the 5th international conference on concussion in sport held in Berlin, October, 2016. Br J Sports Med. 2016;51(11):838–47.

    Google Scholar 

  36. Harvell BJ, Helmer SD, Ward JG, Ablah E, Grundmeyer R, Haan JM. Head CT guidelines following concussion among the youngest trauma patients: can we limit radiation exposure following traumatic brain injury? Kans J Med. 2018;11(2):1–17.

    PubMed  Google Scholar 

  37. Klein AP, Tetzlaff JE, Bonis JM, et al. Prevalence of potentially clinically significant magnetic resonance imaging findings in athletes with and without sport-related concussion. J Neurotrauma. 2019;36(11):1776–85.

    PubMed  PubMed Central  Google Scholar 

  38. Bonow RH, Friedman SD, Perez FA, et al. Prevalence of abnormal magnetic resonance imaging findings in children with persistent symptoms after pediatric sports-related concussion. J Neurotrauma. 2017;34(19):2706–12.

    PubMed  PubMed Central  Google Scholar 

  39. Meier TB, Espana LY, Mayer AR, et al. Resting-state fMRI metrics in acute sport-related concussion and their association with clinical recovery: a study from the NCAA-DOD CARE consortium. J Neurotrauma. 2020;37:152–62.

    PubMed  Google Scholar 

  40. Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34(4):537–41.

    CAS  PubMed  Google Scholar 

  41. Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp. 2005;26(1):15–29.

    PubMed  PubMed Central  Google Scholar 

  42. Buckner RL, Andrews-Hanna J, Schacter D. The brain’s default network: anatomy function and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38.

    PubMed  Google Scholar 

  43. Xu X, Yuan H, Lei X. Activation and connectivity within the default mode network contribute independently to future-oriented thought. Sci Rep. 2016;6:21001.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Shine JM, Breakspear M. Understanding the brain by default. Trends Neurosci. 2018;41(5):244–7.

    CAS  PubMed  Google Scholar 

  45. Newsome MR, Li X, Lin X, et al. Functional connectivity is altered in concussed adolescent athletes despite medical clearance to return to play: a preliminary report. Front Neurol. 2016;7:116.

    PubMed  PubMed Central  Google Scholar 

  46. Zhang K, Johnson B, Gay M, et al. Default mode network in concussed individuals in response to the YMCA physical stress test. J Neurotrauma. 2012;29(5):756–65.

    PubMed  PubMed Central  Google Scholar 

  47. McCuddy WT, Espana LY, Nelson LD, Birn RM, Mayer AR, Meier TB. Association of acute depressive symptoms and functional connectivity of emotional processing regions following sport-related concussion. Neuroimage Clin. 2018;19:434–42.

    PubMed  PubMed Central  Google Scholar 

  48. Chen JK, Johnston KM, Petrides M, Ptito A. Neural substrates of symptoms of depression following concussion in male athletes with persisting postconcussion symptoms. Arch Gen Psychiatry. 2008;65(1):81–9.

    PubMed  Google Scholar 

  49. van der Horn HJ, Liemburg EJ, Aleman A, Spikman JM, van der Naalt J. Brain networks subserving emotion regulation and adaptation after mild traumatic brain injury. J Neurotrauma. 2016;33(1):1–9.

    PubMed  Google Scholar 

  50. Churchill NW, Hutchison MG, Graham SJ, Schweizer TA. Connectomic markers of symptom severity in sport-related concussion: whole-brain analysis of resting-state fMRI. Neuroimage Clin. 2018;18:518–26.

    PubMed  PubMed Central  Google Scholar 

  51. Slobounov SM, Gay M, Zhang K, et al. Alteration of brain functional network at rest and in response to YMCA physical stress test in concussed athletes: RsFMRI study. Neuroimage. 2011;55(4):1716–27.

    CAS  PubMed  Google Scholar 

  52. Borich M, Babul AN, Yuan PH, Boyd L, Virji-Babul N. Alterations in resting-state brain networks in concussed adolescent athletes. J Neurotrauma. 2015;32(4):265–71.

    PubMed  Google Scholar 

  53. Czerniak SM, Sikoglu EM, Liso Navarro AA, et al. A resting state functional magnetic resonance imaging study of concussion in collegiate athletes. Brain Imaging Behav. 2015;9(2):323–32.

    PubMed  PubMed Central  Google Scholar 

  54. Guell X, Arnold Anteraper S, Gardner AJ, et al. Functional connectivity changes in retired Rugby league players: a data-driven functional magnetic resonance imaging study. J Neurotrauma. 2020;37:1788–96.

    PubMed  Google Scholar 

  55. Churchill N, Hutchison MG, Leung G, Graham S, Schweizer TA. Changes in functional connectivity of the brain associated with a history of sport concussion: a preliminary investigation. Brain Inj. 2017;31(1):39–48.

    PubMed  Google Scholar 

  56. Calhoun VD, Miller R, Pearlson G, Adali T. The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron. 2014;84(2):262–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hutchison RM, Womelsdorf T, Allen EA, et al. Dynamic functional connectivity: promise issues and interpretations. Neuroimage. 2013;80:360–78.

    PubMed  Google Scholar 

  58. Churchill NW, Hutchison MG, Graham SJ, Schweizer TA. Scale-free functional brain dynamics during recovery from sport-related concussion. Hum Brain Mapp. 2020;41:2567–82.

    PubMed  PubMed Central  Google Scholar 

  59. Saurabh S, Sebastien N, Foad T, et al. Multimodal dynamic brain connectivity analysis based on graph signal processing for former athletes with history of multiple concussions. IEEE Trans Signal Inf Process Netw. 2020;6:284–99.

    Google Scholar 

  60. Meier TB, Bellgowan PS, Mayer AR. Longitudinal assessment of local and global functional connectivity following sports-related concussion. Brain Imaging Behav. 2017;11(1):129–40.

    PubMed  Google Scholar 

  61. Meier TB, Lancaster MA, Mayer AR, Teague TK, Savitz J. Abnormalities in functional connectivity in collegiate football athletes with and without a concussion history: implications and role of neuroactive kynurenine pathway metabolites. J Neurotrauma. 2017;34(4):824–37.

    PubMed  Google Scholar 

  62. Murugesan G, Saghafi B, Davenport E, et al. Single season changes in resting state network power and the connectivity between regions: distinguish head impact exposure level in high school and youth football players. Proc SPIE Int Soc Opt Eng. 2018;10575:99–105.

    Google Scholar 

  63. Murugesan G, Famili A, Davenport E, et al. Changes in resting state MRI networks from a single season of football distinguishes controls, low, and high head impact exposure. Proc IEEE Int Symp Biomed Imaging. 2017;2017:464–7.

    PubMed  PubMed Central  Google Scholar 

  64. Logothetis NK. What we can do and what we cannot do with fMRI. Nature. 2008;453(7197):869–78.

    CAS  PubMed  Google Scholar 

  65. Belanger HG, Vanderploeg RD. The neuropsychological impact of sports-related concussion: a meta-analysis. J Int Neuropsychol Soc. 2005;11(4):345–57.

    PubMed  Google Scholar 

  66. McAllister TW, Saykin AJ, Flashman LA, et al. Brain activation during working memory 1 month after mild traumatic brain injury: a functional MRI study. Neurology. 1999;53(6):1300–8.

    CAS  PubMed  Google Scholar 

  67. McAllister TW, Sparling MB, Flashman LA, Guerin SJ, Mamourian AC, Saykin AJ. Differential working memory load effects after mild traumatic brain injury. Neuroimage. 2001;14(5):1004–12.

    CAS  PubMed  Google Scholar 

  68. Chen JK, Johnston KM, Frey S, Petrides M, Worsley K, Ptito A. Functional abnormalities in symptomatic concussed athletes: an fMRI study. Neuroimage. 2004;22(1):68–82.

    PubMed  Google Scholar 

  69. Coverdale NS, Fernandez-Ruiz J, Champagne AA, Mark CI, Cook DJ. Co-localized impaired regional cerebrovascular reactivity in chronic concussion is associated with BOLD activation differences during a working memory task. Brain Imaging Behav. 2020;14:2438–49.

    PubMed  Google Scholar 

  70. Dettwiler A, Murugavel M, Putukian M, Cubon V, Furtado J, Osherson D. Persistent differences in patterns of brain activation after sports-related concussion: a longitudinal functional magnetic resonance imaging study. J Neurotrauma. 2014;31(2):180–8.

    PubMed  PubMed Central  Google Scholar 

  71. Slobounov SM, Zhang K, Pennell D, Ray W, Johnson B, Sebastianelli W. Functional abnormalities in normally appearing athletes following mild traumatic brain injury: a functional MRI study. Exp Brain Res. 2010;202(2):341–54.

    PubMed  Google Scholar 

  72. Jantzen KJ, Anderson B, Steinberg FL, Kelso JA. A prospective functional MR imaging study of mild traumatic brain injury in college football players. AJNR Am J Neuroradiol. 2004;25(5):738–45.

    PubMed  PubMed Central  Google Scholar 

  73. Johnson B, Zhang K, Hallett M, Slobounov S. Functional neuroimaging of acute oculomotor deficits in concussed athletes. Brain Imaging Behav. 2015;9(3):564–73.

    PubMed  Google Scholar 

  74. Johnson B, Hallett M, Slobounov S. Follow-up evaluation of oculomotor performance with fMRI in the subacute phase of concussion. Neurology. 2015;85(13):1163–6.

    PubMed  PubMed Central  Google Scholar 

  75. Clough M, Mutimer S, Wright DK, et al. Oculomotor cognitive control abnormalities in Australian rules football players with a history of concussion. J Neurotrauma. 2018;35(5):730–8.

    PubMed  Google Scholar 

  76. Lovell MR, Pardini JE, Welling J, et al. Functional brain abnormalities are related to clinical recovery and time to return-to-play in athletes. Neurosurgery. 2007;61(2):352–9.

    PubMed  Google Scholar 

  77. Pardini JE, Pardini DA, Becker JT, et al. Postconcussive symptoms are associated with compensatory cortical recruitment during a working memory task. Neurosurgery. 2010;67(4):1020–7.

    PubMed  Google Scholar 

  78. Chen JK, Johnston KM, Collie A, McCrory P, Ptito A. A validation of the post concussion symptom scale in the assessment of complex concussion using cognitive testing and functional MRI. J Neurol Neurosurg Psychiatry. 2007;78(11):1231–8.

    PubMed  PubMed Central  Google Scholar 

  79. Terry DP, Adams TE, Ferrara MS, Miller LS. FMRI hypoactivation during verbal learning and memory in former high school football players with multiple concussions. Arch Clin Neuropsychol. 2015;30(4):341–55.

    PubMed  Google Scholar 

  80. Terry DP, Faraco CC, Smith D, Diddams MJ, Puente AN, Miller LS. Lack of long-term fMRI differences after multiple sports-related concussions. Brain Inj. 2012;26(13–14):1684–96.

    PubMed  Google Scholar 

  81. Elbin RJ, Covassin T, Hakun J, et al. Do brain activation changes persist in athletes with a history of multiple concussions who are asymptomatic? Brain Inj. 2012;26(10):1217–25.

    CAS  PubMed  Google Scholar 

  82. Talavage TM, Nauman E, Breedlove EL, et al. Functionally-detected cognitive impairment in high school football players without clinically-diagnosed concussion. J Neurotrauma. 2014;31(4):327–38.

    PubMed  PubMed Central  Google Scholar 

  83. Rangaprakash D, Wu G-R, Marinazzo D, Hu X, Deshpande G. Hemodynamic response function (HRF) variability confounds resting-state fMRI functional connectivity. Magn Reson Med. 2018;80(4):1697–713.

    CAS  PubMed  Google Scholar 

  84. Park E, Bell JD, Siddiq IP, Baker AJ. An analysis of regional microvascular loss and recovery following two grades of fluid percussion trauma: a role for hypoxia-inducible factors in traumatic brain injury. J Cereb Blood Flow Metab. 2009;29(3):575–84.

    CAS  PubMed  Google Scholar 

  85. Harris NG, Verley DR, Gutman BA, Thompson PM, Yeh HJ, Brown JA. Disconnection and hyper-connectivity underlie reorganization after TBI: a rodent functional connectomic analysis. Exp Neurol. 2016;277:124–38.

    CAS  PubMed  Google Scholar 

  86. Steinman J, Cahill LS, Koletar MM, Stefanovic B, Sled JG. Acute and chronic stage adaptations of vascular architecture and cerebral blood flow in a mouse model of TBI. Neuroimage. 2019;202:116101.

    PubMed  Google Scholar 

  87. Reid LB, Boyd RN, Cunnington R, Rose SE. Interpreting intervention induced neuroplasticity with fMRI: the case for multimodal imaging strategies. Neural Plast. 2016;2016:2643491.

    PubMed  Google Scholar 

  88. Liau J, Liu TT. Inter-subject variability in hypercapnic normalization of the BOLD fMRI response. Neuroimage. 2009;45(2):420–30.

    PubMed  Google Scholar 

  89. Stefanovic B, Warnking JM, Pike GB. Hemodynamic and metabolic responses to neuronal inhibition. Neuroimage. 2004;22(2):771–8.

    PubMed  Google Scholar 

  90. Bandettini PA, Wong EC. A hypercapnia-based normalization method for improved spatial localization of human brain activation with fMRI. NMR Biomed. 1997;10(4–5):197–203.

    CAS  PubMed  Google Scholar 

  91. Sicard KM, Duong TQ. Effects of hypoxia hyperoxia and hypercapnia on baseline and stimulus-evoked BOLD CBF and CMRO2 in spontaneously breathing animals. Neuroimage. 2005;25(3):850–8.

    PubMed  Google Scholar 

  92. Zappe AC, Uludag K, Oeltermann A, Ugurbil K, Logothetis NK. The influence of moderate hypercapnia on neural activity in the anesthetized nonhuman primate. Cereb Cortex. 2008;18(11):2666–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med. 1998;40(3):383–96.

    CAS  PubMed  Google Scholar 

  94. Jezzard P, Chappell MA, Okell TW. Arterial spin labeling for the measurement of cerebral perfusion and angiography. J Cereb Blood Flow Metab. 2018;38(4):603–26.

    PubMed  Google Scholar 

  95. Petcharunpaisan S, Ramalho J, Castillo M. Arterial spin labeling in neuroimaging. World J Radiol. 2010;2(10):384–98.

    PubMed  PubMed Central  Google Scholar 

  96. Wang Y, Nelson LD, LaRoche AA, et al. Cerebral blood flow alterations in acute sport-related concussion. J Neurotrauma. 2016;33(13):1227–36.

    PubMed  PubMed Central  Google Scholar 

  97. Wang Y, Nencka AS, Meier TB, et al. Cerebral blood flow in acute concussion: preliminary ASL findings from the NCAA-DoD CARE consortium. Brain Imaging Behav. 2019;13(5):1375–85.

    PubMed  PubMed Central  Google Scholar 

  98. Churchill NW, Hutchison MG, Graham SJ, Schweizer TA. Symptom correlates of cerebral blood flow following acute concussion. NeuroImage Clin. 2017;16:234–9.

    PubMed  PubMed Central  Google Scholar 

  99. Churchill NW, Hutchison MG, Richards D, Leung G, Graham SJ, Schweizer TA. The first week after concussion: blood flow, brain function and white matter microstructure. NeuroImage Clin. 2017;14:480–9.

    PubMed  PubMed Central  Google Scholar 

  100. Barlow KM, Marcil LD, Dewey D, et al. Cerebral perfusion changes in post-concussion syndrome: a prospective controlled cohort study. J Neurotrauma. 2017;34(5):996–1004.

    PubMed  PubMed Central  Google Scholar 

  101. Peng S-P, Li Y-N, Liu J, et al. Pulsed arterial spin labeling effectively and dynamically observes changes in cerebral blood flow after mild traumatic brain injury. Neural Regen Res. 2016;11(2):257–61.

    PubMed  PubMed Central  Google Scholar 

  102. Li F, Lu L, Shang S, et al. Cerebral blood flow and its connectivity deficits in mild traumatic brain injury at the acute stage. Neural Plast. 2020;2020:2174371.

    PubMed  PubMed Central  Google Scholar 

  103. Champagne AA, Coverdale NS, Fernandez-Ruiz J, Mark CI, Cook DJ. Compromised resting cerebral metabolism after sport-related concussion: a calibrated MRI study. Brain Imaging Behav. 2021;15(1):133–46.

    PubMed  Google Scholar 

  104. Stephens JA, Liu P, Lu H, Suskauer SJ. Cerebral blood flow after mild traumatic brain injury: associations between symptoms and post-injury perfusion. J Neurotrauma. 2018;35(2):241–8.

    PubMed  PubMed Central  Google Scholar 

  105. Barlow KM, Iyer K, Yan T, Scurfield A, Carlson H, Wang Y. Cerebral blood flow predicts recovery in children with persistent post-concussion symptoms after mild traumatic brain injury. J Neurotrauma. 2021;38(16):2275–83.

    PubMed  PubMed Central  Google Scholar 

  106. Liu K, Li B, Qian S, et al. Mental fatigue after mild traumatic brain injury: a 3D-ASL perfusion study. Brain Imaging Behav. 2016;10(3):857–68.

    PubMed  Google Scholar 

  107. Churchill NW, Hutchison MG, Graham SJ, Schweizer TA. Mapping brain recovery after concussion: from acute injury to 1 year after medical clearance. Neurology. 2019;93(21):e1980–92.

    PubMed  PubMed Central  Google Scholar 

  108. Hamer J, Churchill NW, Hutchison MG, Graham SJ, Schweizer TA. Sex differences in cerebral blood flow associated with a history of concussion. J Neurotrauma. 2020;37(10):1197–203.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher T. Whitlow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kawas, M.I., Sheridan, C.A., Flood, W.C., Sweeney, A.P., Whitlow, C.T. (2023). TBI Sports Related Injury. In: Faro, S.H., Mohamed, F.B. (eds) Functional Neuroradiology. Springer, Cham. https://doi.org/10.1007/978-3-031-10909-6_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10909-6_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10908-9

  • Online ISBN: 978-3-031-10909-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics