Skip to main content

Clinical Applications of Diffusion

  • Chapter
  • First Online:
Functional Neuroradiology

Abstract

Diffusion-weighted magnetic resonance imaging (DWI) is a technique based on diffusion of water molecules in tissues with clinical applications to a wide array of pathological conditions. Currently, DWI is the most reliable method for detection of early and small ischemic infarcts in the brain and the gold standard for determination of the infarct core. DWI is also an important sequence for characterization of various neoplastic conditions such as epidermoid tumors, lymphomas, and high-grade astrocytomas, and enables distinction of pyogenic abscesses from ring enhancing intracranial neoplasms. Additional applications of DWI include differentiation of vasogenic edema syndromes from acute ischemia, identification and characterization of acute demyelinating lesions and important mimics, and characterization of encephalitides, toxic and metabolic lesions, diffuse axonal injury, along with applications to head and neck and spine imaging. This chapter provides an overview of various clinical applications of DWI, including its use for prediction of complications and outcomes of ischemic strokes and distinction of tumor progression from treatment-related changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys. 1965;42:288–92.

    CAS  Google Scholar 

  2. James TL, McDonald GG. Measurement of the self-diffusion coefficient of each component in a complex system using pulsed-gradient Fourier transform NMR. J Magn Reson. 1973;11:58–61.

    CAS  Google Scholar 

  3. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161(2):401–7.

    PubMed  Google Scholar 

  4. Thomsen C, Henriksen O, Ring P. In vivo measurement of water self-diffusion in the human brain by magnetic resonance imaging. Acta Radiol. 1987;28(3):353–61.

    CAS  PubMed  Google Scholar 

  5. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology. 1988;168(2):497–505.

    PubMed  Google Scholar 

  6. Brooks DJ, Luthert P, Gadian D, Marsden CD. Does signal-attenuation on high-field T2-weighted MRI of the brain reflect regional cerebral iron deposition? Observations on the relationship between regional cerebral water proton T2 values and iron levels. J Neurol Neurosurg Psychiatry. 1989;52(1):108–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Merboldt KD, Bruhn H, Frahm J, Gyngell ML, Hanicke W, Deimling M. MRI of “diffusion” in the human brain: new results using a modified CE-FAST sequence. Magn Reson Med. 1989;9(3):423–9.

    CAS  PubMed  Google Scholar 

  8. Moseley ME, Cohen Y, Mintorovitch J, et al. Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med. 1990;14(2):330–46.

    CAS  PubMed  Google Scholar 

  9. Doran M, Hajnal JV, Van Bruggen N, King MD, Young IR, Bydder GM. Normal and abnormal white matter tracts shown by MR imaging using directional diffusion weighted sequences. J Comput Assist Tomogr. 1990;14(6):865–73.

    CAS  PubMed  Google Scholar 

  10. Sevick RJ, Kucharczyk J, Mintorovitch J, Moseley ME, Derugin N, Norman D. Diffusion-weighted MR imaging and T2-weighted MR imaging in acute cerebral ischaemia: comparison and correlation with histopathology. Acta Neurochir Suppl. 1990;51:210–2.

    CAS  PubMed  Google Scholar 

  11. Moseley ME, Cohen Y, Kucharczyk J, et al. Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology. 1990;176(2):439–45.

    CAS  PubMed  Google Scholar 

  12. Moseley ME, Kucharczyk J, Mintorovitch J, et al. Diffusion-weighted MR imaging of acute stroke: correlation with T2-weighted and magnetic susceptibility-enhanced MR imaging in cats. AJNR Am J Neuroradiol. 1990;11(3):423–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Tsuruda JS, Chew WM, Moseley ME, Norman D. Diffusion-weighted MR imaging of the brain: value of differentiating between extraaxial cysts and epidermoid tumors. AJNR Am J Neuroradiol. 1990;11(5):925–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Merboldt KD, Hanicke W, Gyngell ML, Frahm J, Bruhn H. The influence of flow and motion in MRI of diffusion using a modified CE-FAST sequence. Magn Reson Med. 1989;12(2):198–208.

    CAS  PubMed  Google Scholar 

  15. Goodman JA, Kroenke CD, Bretthorst GL, Ackerman JJ, Neil JJ. Sodium ion apparent diffusion coefficient in living rat brain. Magn Reson Med. 2005;53(5):1040–5.

    CAS  PubMed  Google Scholar 

  16. Mintorovitch J, Yang GY, Shimizu H, Kucharczyk J, Chan PH, Weinstein PR. Diffusion-weighted magnetic resonance imaging of acute focal cerebral ischemia: comparison of signal intensity with changes in brain water and Na+,K(+)-ATPase activity. J Cereb Blood Flow Metab. 1994;14(2):332–6.

    CAS  PubMed  Google Scholar 

  17. Benveniste H, Hedlund LW, Johnson GA. Mechanism of detection of acute cerebral ischemia in rats by diffusion-weighted magnetic resonance microscopy. Stroke. 1992;23(5):746–54.

    CAS  PubMed  Google Scholar 

  18. Veldhuis WB, van der Stelt M, Delmas F, et al. In vivo excitotoxicity induced by ouabain, a Na+/K+-ATPase inhibitor. J Cereb Blood Flow Metab. 2003;23(1):62–74.

    CAS  PubMed  Google Scholar 

  19. Sevick RJ, Kanda F, Mintorovitch J, et al. Cytotoxic brain edema: assessment with diffusion-weighted MR imaging. Radiology. 1992;185(3):687–90.

    CAS  PubMed  Google Scholar 

  20. Duong TQ, Ackerman JJ, Ying HS, Neil JJ. Evaluation of extra- and intracellular apparent diffusion in normal and globally ischemic rat brain via 19F NMR. Magn Reson Med. 1998;40(1):1–13.

    CAS  PubMed  Google Scholar 

  21. Babsky AM, Topper S, Zhang H, et al. Evaluation of extra- and intracellular apparent diffusion coefficient of sodium in rat skeletal muscle: effects of prolonged ischemia. Magn Reson Med. 2008;59(3):485–91.

    CAS  PubMed  Google Scholar 

  22. Qiao M, Malisza KL, Del Bigio MR, Tuor UI. Transient hypoxia-ischemia in rats: changes in diffusion-sensitive MR imaging findings, extracellular space, and Na+-K+ -adenosine triphosphatase and cytochrome oxidase activity. Radiology. 2002;223(1):65–75.

    CAS  PubMed  Google Scholar 

  23. Anderson AW, Zhong J, Petroff OA, et al. Effects of osmotically driven cell volume changes on diffusion-weighted imaging of the rat optic nerve. Magn Reson Med. 1996;35(2):162–7.

    CAS  PubMed  Google Scholar 

  24. van der Toorn A, Sykova E, Dijkhuizen RM, et al. Dynamic changes in water ADC, energy metabolism, extracellular space volume, and tortuosity in neonatal rat brain during global ischemia. Magn Reson Med. 1996;36(1):52–60.

    PubMed  Google Scholar 

  25. van der Toorn A, Dijkhuizen RM, Tulleken CA, Nicolay K. Diffusion of metabolites in normal and ischemic rat brain measured by localized 1H MRS. Magn Reson Med. 1996;36(6):914–22.

    PubMed  Google Scholar 

  26. Neil JJ, Duong TQ, Ackerman JJ. Evaluation of intracellular diffusion in normal and globally-ischemic rat brain via 133Cs NMR. Magn Reson Med. 1996;35(3):329–35.

    CAS  PubMed  Google Scholar 

  27. Mastro AM, Babich MA, Taylor WD, Keith AD. Diffusion of a small molecule in the cytoplasm of mammalian cells. Proc Natl Acad Sci U S A. 1984;81(11):3414–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wojcieszyn JW, Schlegel RA, Wu ES, Jacobson KA. Diffusion of injected macromolecules within the cytoplasm of living cells. Proc Natl Acad Sci U S A. 1981;78(7):4407–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Szafer A, Zhong J, Gore JC. Theoretical model for water diffusion in tissues. Magn Reson Med. 1995;33(5):697–712.

    CAS  PubMed  Google Scholar 

  30. Chalela JA, Kidwell CS, Nentwich LM, et al. Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. Lancet. 2007;369(9558):293–8.

    PubMed  PubMed Central  Google Scholar 

  31. Gonzalez RG, Schaefer PW, Buonanno FS, et al. Diffusion-weighted MR imaging: diagnostic accuracy in patients imaged within 6 hours of stroke symptom onset. Radiology. 1999;210(1):155–62.

    CAS  PubMed  Google Scholar 

  32. Saur D, Kucinski T, Grzyska U, et al. Sensitivity and interrater agreement of CT and diffusion-weighted MR imaging in hyperacute stroke. AJNR Am J Neuroradiol. 2003;24(5):878–85.

    PubMed  PubMed Central  Google Scholar 

  33. Urbach H, Flacke S, Keller E, et al. Detectability and detection rate of acute cerebral hemisphere infarcts on CT and diffusion-weighted MRI. Neuroradiology. 2000;42(10):722–7.

    CAS  PubMed  Google Scholar 

  34. Mullins ME, Schaefer PW, Sorensen AG, et al. CT and conventional and diffusion-weighted MR imaging in acute stroke: study in 691 patients at presentation to the emergency department. Radiology. 2002;224(2):353–60.

    PubMed  Google Scholar 

  35. Hjort N, Christensen S, Solling C, et al. Ischemic injury detected by diffusion imaging 11 minutes after stroke. Ann Neurol. 2005;58(3):462–5.

    PubMed  Google Scholar 

  36. Zhang X-H, Liang H-M. Systematic review with network meta-analysis: Diagnostic values of ultrasonography, computed tomography, and magnetic resonance imaging in patients with ischemic stroke. Medicine. 2019;98(30):16360.

    Google Scholar 

  37. Engelter ST, Wetzel SG, Radue EW, Rausch M, Steck AJ, Lyrer PA. The clinical significance of diffusion-weighted MR imaging in infratentorial strokes. Neurology. 2004;62(4):574–80.

    CAS  PubMed  Google Scholar 

  38. Lutsep HL, Albers GW, DeCrespigny A, Kamat GN, Marks MP, Moseley ME. Clinical utility of diffusion-weighted magnetic resonance imaging in the assessment of ischemic stroke. Ann Neurol. 1997;41(5):574–80.

    CAS  PubMed  Google Scholar 

  39. Simonsen CZ, Madsen MH, Schmitz ML, Mikkelsen IK, Fisher M, Andersen G. Sensitivity of diffusion- and perfusion-weighted imaging for diagnosing acute ischemic stroke is 97.5%. Stroke. 2015;46(1):98–101.

    PubMed  Google Scholar 

  40. Welch KM, Windham J, Knight RA, et al. A model to predict the histopathology of human stroke using diffusion and T2-weighted magnetic resonance imaging. Stroke. 1995;26(11):1983–9.

    CAS  PubMed  Google Scholar 

  41. Knight RA, Dereski MO, Helpern JA, Ordidge RJ, Chopp M. Magnetic resonance imaging assessment of evolving focal cerebral ischemia. Comparison with histopathology in rats. Stroke. 1994;25(6):1252–61. discussion 61-2

    CAS  PubMed  Google Scholar 

  42. Schlaug G, Siewert B, Benfield A, Edelman RR, Warach S. Time course of the apparent diffusion coefficient (ADC) abnormality in human stroke. Neurology. 1997;49(1):113–9.

    CAS  PubMed  Google Scholar 

  43. Warach S, Chien D, Li W, Ronthal M, Edelman RR. Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology. 1992;42(9):1717–23.

    CAS  PubMed  Google Scholar 

  44. Schwamm LH, Koroshetz WJ, Sorensen AG, et al. Time course of lesion development in patients with acute stroke: serial diffusion- and hemodynamic-weighted magnetic resonance imaging. Stroke. 1998;29(11):2268–76.

    CAS  PubMed  Google Scholar 

  45. Fiebach JB, Jansen O, Schellinger PD, Heiland S, Hacke W, Sartor K. Serial analysis of the apparent diffusion coefficient time course in human stroke. Neuroradiology. 2002;44(4):294–8.

    CAS  PubMed  Google Scholar 

  46. Warach S, Gaa J, Siewert B, Wielopolski P, Edelman RR. Acute human stroke studied by whole brain echo planar diffusion-weighted magnetic resonance imaging. Ann Neurol. 1995;37(2):231–41.

    CAS  PubMed  Google Scholar 

  47. Copen WA, Schwamm LH, Gonzalez RG, et al. Ischemic stroke: effects of etiology and patient age on the time course of the core apparent diffusion coefficient. Radiology. 2001;221(1):27–34.

    CAS  PubMed  Google Scholar 

  48. Kuker W, Weise J, Krapf H, Schmidt F, Friese S, Bahr M. MRI characteristics of acute and subacute brainstem and thalamic infarctions: value of T2- and diffusion-weighted sequences. J Neurol. 2002;249(1):33–42.

    PubMed  Google Scholar 

  49. Oppenheim C, Stanescu R, Dormont D, et al. False-negative diffusion-weighted MR findings in acute ischemic stroke. AJNR Am J Neuroradiol. 2000;21(8):1434–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Ay H, Buonanno FS, Rordorf G, et al. Normal diffusion-weighted MRI during stroke-like deficits. Neurology. 1999;52(9):1784–92.

    CAS  PubMed  Google Scholar 

  51. Narisawa A, Shamoto H, Shimizu H, Tominaga T, Yoshimoto T. Diffusion-weighted magnetic resonance imaging (MRI) in acute brain stem infarction. No To Shinkei. 2001;53(11):1021–6.

    CAS  PubMed  Google Scholar 

  52. Etgen T, Grafin von Einsiedel H, Rottinger M, Winbeck K, Conrad B, Sander D. Detection of acute brainstem infarction by using DWI/MRI. Eur Neurol. 2004;52(3):145–50.

    PubMed  Google Scholar 

  53. Fitzek S, Fitzek C, Urban PP, Marx J, Hopf HC, Stoeter P. Time course of lesion development in patients with acute brain stem infarction and correlation with NIHSS score. Eur J Radiol. 2001;39(3):180–5.

    CAS  PubMed  Google Scholar 

  54. Linfante I, Llinas RH, Schlaug G, Chaves C, Warach S, Caplan LR. Diffusion-weighted imaging and National Institutes of Health Stroke Scale in the acute phase of posterior-circulation stroke. Arch Neurol. 2001;58(4):621–8.

    CAS  PubMed  Google Scholar 

  55. Toi H, Uno M, Harada M, et al. Diagnosis of acute brain-stem infarcts using diffusion-weighed MRI. Neuroradiology. 2003;45(6):352–6.

    CAS  PubMed  Google Scholar 

  56. Burdette JH, Elster AD. Diffusion-weighted imaging of cerebral infarctions: are higher B values better? J Comput Assist Tomogr. 2002;26(4):622–7.

    PubMed  Google Scholar 

  57. Cihangiroglu M, Citci B, Kilickesmez O, et al. The utility of high b-value DWI in evaluation of ischemic stroke at 3T. Eur J Radiol. 2009;78(1):75–81.

    PubMed  Google Scholar 

  58. Kim HJ, Choi CG, Lee DH, Lee JH, Kim SJ, Suh DC. High-b-value diffusion-weighted MR imaging of hyperacute ischemic stroke at 1.5T. AJNR Am J Neuroradiol. 2005;26(2):208–15.

    PubMed  PubMed Central  Google Scholar 

  59. Meyer JR, Gutierrez A, Mock B, et al. High-b-value diffusion-weighted MR imaging of suspected brain infarction. AJNR Am J Neuroradiol. 2000;21(10):1821–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Cihangiroglu M, Citci B, Kilickesmez O, et al. The utility of high b-value DWI in evaluation of ischemic stroke at 3T. Eur J Radiol. 2011;78(1):75–81.

    PubMed  Google Scholar 

  61. Lettau M, Laible M. 3-T high-b-value diffusion-weighted MR imaging of hyperacute ischemic stroke in the vertebrobasilar territory. J Neuroradiol. 2012;39(4):243–53.

    PubMed  Google Scholar 

  62. Lettau M, Laible M. 3-T high-b-value diffusion-weighted MR imaging in hyperacute ischemic stroke. J Neuroradiol. 2013;40(3):149–57.

    PubMed  Google Scholar 

  63. Bertrand A, Oppenheim C, Lamy C, et al. Comparison of optimized and standard diffusion-weighted imaging at 1.5T for the detection of acute lesions in patients with transient ischemic attack. AJNR Am J Neuroradiol. 2008;29(2):363–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kuhl CK, Textor J, Gieseke J, et al. Acute and subacute ischemic stroke at high-field-strength (3.0-T) diffusion-weighted MR imaging: intraindividual comparative study. Radiology. 2005;234(2):509–16.

    PubMed  Google Scholar 

  65. Baird AE, Benfield A, Schlaug G, et al. Enlargement of human cerebral ischemic lesion volumes measured by diffusion-weighted magnetic resonance imaging. Ann Neurol. 1997;41(5):581–9.

    CAS  PubMed  Google Scholar 

  66. van Everdingen KJ, van der Grond J, Kappelle LJ, Ramos LM, Mali WP. Diffusion-weighted magnetic resonance imaging in acute stroke. Stroke. 1998;29(9):1783–90.

    PubMed  Google Scholar 

  67. Tong DC, Yenari MA, Albers GW, O'Brien M, Marks MP, Moseley ME. Correlation of perfusion- and diffusion-weighted MRI with NIHSS score in acute (<6.5 hour) ischemic stroke. Neurology. 1998;50(4):864–70.

    CAS  PubMed  Google Scholar 

  68. Kidwell CS, Saver JL, Mattiello J, et al. Thrombolytic reversal of acute human cerebral ischemic injury shown by diffusion/perfusion magnetic resonance imaging. Ann Neurol. 2000;47(4):462–9.

    CAS  PubMed  Google Scholar 

  69. Kidwell CS, Saver JL, Starkman S, et al. Late secondary ischemic injury in patients receiving intraarterial thrombolysis. Ann Neurol. 2002;52(6):698–703.

    PubMed  Google Scholar 

  70. Schaefer PW, Hassankhani A, Putman C, et al. Characterization and evolution of diffusion MR imaging abnormalities in stroke patients undergoing intra-arterial thrombolysis. AJNR Am J Neuroradiol. 2004;25(6):951–7.

    PubMed  PubMed Central  Google Scholar 

  71. Miyasaka N, Nagaoka T, Kuroiwa T, et al. Histopathologic correlates of temporal diffusion changes in a rat model of cerebral hypoxia/ischemia. AJNR Am J Neuroradiol. 2000;21(1):60–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Olivot JM, Mlynash M, Thijs VN, et al. Relationships between cerebral perfusion and reversibility of acute diffusion lesions in DEFUSE: insights from RADAR. Stroke. 2009;40(5):1692–7.

    PubMed  PubMed Central  Google Scholar 

  73. Schaefer PW, Ozsunar Y, He J, et al. Assessing tissue viability with MR diffusion and perfusion imaging. AJNR Am J Neuroradiol. 2003;24(3):436–43.

    PubMed  PubMed Central  Google Scholar 

  74. Fiehler J, Knab R, Reichenbach JR, Fitzek C, Weiller C, Rother J. Apparent diffusion coefficient decreases and magnetic resonance imaging perfusion parameters are associated in ischemic tissue of acute stroke patients. J Cereb Blood Flow Metab. 2001;21(5):577–84.

    CAS  PubMed  Google Scholar 

  75. Schlaug G, Benfield A, Baird AE, et al. The ischemic penumbra: operationally defined by diffusion and perfusion MRI. Neurology. 1999;53(7):1528–37.

    CAS  PubMed  Google Scholar 

  76. Rohl L, Ostergaard L, Simonsen CZ, et al. Viability thresholds of ischemic penumbra of hyperacute stroke defined by perfusion-weighted MRI and apparent diffusion coefficient. Stroke. 2001;32(5):1140–6.

    CAS  PubMed  Google Scholar 

  77. Gonen KA, Simsek MM. Diffusion weighted imaging and estimation of prognosis using apparent diffusion coefficient measurements in ischemic stroke. Eur J Radiol. 2009;76(2):157–61.

    PubMed  Google Scholar 

  78. Fiehler J, Foth M, Kucinski T, et al. Severe ADC decreases do not predict irreversible tissue damage in humans. Stroke. 2002;33(1):79–86.

    PubMed  Google Scholar 

  79. Jones TH, Morawetz RB, Crowell RM, et al. Thresholds of focal cerebral ischemia in awake monkeys. J Neurosurg. 1981;54(6):773–82.

    CAS  PubMed  Google Scholar 

  80. Calandre L, Ortega JF, Bermejo F. Anticoagulation and hemorrhagic infarction in cerebral embolism secondary to rheumatic heart disease. Arch Neurol. 1984;41(11):1152–4.

    CAS  PubMed  Google Scholar 

  81. Hakim AM, Ryder-Cooke A, Melanson D. Sequential computerized tomographic appearance of strokes. Stroke. 1983;14(6):893–7.

    CAS  PubMed  Google Scholar 

  82. Hornig CR, Dorndorf W, Agnoli AL. Hemorrhagic cerebral infarction–a prospective study. Stroke. 1986;17(2):179–85.

    CAS  PubMed  Google Scholar 

  83. Horowitz SH, Zito JL, Donnarumma R, Patel M, Alvir J. Computed tomographic-angiographic findings within the first five hours of cerebral infarction. Stroke. 1991;22(10):1245–53.

    CAS  PubMed  Google Scholar 

  84. Furlan A, Higashida R, Wechsler L, et al. Intra-arterial prourokinase for acute ischemic stroke. The PROACT II study: a randomized controlled trial. Prolyse in Acute Cerebral Thromboembolism. JAMA. 1999;282(21):2003–11.

    CAS  PubMed  Google Scholar 

  85. Hacke W, Kaste M, Bluhmki E, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359(13):1317–29.

    CAS  PubMed  Google Scholar 

  86. The NINDS t-PA Stroke Study Group. Intracerebral hemorrhage after intravenous t-PA therapy for ischemic stroke. Stroke. 1997;28(11):2109–18.

    Google Scholar 

  87. Kim EY, Na DG, Kim SS, Lee KH, Ryoo JW, Kim HK. Prediction of hemorrhagic transformation in acute ischemic stroke: role of diffusion-weighted imaging and early parenchymal enhancement. AJNR Am J Neuroradiol. 2005;26(5):1050–5.

    PubMed  PubMed Central  Google Scholar 

  88. Derex L, Hermier M, Adeleine P, et al. Clinical and imaging predictors of intracerebral haemorrhage in stroke patients treated with intravenous tissue plasminogen activator. J Neurol Neurosurg Psychiatry. 2005;76(1):70–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Tong DC, Adami A, Moseley ME, Marks MP. Prediction of hemorrhagic transformation following acute stroke: role of diffusion- and perfusion-weighted magnetic resonance imaging. Arch Neurol. 2001;58(4):587–93.

    CAS  PubMed  Google Scholar 

  90. Selim M, Fink JN, Kumar S, et al. Predictors of hemorrhagic transformation after intravenous recombinant tissue plasminogen activator: prognostic value of the initial apparent diffusion coefficient and diffusion-weighted lesion volume. Stroke. 2002;33(8):2047–52.

    CAS  PubMed  Google Scholar 

  91. Oppenheim C, Samson Y, Dormont D, et al. DWI prediction of symptomatic hemorrhagic transformation in acute MCA infarct. J Neuroradiol. 2002;29(1):6–13.

    CAS  PubMed  Google Scholar 

  92. Singer OC, Humpich MC, Fiehler J, et al. Risk for symptomatic intracerebral hemorrhage after thrombolysis assessed by diffusion-weighted magnetic resonance imaging. Ann Neurol. 2008;63(1):52–60.

    PubMed  Google Scholar 

  93. Campbell BC, Christensen S, Butcher KS, et al. Regional very low cerebral blood volume predicts hemorrhagic transformation better than diffusion-weighted imaging volume and thresholded apparent diffusion coefficient in acute ischemic stroke. Stroke. 2010;41(1):82–8.

    PubMed  Google Scholar 

  94. Kim JH, Bang OY, Liebeskind DS, et al. Impact of baseline tissue status (diffusion-weighted imaging lesion) versus perfusion status (severity of hypoperfusion) on hemorrhagic transformation. Stroke. 2010;41(3):135–42.

    Google Scholar 

  95. Kassner A, Roberts T, Taylor K, Silver F, Mikulis D. Prediction of hemorrhage in acute ischemic stroke using permeability MR imaging. AJNR Am J Neuroradiol. 2005;26(9):2213–7.

    PubMed  PubMed Central  Google Scholar 

  96. Hjort N, Wu O, Ashkanian M, et al. MRI detection of early blood-brain barrier disruption: parenchymal enhancement predicts focal hemorrhagic transformation after thrombolysis. Stroke. 2008;39(3):1025–8.

    PubMed  Google Scholar 

  97. Adams HP Jr, del Zoppo G, Alberts MJ, et al. Guidelines for the early management of adults with ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups: the American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists. Stroke. 2007;38(5):1655–711.

    PubMed  Google Scholar 

  98. Lovblad KO, Baird AE, Schlaug G, et al. Ischemic lesion volumes in acute stroke by diffusion-weighted magnetic resonance imaging correlate with clinical outcome. Ann Neurol. 1997;42(2):164–70.

    CAS  PubMed  Google Scholar 

  99. Nighoghossian N, Hermier M, Adeleine P, et al. Baseline magnetic resonance imaging parameters and stroke outcome in patients treated by intravenous tissue plasminogen activator. Stroke. 2003;34(2):458–63.

    CAS  PubMed  Google Scholar 

  100. Engelter ST, Provenzale JM, Petrella JR, DeLong DM, Alberts MJ. Infarct volume on apparent diffusion coefficient maps correlates with length of stay and outcome after middle cerebral artery stroke. Cerebrovasc Dis. 2003;15(3):188–91.

    PubMed  Google Scholar 

  101. Derex L, Nighoghossian N, Hermier M, et al. Influence of pretreatment MRI parameters on clinical outcome, recanalization and infarct size in 49 stroke patients treated by intravenous tissue plasminogen activator. J Neurol Sci. 2004;225(1-2):3–9.

    CAS  PubMed  Google Scholar 

  102. Sanak D, Nosal V, Horak D, et al. Impact of diffusion-weighted MRI-measured initial cerebral infarction volume on clinical outcome in acute stroke patients with middle cerebral artery occlusion treated by thrombolysis. Neuroradiology. 2006;48(9):632–9.

    PubMed  Google Scholar 

  103. Parsons MW, Christensen S, McElduff P, et al. Pretreatment diffusion- and perfusion-MR lesion volumes have a crucial influence on clinical response to stroke thrombolysis. J Cereb Blood Flow Metab. 2010;30(6):1214–25.

    PubMed  PubMed Central  Google Scholar 

  104. Yoo AJ, Barak ER, Copen WA, et al. Combining acute diffusion-weighted imaging and mean transmit time lesion volumes with National Institutes of Health Stroke Scale Score improves the prediction of acute stroke outcome. Stroke. 2010;41(8):1728–35.

    PubMed  Google Scholar 

  105. Yoo AJ, Verduzco LA, Schaefer PW, Hirsch JA, Rabinov JD, Gonzalez RG. MRI-based selection for intra-arterial stroke therapy: value of pretreatment diffusion-weighted imaging lesion volume in selecting patients with acute stroke who will benefit from early recanalization. Stroke. 2009;40(6):2046–54.

    PubMed  PubMed Central  Google Scholar 

  106. Shobha N, Buchan AM, Hill MD. Thrombolysis at 3-4.5 hours after acute ischemic stroke onset–evidence from the Canadian Alteplase for Stroke Effectiveness Study (CASES) registry. Cerebrovasc Dis. 2011;31(3):223–8.

    PubMed  Google Scholar 

  107. Lees KR, Emberson J, Blackwell L, et al. Effects of alteplase for acute stroke on the distribution of functional outcomes: a pooled analysis of 9 trials. Stroke. 2016;47(9):2373–9.

    PubMed  PubMed Central  Google Scholar 

  108. Zerna C, Thomalla G, Campbell BCV, Rha JH, Hill MD. Current practice and future directions in the diagnosis and acute treatment of ischaemic stroke. Lancet. 2018;392(10154):1247–56.

    PubMed  Google Scholar 

  109. Jovin TG, Saver JL, Ribo M, et al. Diffusion-weighted imaging or computerized tomography perfusion assessment with clinical mismatch in the triage of wake up and late presenting strokes undergoing neurointervention with Trevo (DAWN) trial methods. Int J Stroke. 2017;12(6):641–52.

    PubMed  Google Scholar 

  110. Nogueira RG, Jadhav AP, Haussen DC, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med. 2018;378(1):11–21.

    PubMed  Google Scholar 

  111. Albers GW, Marks MP, Kemp S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018;378(8):708–18.

    PubMed  PubMed Central  Google Scholar 

  112. Huisa BN, Liebeskind DS, Raman R, et al. Diffusion-weighted imaging-fluid attenuated inversion recovery mismatch in nocturnal stroke patients with unknown time of onset. J Stroke Cerebrovasc Dis. 2013;22(7):972–7.

    PubMed  Google Scholar 

  113. Kim BJ, Kim HJ, Lee DH, et al. Diffusion-weighted image and fluid-attenuated inversion recovery image mismatch: unclear-onset versus clear-onset stroke. Stroke. 2014;45(2):450–5.

    PubMed  Google Scholar 

  114. Mourand I, Milhaud D, Arquizan C, et al. Favorable bridging therapy based on DWI-FLAIR mismatch in patients with unclear-onset stroke. AJNR Am J Neuroradiol. 2016;37(1):88–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Thomalla G, Cheng B, Ebinger M, et al. DWI-FLAIR mismatch for the identification of patients with acute ischaemic stroke within 4·5 h of symptom onset (PRE-FLAIR): a multicentre observational study. Lancet Neurol. 2011;10(11):978–86.

    PubMed  Google Scholar 

  116. Thomalla G, Boutitie F, Fiebach JB, et al. Clinical characteristics of unknown symptom onset stroke patients with and without diffusion-weighted imaging and fluid-attenuated inversion recovery mismatch. Int J Stroke. 2018;13(1):66–73.

    PubMed  Google Scholar 

  117. Scheldeman L, Wouters A, Boutitie F, et al. Different mismatch concepts for magnetic resonance imaging-guided thrombolysis in unknown onset stroke. Ann Neurol. 2020;87(6):931–8.

    PubMed  Google Scholar 

  118. Schwamm LH, Wu O, Song SS, et al. Intravenous thrombolysis in unwitnessed stroke onset: MR WITNESS trial results. Ann Neurol. 2018;83(5):980–93.

    PubMed  PubMed Central  Google Scholar 

  119. Bai QK, Zhao ZG, Lu LJ, et al. Treating ischaemic stroke with intravenous tPA beyond 4.5 hours under the guidance of a MRI DWI/T2WI mismatch was safe and effective. Stroke Vasc Neurol. 2019;4(1):8–13.

    PubMed  PubMed Central  Google Scholar 

  120. Jakubicek S, Krebs S, Posekany A, et al. Modified DWI-FLAIR mismatch guided thrombolysis in unknown onset stroke. J Thromb Thrombolysis. 2019;47(2):167–73.

    PubMed  Google Scholar 

  121. Legrand L, Tisserand M, Turc G, et al. Do FLAIR vascular hyperintensities beyond the DWI lesion represent the ischemic penumbra? AJNR Am J Neuroradiol. 2015;36(2):269–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Legrand L, Tisserand M, Turc G, et al. Fluid-attenuated inversion recovery vascular hyperintensities-diffusion-weighted imaging mismatch identifies acute stroke patients most likely to benefit from recanalization. Stroke. 2016;47(2):424–7.

    PubMed  Google Scholar 

  123. Legrand L, Turc G, Edjlali M, et al. Benefit from revascularization after thrombectomy according to FLAIR vascular hyperintensities-DWI mismatch. Eur Radiol. 2019;29(10):5567–76.

    PubMed  Google Scholar 

  124. Chen-Ying H, Wei-Chen C, Po-Tsun L, Ching-Heng L, Chi-Chun L. Comparing deep neural network and other machine learning algorithms for stroke prediction in a large-scale population-based electronic medical claims database. Annu Int Conf IEEE Eng Med Biol Soc. 2017;2017:3110–3.

    Google Scholar 

  125. Livne M, Boldsen JK, Mikkelsen IK, Fiebach JB, Sobesky J, Mouridsen K. Boosted tree model reforms multimodal magnetic resonance imaging infarct prediction in acute stroke. Stroke. 2018;49(4):912–8.

    PubMed  Google Scholar 

  126. Nielsen A, Hansen MB, Tietze A, Mouridsen K. Prediction of tissue outcome and assessment of treatment effect in acute ischemic stroke using deep learning. Stroke. 2018;49(6):1394–401.

    PubMed  Google Scholar 

  127. Moon YJ, Moon HS, Kim DS, et al. Deep learning-based stroke volume estimation outperforms conventional arterial contour method in patients with hemodynamic instability. J Clin Med. 2019;8(9):1419.

    PubMed  PubMed Central  Google Scholar 

  128. Lee H, Lee EJ, Ham S, et al. Machine learning approach to identify stroke within 4.5 hours. Stroke. 2020;51(3):860–6.

    PubMed  Google Scholar 

  129. Brugnara G, Neuberger U, Mahmutoglu MA, et al. Multimodal predictive modeling of endovascular treatment outcome for acute ischemic stroke using machine-learning. Stroke. 2020;2020:120030287.

    Google Scholar 

  130. Zhu G, Jiang B, Chen H, et al. Artificial intelligence and stroke imaging: a west coast perspective. Neuroimaging Clin N Am. 2020;30(4):479–92.

    PubMed  Google Scholar 

  131. Gupta R, Krishnam SP, Schaefer PW, Lev MH, Gilberto GR. An east coast perspective on artificial intelligence and machine learning: part 1: hemorrhagic stroke imaging and triage. Neuroimaging Clin N Am. 2020;30(4):459–66.

    PubMed  Google Scholar 

  132. Gupta R, Krishnam SP, Schaefer PW, Lev MH, Gonzalez RG. An east coast perspective on artificial intelligence and machine learning: part 2: ischemic stroke imaging and triage. Neuroimaging Clin N Am. 2020;30(4):467–78.

    PubMed  Google Scholar 

  133. Easton JD, Saver JL, Albers GW, et al. Definition and evaluation of transient ischemic attack: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association Stroke Council; Council on Cardiovascular Surgery and Anesthesia; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing; and the Interdisciplinary Council on Peripheral Vascular Disease. The American Academy of Neurology affirms the value of this statement as an educational tool for neurologists. Stroke. 2009;40(6):2276–93.

    PubMed  Google Scholar 

  134. Albers GW, Caplan LR, Easton JD, et al. Transient ischemic attack–proposal for a new definition. N Engl J Med. 2002;347(21):1713–6.

    PubMed  Google Scholar 

  135. Ay H, Oliveira-Filho J, Buonanno FS, et al. ‘Footprints’ of transient ischemic attacks: a diffusion-weighted MRI study. Cerebrovasc Dis. 2002;14(3-4):177–86.

    PubMed  Google Scholar 

  136. Kidwell CS, Alger JR, Di Salle F, et al. Diffusion MRI in patients with transient ischemic attacks. Stroke. 1999;30(6):1174–80.

    CAS  PubMed  Google Scholar 

  137. Crisostomo RA, Garcia MM, Tong DC. Detection of diffusion-weighted MRI abnormalities in patients with transient ischemic attack: correlation with clinical characteristics. Stroke. 2003;34(4):932–7.

    PubMed  Google Scholar 

  138. Brazzelli M, Chappell FM, Miranda H, et al. Diffusion-weighted imaging and diagnosis of transient ischemic attack. Ann Neurol. 2014;75(1):67–76.

    PubMed  PubMed Central  Google Scholar 

  139. Hotter B, Galinovic I, Kunze C, et al. High-resolution diffusion-weighted imaging identifies ischemic lesions in a majority of transient ischemic attack patients. Ann Neurol. 2019;86(3):452–7.

    PubMed  Google Scholar 

  140. Shono K, Satomi J, Tada Y, et al. Optimal timing of diffusion-weighted imaging to avoid false-negative findings in patients with transient ischemic attack. Stroke. 2017;48(7):1990–2.

    PubMed  Google Scholar 

  141. Inatomi Y, Kimura K, Yonehara T, Fujioka S, Uchino M. DWI abnormalities and clinical characteristics in TIA patients. Neurology. 2004;62(3):376–80.

    CAS  PubMed  Google Scholar 

  142. Purroy F, Montaner J, Rovira A, Delgado P, Quintana M, Alvarez-Sabin J. Higher risk of further vascular events among transient ischemic attack patients with diffusion-weighted imaging acute ischemic lesions. Stroke. 2004;35(10):2313–9.

    PubMed  Google Scholar 

  143. Calvet D, Touzé E, Oppenheim C, Turc G, Meder J-F, Mas J-L. DWI lesions and TIA etiology improve the prediction of stroke after TIA. Stroke. 2009;40(1):187–92.

    PubMed  Google Scholar 

  144. Merwick Á, Albers GW, Amarenco P, et al. Addition of brain and carotid imaging to the ABCD2 score to identify patients at early risk of stroke after transient ischaemic attack: a multicentre observational study. Lancet Neurol. 2010;9(11):1060–9.

    PubMed  Google Scholar 

  145. Giles MF, Albers GW, Amarenco P, et al. Addition of brain infarction to the ABCD2 score (ABCD2I). Stroke. 2010;41(9):1907–13.

    PubMed  Google Scholar 

  146. Giles MF, Albers GW, Amarenco P, et al. Early stroke risk and ABCD2 score performance in tissue- vs time-defined TIA: a multicenter study. Neurology. 2011;77(13):1222–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Souillard-Scemama R, Tisserand M, Calvet D, et al. An update on brain imaging in transient ischemic attack. J Neuroradiol. 2015;42(1):3–11.

    CAS  PubMed  Google Scholar 

  148. Ay H, Koroshetz WJ, Benner T, et al. Transient ischemic attack with infarction: a unique syndrome? Ann Neurol. 2005;57(5):679–86.

    PubMed  Google Scholar 

  149. Al-Khaled M, Eggers J. MRI findings and stroke risk in TIA patients with different symptom durations. Neurology. 2013;80(21):1920–6.

    PubMed  Google Scholar 

  150. Mullins ME, Grant PE, Wang B, Gonzalez RG, Schaefer PW. Parenchymal abnormalities associated with cerebral venous sinus thrombosis: assessment with diffusion-weighted MR imaging. AJNR Am J Neuroradiol. 2004;25(10):1666–75.

    PubMed  PubMed Central  Google Scholar 

  151. Chu K, Kang DW, Yoon BW, Roh JK. Diffusion-weighted magnetic resonance in cerebral venous thrombosis. Arch Neurol. 2001;58(10):1569–76.

    CAS  PubMed  Google Scholar 

  152. Keller E, Flacke S, Urbach H, Schild HH. Diffusion- and perfusion-weighted magnetic resonance imaging in deep cerebral venous thrombosis. Stroke. 1999;30(5):1144–6.

    CAS  PubMed  Google Scholar 

  153. Ducreux D, Oppenheim C, Vandamme X, et al. Diffusion-weighted imaging patterns of brain damage associated with cerebral venous thrombosis. AJNR Am J Neuroradiol. 2001;22(2):261–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Sagduyu A, Sirin H, Mulayim S, et al. Cerebral cortical and deep venous thrombosis without sinus thrombosis: clinical MRI correlates. Acta Neurol Scand. 2006;114(4):254–60.

    CAS  PubMed  Google Scholar 

  155. Boukobza M, Crassard I, Bousser MG, Chabriat H. MR imaging features of isolated cortical vein thrombosis: diagnosis and follow-up. AJNR Am J Neuroradiol. 2009;30(2):344–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Peeters E, Stadnik T, Bissay F, Schmedding E, Osteaux M. Diffusion-weighted MR imaging of an acute venous stroke: case report. AJNR Am J Neuroradiol. 2001;22(10):1949–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Lovblad KO, Bassetti C, Schneider J, et al. Diffusion-weighted MR in cerebral venous thrombosis. Cerebrovasc Dis. 2001;11(3):169–76.

    CAS  PubMed  Google Scholar 

  158. Yildiz ME, Ozcan UA, Turk A, Ulus OS, Erzen C, Dincer A. Diffusion-weighted MR imaging findings of cortical vein thrombosis at 3 T. Clin Neuroradiol. 2015;25(3):249–56.

    CAS  PubMed  Google Scholar 

  159. Favrole P, Guichard JP, Crassard I, Bousser MG, Chabriat H. Diffusion-weighted imaging of intravascular clots in cerebral venous thrombosis. Stroke. 2004;35(1):99–103.

    PubMed  Google Scholar 

  160. Schwartz RB, Mulkern RV, Gudbjartsson H, Jolesz F. Diffusion-weighted MR imaging in hypertensive encephalopathy: clues to pathogenesis. AJNR Am J Neuroradiol. 1998;19(5):859–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. McKinney AM, Short J, Truwit CL, et al. Posterior reversible encephalopathy syndrome: incidence of atypical regions of involvement and imaging findings. AJR Am J Roentgenol. 2007;189(4):904–12.

    PubMed  Google Scholar 

  162. Donmez FY, Basaran C, Kayahan Ulu EM, Yildirim M, Coskun M. MRI features of posterior reversible encephalopathy syndrome in 33 patients. J Neuroimaging. 2008;20(1):22–8.

    Google Scholar 

  163. Crasto SG, Rizzo L, Sardo P, Davini O, De Lucchi R. Reversible encephalopathy syndrome: report of 12 cases with follow-up. Neuroradiology. 2004;46(10):795–804.

    PubMed  Google Scholar 

  164. Ahn KJ, You WJ, Jeong SL, et al. Atypical manifestations of reversible posterior leukoencephalopathy syndrome: findings on diffusion imaging and ADC mapping. Neuroradiology. 2004;46(12):978–83.

    CAS  PubMed  Google Scholar 

  165. Onder AM, Lopez R, Teomete U, et al. Posterior reversible encephalopathy syndrome in the pediatric renal population. Pediatr Nephrol. 2007;22(11):1921–9.

    PubMed  Google Scholar 

  166. Chen TY, Lee HJ, Wu TC, Tsui YK. MR imaging findings of medulla oblongata involvement in posterior reversible encephalopathy syndrome secondary to hypertension. AJNR Am J Neuroradiol. 2009;30(4):755–7.

    PubMed  PubMed Central  Google Scholar 

  167. Saad AF, Chaudhari R, Wintermark M. Imaging of atypical and complicated posterior reversible encephalopathy syndrome. Front Neurol. 2019;10:964.

    PubMed  PubMed Central  Google Scholar 

  168. Pande AR, Ando K, Ishikura R, et al. Clinicoradiological factors influencing the reversibility of posterior reversible encephalopathy syndrome: a multicenter study. Radiat Med. 2006;24(10):659–68.

    PubMed  Google Scholar 

  169. Kuroda H, Ogasawara K, Hirooka R, et al. Prediction of cerebral hyperperfusion after carotid endarterectomy using middle cerebral artery signal intensity in preoperative single-slab 3-dimensional time-of-flight magnetic resonance angiography. Neurosurgery. 2009;64(6):1065–71.

    PubMed  Google Scholar 

  170. Karapanayiotides T, Meuli R, Devuyst G, et al. Postcarotid endarterectomy hyperperfusion or reperfusion syndrome. Stroke. 2005;36(1):21–6.

    PubMed  Google Scholar 

  171. Scozzafava J, Hussain MS, Yeo T, Jeerakathil T, Brindley PG. Case report: aggressive blood pressure management for carotid endarterectomy hyperperfusion syndrome. Can J Anaesth. 2006;53(8):764–8.

    PubMed  Google Scholar 

  172. de Rochemont R, Schneider S, Yan B, Lehr A, Sitzer M, Berkefeld J. Diffusion-weighted MR imaging lesions after filter-protected stenting of high-grade symptomatic carotid artery stenoses. AJNR Am J Neuroradiol. 2006;27(6):1321–5.

    Google Scholar 

  173. Cho AH, Suh DC, Kim GE, et al. MRI evidence of reperfusion injury associated with neurological deficits after carotid revascularization procedures. Eur J Neurol. 2009;16(9):1066–9.

    PubMed  Google Scholar 

  174. Hirooka R, Ogasawara K, Sasaki M, et al. Magnetic resonance imaging in patients with cerebral hyperperfusion and cognitive impairment after carotid endarterectomy. J Neurosurg. 2008;108(6):1178–83.

    PubMed  Google Scholar 

  175. Shinno K, Ueda S, Uno M, Nishitani K, Nagahiro S, Harada M. Hyperperfusion syndrome following carotid endarterectomy: evaluation using diffusion-weighted magnetic resonance imaging–case report. Neurol Med Chir. 1998;38(9):557–61.

    CAS  Google Scholar 

  176. Sander K, Sander D. New insights into transient global amnesia: recent imaging and clinical findings. Lancet Neurol. 2005;4(7):437–44.

    PubMed  Google Scholar 

  177. Sedlaczek O, Hirsch JG, Grips E, et al. Detection of delayed focal MR changes in the lateral hippocampus in transient global amnesia. Neurology. 2004;62(12):2165–70.

    CAS  PubMed  Google Scholar 

  178. Toledo M, Pujadas F, Grive E, Alvarez-Sabin J, Quintana M, Rovira A. Lack of evidence for arterial ischemia in transient global amnesia. Stroke. 2008;39(2):476–9.

    PubMed  Google Scholar 

  179. Lee HY, Kim JH, Weon YC, et al. Diffusion-weighted imaging in transient global amnesia exposes the CA1 region of the hippocampus. Neuroradiology. 2007;49(6):481–7.

    PubMed  Google Scholar 

  180. Yang Y, Kim S, Kim JH. Ischemic evidence of transient global amnesia: location of the lesion in the hippocampus. J Clin Neurol. 2008;4(2):59–66.

    PubMed  PubMed Central  Google Scholar 

  181. Weon YC, Kim JH, Lee JS, Kim SY. Optimal diffusion-weighted imaging protocol for lesion detection in transient global amnesia. AJNR Am J Neuroradiol. 2008;29(7):1324–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Choi BS, Kim JH, Jung C, Kim SY. High-resolution diffusion-weighted imaging increases lesion detectability in patients with transient global amnesia. AJNR Am J Neuroradiol. 2012;33(9):1771–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Matsui M, Imamura T, Sakamoto S, Ishii K, Kazui H, Mori E. Transient global amnesia: increased signal intensity in the right hippocampus on diffusion-weighted magnetic resonance imaging. Neuroradiology. 2002;44(3):235–8.

    CAS  PubMed  Google Scholar 

  184. Greer DM, Schaefer PW, Schwamm LH. Unilateral temporal lobe stroke causing ischemic transient global amnesia: role for diffusion-weighted imaging in the initial evaluation. J Neuroimaging. 2001;11(3):317–9.

    CAS  PubMed  Google Scholar 

  185. Ay H, Furie KL, Yamada K, Koroshetz WJ. Diffusion-weighted MRI characterizes the ischemic lesion in transient global amnesia. Neurology. 1998;51(3):901–3.

    CAS  PubMed  Google Scholar 

  186. Saito K, Kimura K, Minematsu K, Shiraishi A, Nakajima M. Transient global amnesia associated with an acute infarction in the retrosplenium of the corpus callosum. J Neurol Sci. 2003;210(1-2):95–7.

    PubMed  Google Scholar 

  187. Lee SY, Kim WJ, Suh SH, Oh SH, Lee KY. Higher lesion detection by 3.0T MRI in patient with transient global amnesia. Yonsei Med J. 2009;50(2):211–4.

    PubMed  PubMed Central  Google Scholar 

  188. Chabriat H, Vahedi K, Clark CA, et al. Decreased hemispheric water mobility in hemiplegic migraine related to mutation of CACNA1A gene. Neurology. 2000;54(2):510–2.

    CAS  PubMed  Google Scholar 

  189. Bhatia R, Desai S, Tripathi M, et al. Sporadic hemiplegic migraine: report of a case with clinical and radiological features. J Headache Pain. 2008;9(6):385–8.

    PubMed  PubMed Central  Google Scholar 

  190. Gutschalk A, Kollmar R, Mohr A, et al. Multimodal functional imaging of prolonged neurological deficits in a patient suffering from familial hemiplegic migraine. Neurosci Lett. 2002;332(2):115–8.

    CAS  PubMed  Google Scholar 

  191. Jacob A, Mahavish K, Bowden A, Smith ET, Enevoldson P, White RP. Imaging abnormalities in sporadic hemiplegic migraine on conventional MRI, diffusion and perfusion MRI and MRS. Cephalalgia. 2006;26(8):1004–9.

    CAS  PubMed  Google Scholar 

  192. Oberndorfer S, Wober C, Nasel C, et al. Familial hemiplegic migraine: follow-up findings of diffusion-weighted magnetic resonance imaging (MRI), perfusion-MRI and [99mTc] HMPAO-SPECT in a patient with prolonged hemiplegic aura. Cephalalgia. 2004;24(7):533–9.

    CAS  PubMed  Google Scholar 

  193. Gonzalez-Alegre P, Tippin J. Prolonged cortical electrical depression and diffuse vasospasm without ischemia in a case of severe hemiplegic migraine during pregnancy. Headache. 2003;43(1):72–5.

    PubMed  Google Scholar 

  194. Butteriss DJ, Ramesh V, Birchall D. Serial MRI in a case of familial hemiplegic migraine. Neuroradiology. 2003;45(5):300–3.

    CAS  PubMed  Google Scholar 

  195. Masuzaki M, Utsunomiya H, Yasumoto S, Mitsudome A. A case of hemiplegic migraine in childhood: transient unilateral hyperperfusion revealed by perfusion MR imaging and MR angiography. AJNR Am J Neuroradiol. 2001;22(9):1795–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Cobb-Pitstick KM, Munjal N, Safier R, Cummings DD, Zuccoli G. Time course of cerebral perfusion changes in children with migraine with aura mimicking stroke. AJNR Am J Neuroradiol. 2018;39(9):1751–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Prodan CI, Holland NR, Lenaerts ME, Parke JT. Magnetic resonance angiogram evidence of vasospasm in familial hemiplegic migraine. J Child Neurol. 2002;17(6):470–2.

    PubMed  Google Scholar 

  198. Grimaldi D, Tonon C, Cevoli S, et al. Clinical and neuroimaging evidence of interictal cerebellar dysfunction in FHM2. Cephalalgia. 2009;30(5):552–9.

    Google Scholar 

  199. Hasegawa D, Orima H, Fujita M, et al. Diffusion-weighted imaging in kainic acid-induced complex partial status epilepticus in dogs. Brain Res. 2003;983(1-2):115–27.

    CAS  PubMed  Google Scholar 

  200. Righini A, Pierpaoli C, Alger JR, Di Chiro G. Brain parenchyma apparent diffusion coefficient alterations associated with experimental complex partial status epilepticus. Magn Reson Imaging. 1994;12(6):865–71.

    CAS  PubMed  Google Scholar 

  201. Wieshmann UC, Symms MR, Shorvon SD. Diffusion changes in status epilepticus. Lancet. 1997;350(9076):493–4.

    CAS  PubMed  Google Scholar 

  202. Sagiuchi T, Ishii K, Asano Y, et al. Transient seizure activity demonstrated by Tc-99m HMPAO SPECT and diffusion-weighted MR imaging. Ann Nucl Med. 2001;15(3):267–70.

    CAS  PubMed  Google Scholar 

  203. Lansberg MG, O’Brien MW, Norbash AM, Moseley ME, Morrell M, Albers GW. MRI abnormalities associated with partial status epilepticus. Neurology. 1999;52(5):1021–7.

    CAS  PubMed  Google Scholar 

  204. Huang YC, Weng HH, Tsai YT, et al. Periictal magnetic resonance imaging in status epilepticus. Epilepsy Res. 2009;86(1):72–81.

    PubMed  Google Scholar 

  205. Kim JA, Chung JI, Yoon PH, et al. Transient MR signal changes in patients with generalized tonicoclonic seizure or status epilepticus: periictal diffusion-weighted imaging. AJNR Am J Neuroradiol. 2001;22(6):1149–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Hong KS, Cho YJ, Lee SK, Jeong SW, Kim WK, Oh EJ. Diffusion changes suggesting predominant vasogenic oedema during partial status epilepticus. Seizure. 2004;13(5):317–21.

    PubMed  Google Scholar 

  207. Hubers A, Thoma K, Schocke M, et al. Acute DWI reductions in patients after single epileptic seizures - more common than assumed. Front Neurol. 2018;9:550.

    PubMed  PubMed Central  Google Scholar 

  208. Milligan TA, Zamani A, Bromfield E. Frequency and patterns of MRI abnormalities due to status epilepticus. Seizure. 2009;18(2):104–8.

    PubMed  Google Scholar 

  209. Kim SE, Lee BI, Shin KJ, et al. Characteristics of seizure-induced signal changes on MRI in patients with first seizures. Seizure. 2017;48:62–8.

    PubMed  Google Scholar 

  210. Okumura A, Abe S, Hara S, Aoyagi Y, Shimizu T, Watanabe K. Transiently reduced water diffusion in the corpus callosum in infants with benign partial epilepsy in infancy. Brain and Development. 2009;32(7):564–6.

    PubMed  Google Scholar 

  211. Oster J, Doherty C, Grant PE, Simon M, Cole AJ. Diffusion-weighted imaging abnormalities in the splenium after seizures. Epilepsia. 2003;44(6):852–4.

    PubMed  Google Scholar 

  212. Starkey J, Kobayashi N, Numaguchi Y, Moritani T. Cytotoxic lesions of the corpus callosum that show restricted diffusion: mechanisms, causes, and manifestations. Radiographics. 2017;37(2):562–76.

    PubMed  Google Scholar 

  213. Men S, Lee DH, Barron JR, Munoz DG. Selective neuronal necrosis associated with status epilepticus: MR findings. AJNR Am J Neuroradiol. 2000;21(10):1837–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Nakasu Y, Nakasu S, Morikawa S, Uemura S, Inubushi T, Handa J. Diffusion-weighted MR in experimental sustained seizures elicited with kainic acid. AJNR Am J Neuroradiol. 1995;16(6):1185–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Parmar H, Lim SH, Tan NC, Lim CC. Acute symptomatic seizures and hippocampus damage: DWI and MRS findings. Neurology. 2006;66(11):1732–5.

    PubMed  Google Scholar 

  216. Londono A, Castillo M, Lee YZ, Smith JK. Apparent diffusion coefficient measurements in the hippocampi in patients with temporal lobe seizures. AJNR Am J Neuroradiol. 2003;24(8):1582–6.

    PubMed  PubMed Central  Google Scholar 

  217. Wieshmann UC, Clark CA, Symms MR, Barker GJ, Birnie KD, Shorvon SD. Water diffusion in the human hippocampus in epilepsy. Magn Reson Imaging. 1999;17(1):29–36.

    CAS  PubMed  Google Scholar 

  218. Wehner T, Lapresto E, Tkach J, et al. The value of interictal diffusion-weighted imaging in lateralizing temporal lobe epilepsy. Neurology. 2007;68(2):122–7.

    CAS  PubMed  Google Scholar 

  219. Lee JH, Chung CK, Song IC, Chang KH, Kim HJ. Limited utility of interictal apparent diffusion coefficient in the evaluation of hippocampal sclerosis. Acta Neurol Scand. 2004;110(1):53–8.

    CAS  PubMed  Google Scholar 

  220. Luat AF, Chugani HT. Molecular and diffusion tensor imaging of epileptic networks. Epilepsia. 2008;49(Suppl 3):15–22.

    PubMed  Google Scholar 

  221. Pillai JJ, Williams HT, Faro S. Functional imaging in temporal lobe epilepsy. Semin Ultrasound CT MR. 2007;28(6):437–50.

    PubMed  Google Scholar 

  222. Lo L, Tan AC, Umapathi T, Lim CC. Diffusion-weighted MR imaging in early diagnosis and prognosis of hypoglycemia. AJNR Am J Neuroradiol. 2006;27(6):1222–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Cordonnier C, Oppenheim C, Lamy C, Meder JF, Mas JL. Serial diffusion and perfusion-weighted MR in transient hypoglycemia. Neurology. 2005;65(1):175.

    CAS  PubMed  Google Scholar 

  224. Bottcher J, Kunze A, Kurrat C, et al. Localized reversible reduction of apparent diffusion coefficient in transient hypoglycemia-induced hemiparesis. Stroke. 2005;36(3):e20–2.

    CAS  PubMed  Google Scholar 

  225. Okamoto K, Tokiguchi S, Furusawa T, et al. MR features of diseases involving bilateral middle cerebellar peduncles. AJNR Am J Neuroradiol. 2003;24(10):1946–54.

    PubMed  PubMed Central  Google Scholar 

  226. Finelli PF. Diffusion-weighted MR in hypoglycemic coma. Neurology. 2001;57(5):933.

    CAS  PubMed  Google Scholar 

  227. Kim JH, Choi JY, Koh SB, Lee Y. Reversible splenial abnormality in hypoglycemic encephalopathy. Neuroradiology. 2007;49(3):217–22.

    PubMed  Google Scholar 

  228. Chan R, Erbay S, Oljeski S, Thaler D, Bhadelia R. Case report: hypoglycemia and diffusion-weighted imaging. J Comput Assist Tomogr. 2003;27(3):420–3.

    PubMed  Google Scholar 

  229. Kang EG, Jeon SJ, Choi SS, Song CJ, Yu IK. Diffusion MR imaging of hypoglycemic encephalopathy. AJNR Am J Neuroradiol. 2010;31(3):559–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Fujioka M, Okuchi K, Hiramatsu KI, Sakaki T, Sakaguchi S, Ishii Y. Specific changes in human brain after hypoglycemic injury. Stroke. 1997;28(3):584–7.

    CAS  PubMed  Google Scholar 

  231. Chen CY, Lee KW, Lee CC, Chin SC, Chung HW, Zimmerman RA. Heroin-induced spongiform leukoencephalopathy: value of diffusion MR imaging. J Comput Assist Tomogr. 2000;24(5):735–7.

    CAS  PubMed  Google Scholar 

  232. Hagel J, Andrews G, Vertinsky T, Heran MK, Keogh C. “Chasing the dragon”–imaging of heroin inhalation leukoencephalopathy. Can Assoc Radiol J. 2005;56(4):199–203.

    PubMed  Google Scholar 

  233. Geibprasert S, Gallucci M, Krings T. Addictive illegal drugs: structural neuroimaging. AJNR Am J Neuroradiol. 2010;31(5):803–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Ahmed A, Loes DJ, Bressler EL. Reversible magnetic resonance imaging findings in metronidazole-induced encephalopathy. Neurology. 1995;45(3 Pt 1):588–9.

    CAS  PubMed  Google Scholar 

  235. Kim E, Na DG, Kim EY, Kim JH, Son KR, Chang KH. MR imaging of metronidazole-induced encephalopathy: lesion distribution and diffusion-weighted imaging findings. AJNR Am J Neuroradiol. 2007;28(9):1652–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Lee SS, Cha SH, Lee SY, Song CJ. Reversible inferior colliculus lesion in metronidazole-induced encephalopathy: magnetic resonance findings on diffusion-weighted and fluid attenuated inversion recovery imaging. J Comput Assist Tomogr. 2009;33(2):305–8.

    PubMed  Google Scholar 

  237. Kim DW, Park JM, Yoon BW, Baek MJ, Kim JE, Kim S. Metronidazole-induced encephalopathy. J Neurol Sci. 2004;224(1-2):107–11.

    PubMed  Google Scholar 

  238. Seok JI, Yi H, Song YM, Lee WY. Metronidazole-induced encephalopathy and inferior olivary hypertrophy: lesion analysis with diffusion-weighted imaging and apparent diffusion coefficient maps. Arch Neurol. 2003;60(12):1796–800.

    PubMed  Google Scholar 

  239. Eichler AF, Batchelor TT, Henson JW. Diffusion and perfusion imaging in subacute neurotoxicity following high-dose intravenous methotrexate. Neuro-Oncology. 2007;9(3):373–7.

    PubMed  PubMed Central  Google Scholar 

  240. Cruz-Carreras MT, Chaftari P, Shamsnia A, Guha-Thakurta N, Gonzalez C. Methotrexate-induced leukoencephalopathy presenting as stroke in the emergency department. Clin Case Rep. 2017;5(10):1644–8.

    PubMed  PubMed Central  Google Scholar 

  241. Kinoshita T, Sugihara S, Matsusue E, Fujii S, Ametani M, Ogawa T. Pallidoreticular damage in acute carbon monoxide poisoning: diffusion-weighted MR imaging findings. AJNR Am J Neuroradiol. 2005;26(7):1845–8.

    PubMed  PubMed Central  Google Scholar 

  242. Teksam M, Casey SO, Michel E, Liu H, Truwit CL. Diffusion-weighted MR imaging findings in carbon monoxide poisoning. Neuroradiology. 2002;44(2):109–13.

    CAS  PubMed  Google Scholar 

  243. Lo CP, Chen SY, Lee KW, et al. Brain injury after acute carbon monoxide poisoning: early and late complications. AJR Am J Roentgenol. 2007;189(4):W205–11.

    PubMed  Google Scholar 

  244. Kawanami T, Kato T, Kurita K, Sasaki H. The pallidoreticular pattern of brain damage on MRI in a patient with carbon monoxide poisoning. J Neurol Neurosurg Psychiatry. 1998;64(2):282.

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Kim JH, Chang KH, Song IC, et al. Delayed encephalopathy of acute carbon monoxide intoxication: diffusivity of cerebral white matter lesions. AJNR Am J Neuroradiol. 2003;24(8):1592–7.

    PubMed  PubMed Central  Google Scholar 

  246. Tatewaki Y, Kato K, Tanabe Y, Takahashi S. MRI findings of corticosubcortical lesions in osmotic myelinolysis: report of two cases. Br J Radiol. 2012;85(1012):e87–90.

    CAS  PubMed  Google Scholar 

  247. Chu K, Kang DW, Ko SB, Kim M. Diffusion-weighted MR findings of central pontine and extrapontine myelinolysis. Acta Neurol Scand. 2001;104(6):385–8.

    CAS  PubMed  Google Scholar 

  248. Chua GC, Sitoh YY, Lim CC, Chua HC, Ng PY. MRI findings in osmotic myelinolysis. Clin Radiol. 2002;57(9):800–6.

    CAS  PubMed  Google Scholar 

  249. Cramer SC, Stegbauer KC, Schneider A, Mukai J, Maravilla KR. Decreased diffusion in central pontine myelinolysis. AJNR Am J Neuroradiol. 2001;22(8):1476–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Förster A, Nölte I, Wenz H, et al. Value of diffusion-weighted imaging in central pontine and extrapontine myelinolysis. Neuroradiology. 2013;55(1):49–56.

    PubMed  Google Scholar 

  251. Chu K, Kang DW, Kim HJ, Lee YS, Park SH. Diffusion-weighted imaging abnormalities in wernicke encephalopathy: reversible cytotoxic edema? Arch Neurol. 2002;59(1):123–7.

    PubMed  Google Scholar 

  252. Zuccoli G, Santa Cruz D, Bertolini M, et al. MR imaging findings in 56 patients with Wernicke encephalopathy: nonalcoholics may differ from alcoholics. AJNR Am J Neuroradiol. 2009;30(1):171–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Loh Y, Watson WD, Verma A, Krapiva P. Restricted diffusion of the splenium in acute Wernicke’s encephalopathy. J Neuroimaging. 2005;15(4):373–5.

    PubMed  Google Scholar 

  254. Johkura K, Naito M, Naka T. Cortical involvement in Marchiafava-Bignami disease. AJNR Am J Neuroradiol. 2005;26(3):670–3.

    PubMed  PubMed Central  Google Scholar 

  255. Hlaihel C, Gonnaud PM, Champin S, Rousset H, Tran-Minh VA, Cotton F. Diffusion-weighted magnetic resonance imaging in Marchiafava-Bignami disease: follow-up studies. Neuroradiology. 2005;47(7):520–4.

    CAS  PubMed  Google Scholar 

  256. Menegon P, Sibon I, Pachai C, Orgogozo JM, Dousset V. Marchiafava-Bignami disease: diffusion-weighted MRI in corpus callosum and cortical lesions. Neurology. 2005;65(3):475–7.

    CAS  PubMed  Google Scholar 

  257. Aggunlu L, Oner Y, Kocer B, Akpek S. The value of diffusion-weighted imaging in the diagnosis of Marchiafava-Bignami disease: apropos of a case. J Neuroimaging. 2008;18(2):188–90.

    PubMed  Google Scholar 

  258. Gallucci M, Limbucci N, Paonessa A, Caranci F. Reversible focal splenial lesions. Neuroradiology. 2007;49(7):541–4.

    PubMed  Google Scholar 

  259. Kim SS, Chang KH, Kim ST, et al. Focal lesion in the splenium of the corpus callosum in epileptic patients: antiepileptic drug toxicity? AJNR Am J Neuroradiol. 1999;20(1):125–9.

    CAS  PubMed  Google Scholar 

  260. Maeda M, Shiroyama T, Tsukahara H, Shimono T, Aoki S, Takeda K. Transient splenial lesion of the corpus callosum associated with antiepileptic drugs: evaluation by diffusion-weighted MR imaging. Eur Radiol. 2003;13(8):1902–6.

    PubMed  Google Scholar 

  261. Gurtler S, Ebner A, Tuxhorn I, Ollech I, Pohlmann-Eden B, Woermann FG. Transient lesion in the splenium of the corpus callosum and antiepileptic drug withdrawal. Neurology. 2005;65(7):1032–6.

    CAS  PubMed  Google Scholar 

  262. Honda K, Nishimiya J, Sato H, et al. Transient splenial lesion of the corpus callosum after acute withdrawal of antiepileptic drug: a case report. Magn Reson Med Sci. 2006;5(4):211–5.

    PubMed  Google Scholar 

  263. Winslow H, Mickey B, Frohman EM. Sympathomimetic-induced kaleidoscopic visual illusion associated with a reversible splenium lesion. Arch Neurol. 2006;63(1):135–7.

    PubMed  Google Scholar 

  264. Steinborn M, Leiz S, Rudisser K, Griebel M, Harder T, Hahn H. CT and MRI in haemolytic uraemic syndrome with central nervous system involvement: distribution of lesions and prognostic value of imaging findings. Pediatr Radiol. 2004;34(10):805–10.

    PubMed  Google Scholar 

  265. Toldo I, Manara R, Cogo P, et al. Diffusion-weighted imaging findings in hemolytic uremic syndrome with central nervous system involvement. J Child Neurol. 2009;24(2):247–50.

    PubMed  Google Scholar 

  266. Ogura H, Takaoka M, Kishi M, et al. Reversible MR findings of hemolytic uremic syndrome with mild encephalopathy. AJNR Am J Neuroradiol. 1998;19(6):1144–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Hackett PH, Yarnell PR, Weiland DA, Reynard KB. Acute and evolving MRI of high-altitude cerebral edema: microbleeds, edema, and pathophysiology. AJNR Am J Neuroradiol. 2019;40(3):464–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  268. Kallenberg K, Bailey DM, Christ S, et al. Magnetic resonance imaging evidence of cytotoxic cerebral edema in acute mountain sickness. J Cereb Blood Flow Metab. 2007;27(5):1064–71.

    PubMed  Google Scholar 

  269. Medhi G, Lachungpa T, Saini J. Neuroimaging features of fatal high-altitude cerebral edema. Indian J Radiol Imaging. 2018;28(4):401–5.

    PubMed  PubMed Central  Google Scholar 

  270. Rovira A, Pericot I, Alonso J, Rio J, Grive E, Montalban X. Serial diffusion-weighted MR imaging and proton MR spectroscopy of acute large demyelinating brain lesions: case report. AJNR Am J Neuroradiol. 2002;23(6):989–94.

    PubMed  PubMed Central  Google Scholar 

  271. Tievsky AL, Ptak T, Farkas J. Investigation of apparent diffusion coefficient and diffusion tensor anisotropy in acute and chronic multiple sclerosis lesions. AJNR Am J Neuroradiol. 1999;20(8):1491–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Bernarding J, Braun J, Koennecke HC. Diffusion- and perfusion-weighted MR imaging in a patient with acute demyelinating encephalomyelitis (ADEM). J Magn Reson Imaging. 2002;15(1):96–100.

    PubMed  Google Scholar 

  273. Rovaris M, Gass A, Bammer R, et al. Diffusion MRI in multiple sclerosis. Neurology. 2005;65(10):1526–32.

    CAS  PubMed  Google Scholar 

  274. Castriota-Scanderbeg A, Sabatini U, Fasano F, et al. Diffusion of water in large demyelinating lesions: a follow-up study. Neuroradiology. 2002;44(9):764–7.

    CAS  PubMed  Google Scholar 

  275. Rossi A. Imaging of acute disseminated encephalomyelitis. Neuroimaging Clin N Am. 2008;18(1):149–61.

    PubMed  Google Scholar 

  276. Przeklasa-Auth M, Ovbiagele B, Yim C, Shewmon A. Multiple sclerosis with initial stroke-like clinicoradiologic features: case report and literature review. J Child Neurol. 2009;25(6):732–7.

    PubMed  Google Scholar 

  277. Malhotra HS, Jain KK, Agarwal A, et al. Characterization of tumefactive demyelinating lesions using MR imaging and in-vivo proton MR spectroscopy. Mult Scler. 2009;15(2):193–203.

    CAS  PubMed  Google Scholar 

  278. Koelblinger C, Fruehwald-Pallamar J, Kubin K, et al. Atypical idiopathic inflammatory demyelinating lesions (IIDL): conventional and diffusion-weighted MR imaging (DWI) findings in 42 cases. Eur J Radiol. 2013;82(11):1996–2004.

    PubMed  Google Scholar 

  279. Castriota Scanderbeg A, Tomaiuolo F, Sabatini U, Nocentini U, Grasso MG, Caltagirone C. Demyelinating plaques in relapsing-remitting and secondary-progressive multiple sclerosis: assessment with diffusion MR imaging. AJNR Am J Neuroradiol. 2000;21(5):862–8.

    CAS  PubMed  Google Scholar 

  280. Lo CP, Kao HW, Chen SY, et al. Comparison of diffusion-weighted imaging and contrast-enhanced T1-weighted imaging on a single baseline MRI for demonstrating dissemination in time in multiple sclerosis. BMC Neurol. 2014;14:100.

    PubMed  PubMed Central  Google Scholar 

  281. Rueda-Lopes FC, Hygino da Cruz LC, Doring TM, Gasparetto EL. Diffusion-weighted imaging and demyelinating diseases: new aspects of an old advanced sequence. AJR Am J Roentgenol. 2014;202(1):34–42.

    Google Scholar 

  282. Abdoli M, Chakraborty S, MacLean HJ, Freedman MS. The evaluation of MRI diffusion values of active demyelinating lesions in multiple sclerosis. Mult Scler Relat Disord. 2016;10:97–102.

    PubMed  Google Scholar 

  283. Unal S, Peker E, Erdogan S, Erden MI. Is It possible to discriminate active MS lesions with diffusion weighted imaging? Eur J Med. 2019;51(3):219–23.

    CAS  Google Scholar 

  284. Hodel J, Bapst B, Outteryck O, et al. Magnetic resonance imaging changes following natalizumab discontinuation in multiple sclerosis patients with progressive multifocal leukoencephalopathy. Mult Scler. 2018;24(14):1902–8.

    CAS  PubMed  Google Scholar 

  285. Honce JM, Nagae L, Nyberg E. Neuroimaging of natalizumab complications in multiple sclerosis: PML and other associated entities. Mult Scler Int. 2015;2015:809252.

    PubMed  PubMed Central  Google Scholar 

  286. Xu XX, Li B, Yang HF, et al. Can diffusion-weighted imaging be used to differentiate brain abscess from other ring-enhancing brain lesions? A meta-analysis. Clin Radiol. 2014;69(9):909–15.

    PubMed  Google Scholar 

  287. Lai PH, Ho JT, Chen WL, et al. Brain abscess and necrotic brain tumor: discrimination with proton MR spectroscopy and diffusion-weighted imaging. AJNR Am J Neuroradiol. 2002;23(8):1369–77.

    PubMed  PubMed Central  Google Scholar 

  288. Mueller-Mang C, Castillo M, Mang TG, Cartes-Zumelzu F, Weber M, Thurnher MM. Fungal versus bacterial brain abscesses: is diffusion-weighted MR imaging a useful tool in the differential diagnosis? Neuroradiology. 2007;49(8):651–7.

    PubMed  Google Scholar 

  289. Luthra G, Parihar A, Nath K, et al. Comparative evaluation of fungal, tubercular, and pyogenic brain abscesses with conventional and diffusion MR imaging and proton MR spectroscopy. AJNR Am J Neuroradiol. 2007;28(7):1332–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  290. Bergui M, Zhong J, Bradac GB, Sales S. Diffusion-weighted images of intracranial cyst-like lesions. Neuroradiology. 2001;43(10):824–9.

    CAS  PubMed  Google Scholar 

  291. Siddiqui H, Vakil S, Hassan M. Diagnostic accuracy of echo-planar diffusion-weighted imaging in the diagnosis of intra-cerebral abscess by taking histopathological findings as the gold standard. Cureus. 2019;11(5):e4677.

    PubMed  PubMed Central  Google Scholar 

  292. Duprez TP, Cosnard G, Hernalsteen D. Diffusion-weighted monitoring of conservatively treated pyogenic brain abscesses: a marker for antibacterial treatment efficacy. AJNR Am J Neuroradiol. 2005;26(5):1296–8.

    PubMed  PubMed Central  Google Scholar 

  293. Cartes-Zumelzu FW, Stavrou I, Castillo M, Eisenhuber E, Knosp E, Thurnher MM. Diffusion-weighted imaging in the assessment of brain abscesses therapy. AJNR Am J Neuroradiol. 2004;25(8):1310–7.

    PubMed  PubMed Central  Google Scholar 

  294. Fanning NF, Laffan EE, Shroff MM. Serial diffusion-weighted MRI correlates with clinical course and treatment response in children with intracranial pus collections. Pediatr Radiol. 2006;36(1):26–37.

    PubMed  Google Scholar 

  295. Gordon M, Parmar H, Ibrahim M. Spread of infection to Virchow-Robin spaces in a patient with Streptococcus pneumoniae meningitis. J Comput Assist Tomogr. 2009;33(4):562–4.

    PubMed  Google Scholar 

  296. Hartmann M, Jansen O, Heiland S, Sommer C, Münkel K, Sartor K. Restricted diffusion within ring enhancement is not pathognomonic for brain abscess. AJNR Am J Neuroradiol. 2001;22(9):1738–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  297. Besada CH, Migliaro M, Christiansen SB, Funes JA, Ajler PM, Mónaco RD. Restricted diffusion in a ring-enhancing mucoid metastasis with histological confirmation: case report. J Comput Assist Tomogr. 2010;34(5):770–2.

    PubMed  Google Scholar 

  298. Gaviani P, Schwartz RB, Hedley-Whyte ET, et al. Diffusion-weighted imaging of fungal cerebral infection. AJNR Am J Neuroradiol. 2005;26(5):1115–21.

    PubMed  PubMed Central  Google Scholar 

  299. Chong-Han CH, Cortez SC, Tung GA. Diffusion-weighted MRI of cerebral toxoplasma abscess. AJR Am J Roentgenol. 2003;181(6):1711–4.

    PubMed  Google Scholar 

  300. Camacho DL, Smith JK, Castillo M. Differentiation of toxoplasmosis and lymphoma in AIDS patients by using apparent diffusion coefficients. AJNR Am J Neuroradiol. 2003;24(4):633–7.

    PubMed  PubMed Central  Google Scholar 

  301. Schroeder PC, Post MJ, Oschatz E, Stadler A, Bruce-Gregorios J, Thurnher MM. Analysis of the utility of diffusion-weighted MRI and apparent diffusion coefficient values in distinguishing central nervous system toxoplasmosis from lymphoma. Neuroradiology. 2006;48(10):715–20.

    PubMed  Google Scholar 

  302. Fujikawa A, Tsuchiya K, Honya K, Nitatori T. Comparison of MRI sequences to detect ventriculitis. AJR Am J Roentgenol. 2006;187(4):1048–53.

    PubMed  Google Scholar 

  303. Fukui MB, Williams RL, Mudigonda S. CT and MR imaging features of pyogenic ventriculitis. AJNR Am J Neuroradiol. 2001;22(8):1510–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  304. Pezzullo JA, Tung GA, Mudigonda S, Rogg JM. Diffusion-weighted MR imaging of pyogenic ventriculitis. AJR Am J Roentgenol. 2003;180(1):71–5.

    PubMed  Google Scholar 

  305. Han KT, Choi DS, Ryoo JW, et al. Diffusion-weighted MR imaging of pyogenic intraventricular empyema. Neuroradiology. 2007;49(10):813–8.

    PubMed  Google Scholar 

  306. Heiner L, Demaerel P. Diffusion-weighted MR imaging findings in a patient with herpes simplex encephalitis. Eur J Radiol. 2003;45(3):195–8.

    CAS  PubMed  Google Scholar 

  307. Bulakbasi N, Kocaoglu M. Central nervous system infections of herpesvirus family. Neuroimaging Clin N Am. 2008;18(1):53–84.

    PubMed  Google Scholar 

  308. Tsuchiya K, Katase S, Yoshino A, Hachiya J. Diffusion-weighted MR imaging of encephalitis. AJR Am J Roentgenol. 1999;173(4):1097–9.

    CAS  PubMed  Google Scholar 

  309. Dhawan A, Kecskes Z, Jyoti R, Kent AL. Early diffusion-weighted magnetic resonance imaging findings in neonatal herpes encephalitis. J Paediatr Child Health. 2006;42(12):824–6.

    PubMed  Google Scholar 

  310. Kiroglu Y, Calli C, Yunten N, et al. Diffusion-weighted MR imaging of viral encephalitis. Neuroradiology. 2006;48(12):875–80.

    PubMed  Google Scholar 

  311. Renard D, Nerrant E, Lechiche C. DWI and FLAIR imaging in herpes simplex encephalitis: a comparative and topographical analysis. J Neurol. 2015;262(9):2101–5.

    CAS  PubMed  Google Scholar 

  312. Sener RN. Herpes simplex encephalitis: diffusion MR imaging findings. Comput Med Imaging Graph. 2001;25(5):391–7.

    CAS  PubMed  Google Scholar 

  313. McCabe K, Tyler K, Tanabe J. Diffusion-weighted MRI abnormalities as a clue to the diagnosis of herpes simplex encephalitis. Neurology. 2003;61(7):1015–6.

    PubMed  Google Scholar 

  314. Gupta RK, Jain KK, Kumar S. Imaging of nonspecific (nonherpetic) acute viral infections. Neuroimaging Clin N Am. 2008;18(1):41–52. vii

    PubMed  Google Scholar 

  315. Hatipoglu HG, Gurbuz MO, Sakman B, Yuksel E. Diffusion-weighted magnetic resonance imaging in rhombencephalitis due to Listeria monocytogenes. Acta Radiol. 2007;48(4):464–7.

    CAS  PubMed  Google Scholar 

  316. Lo CP, Chen CY. Neuroimaging of viral infections in infants and young children. Neuroimaging Clin N Am. 2008;18(1):119–32.

    PubMed  Google Scholar 

  317. Rumboldt Z. Imaging of topographic viral CNS infections. Neuroimaging Clin N Am. 2008;18(1):85–92.

    PubMed  Google Scholar 

  318. Hagemann G, Mentzel HJ, Weisser H, Kunze A, Terborg C. Multiple reversible MR signal changes caused by Epstein-Barr virus encephalitis. AJNR Am J Neuroradiol. 2006;27(7):1447–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  319. Sahraian MA, Radue EW, Eshaghi A, Besliu S, Minagar A. Progressive multifocal leukoencephalopathy: a review of the neuroimaging features and differential diagnosis. Eur J Neurol. 2012;19(8):1060–9.

    CAS  PubMed  Google Scholar 

  320. Buckle C, Castillo M. Use of diffusion-weighted imaging to evaluate the initial response of progressive multifocal leukoencephalopathy to highly active antiretroviral therapy: early experience. AJNR Am J Neuroradiol. 2010;31(6):1031–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  321. Godi C, De Vita E, Tombetti E, Davagnanam I, Haddow L, Jäger HR. High b-value diffusion-weighted imaging in progressive multifocal leukoencephalopathy in HIV patients. Eur Radiol. 2017;27(9):3593–9.

    PubMed  PubMed Central  Google Scholar 

  322. Vrancken AF, Frijns CJ, Ramos LM. FLAIR MRI in sporadic Creutzfeldt-Jakob disease. Neurology. 2000;55(1):147–8.

    CAS  PubMed  Google Scholar 

  323. Wada R, Kucharczyk W. Prion infections of the brain. Neuroimaging Clin N Am. 2008;18(1):183–91.

    PubMed  Google Scholar 

  324. Finkenstaedt M, Szudra A, Zerr I, et al. MR imaging of Creutzfeldt-Jakob disease. Radiology. 1996;199(3):793–8.

    CAS  PubMed  Google Scholar 

  325. Mittal S, Farmer P, Kalina P, Kingsley PB, Halperin J. Correlation of diffusion-weighted magnetic resonance imaging with neuropathology in Creutzfeldt-Jakob disease. Arch Neurol. 2002;59(1):128–34.

    PubMed  Google Scholar 

  326. Kallenberg K, Schulz-Schaeffer WJ, Jastrow U, et al. Creutzfeldt-Jakob disease: comparative analysis of MR imaging sequences. AJNR Am J Neuroradiol. 2006;27(7):1459–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  327. Collie DA, Summers DM, Sellar RJ, et al. Diagnosing variant Creutzfeldt-Jakob disease with the pulvinar sign: MR imaging findings in 86 neuropathologically confirmed cases. AJNR Am J Neuroradiol. 2003;24(8):1560–9.

    PubMed  PubMed Central  Google Scholar 

  328. Zeidler M, Sellar RJ, Collie DA, et al. The pulvinar sign on magnetic resonance imaging in variant Creutzfeldt-Jakob disease. Lancet. 2000;355(9213):1412–8.

    CAS  PubMed  Google Scholar 

  329. Hyare H, Thornton J, Stevens J, et al. High-b-value diffusion MR imaging and basal nuclei apparent diffusion coefficient measurements in variant and sporadic Creutzfeldt-Jakob disease. AJNR Am J Neuroradiol. 2010;31(3):521–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  330. Murata T, Shiga Y, Higano S, Takahashi S, Mugikura S. Conspicuity and evolution of lesions in Creutzfeldt-Jakob disease at diffusion-weighted imaging. AJNR Am J Neuroradiol. 2002;23(7):1164–72.

    PubMed  PubMed Central  Google Scholar 

  331. Young GS, Geschwind MD, Fischbein NJ, et al. Diffusion-weighted and fluid-attenuated inversion recovery imaging in Creutzfeldt-Jakob disease: high sensitivity and specificity for diagnosis. AJNR Am J Neuroradiol. 2005;26(6):1551–62.

    PubMed  PubMed Central  Google Scholar 

  332. Bahn MM, Parchi P. Abnormal diffusion-weighted magnetic resonance images in Creutzfeldt-Jakob disease. Arch Neurol. 1999;56(5):577–83.

    CAS  PubMed  Google Scholar 

  333. Manners DN, Parchi P, Tonon C, et al. Pathologic correlates of diffusion MRI changes in Creutzfeldt-Jakob disease. Neurology. 2009;72(16):1425–31.

    CAS  PubMed  Google Scholar 

  334. Haik S, Dormont D, Faucheux BA, Marsault C, Hauw JJ. Prion protein deposits match magnetic resonance imaging signal abnormalities in Creutzfeldt-Jakob disease. Ann Neurol. 2002;51(6):797–9.

    PubMed  Google Scholar 

  335. Shiga Y, Miyazawa K, Sato S, et al. Diffusion-weighted MRI abnormalities as an early diagnostic marker for Creutzfeldt-Jakob disease. Neurology. 2004;63(3):443–9.

    CAS  PubMed  Google Scholar 

  336. Matoba M, Tonami H, Miyaji H, Yokota H, Yamamoto I. Creutzfeldt-Jakob disease: serial changes on diffusion-weighted MRI. J Comput Assist Tomogr. 2001;25(2):274–7.

    CAS  PubMed  Google Scholar 

  337. Ukisu R, Kushihashi T, Kitanosono T, et al. Serial diffusion-weighted MRI of Creutzfeldt-Jakob disease. AJR Am J Roentgenol. 2005;184(2):560–6.

    PubMed  Google Scholar 

  338. Gao T, Lyu JH, Zhang JT, et al. Diffusion-weighted MRI findings and clinical correlations in sporadic Creutzfeldt-Jakob disease. J Neurol. 2015;262(6):1440–6.

    CAS  PubMed  Google Scholar 

  339. Al-Okaili RN, Krejza J, Wang S, Woo JH, Melhem ER. Advanced MR imaging techniques in the diagnosis of intraaxial brain tumors in adults. Radiographics. 2006;26(Suppl 1):S173–89.

    PubMed  Google Scholar 

  340. Gupta RK, Sinha U, Cloughesy TF, Alger JR. Inverse correlation between choline magnetic resonance spectroscopy signal intensity and the apparent diffusion coefficient in human glioma. Magn Reson Med. 1999;41(1):2–7.

    CAS  PubMed  Google Scholar 

  341. Chenevert TL, Stegman LD, Taylor JM, et al. Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. J Natl Cancer Inst. 2000;92(24):2029–36.

    CAS  PubMed  Google Scholar 

  342. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.

    PubMed  Google Scholar 

  343. Yang D, Korogi Y, Sugahara T, et al. Cerebral gliomas: prospective comparison of multivoxel 2D chemical-shift imaging proton MR spectroscopy, echoplanar perfusion and diffusion-weighted MRI. Neuroradiology. 2002;44(8):656–66.

    CAS  PubMed  Google Scholar 

  344. Lam WW, Poon WS, Metreweli C. Diffusion MR imaging in glioma: does it have any role in the pre-operation determination of grading of glioma? Clin Radiol. 2002;57(3):219–25.

    CAS  PubMed  Google Scholar 

  345. Bulakbasi N, Kocaoglu M, Ors F, Tayfun C, Ucoz T. Combination of single-voxel proton MR spectroscopy and apparent diffusion coefficient calculation in the evaluation of common brain tumors. AJNR Am J Neuroradiol. 2003;24(2):225–33.

    PubMed  PubMed Central  Google Scholar 

  346. Arvinda HR, Kesavadas C, Sarma PS, et al. Glioma grading: sensitivity, specificity, positive and negative predictive values of diffusion and perfusion imaging. J Neuro-Oncol. 2009;94(1):87–96.

    CAS  Google Scholar 

  347. Fan GG, Deng QL, Wu ZH, Guo QY. Usefulness of diffusion/perfusion-weighted MRI in patients with non-enhancing supratentorial brain gliomas: a valuable tool to predict tumour grading? Br J Radiol. 2006;79(944):652–8.

    CAS  PubMed  Google Scholar 

  348. Xiao HF, Chen ZY, Lou X, et al. Astrocytic tumour grading: a comparative study of three-dimensional pseudocontinuous arterial spin labelling, dynamic susceptibility contrast-enhanced perfusion-weighted imaging, and diffusion-weighted imaging. Eur Radiol. 2015;25(12):3423–30.

    PubMed  PubMed Central  Google Scholar 

  349. Yamasaki F, Kurisu K, Satoh K, et al. Apparent diffusion coefficient of human brain tumors at MR imaging. Radiology. 2005;235(3):985–91.

    PubMed  Google Scholar 

  350. Svolos P, Tsolaki E, Kapsalaki E, et al. Investigating brain tumor differentiation with diffusion and perfusion metrics at 3T MRI using pattern recognition techniques. Magn Reson Imaging. 2013;31(9):1567–77.

    PubMed  Google Scholar 

  351. Zonari P, Baraldi P, Crisi G. Multimodal MRI in the characterization of glial neoplasms: the combined role of single-voxel MR spectroscopy, diffusion imaging and echo-planar perfusion imaging. Neuroradiology. 2007;49(10):795–803.

    PubMed  Google Scholar 

  352. Rizzo L, Crasto SG, Moruno PG, et al. Role of diffusion- and perfusion-weighted MR imaging for brain tumour characterisation. Radiol Med. 2009;114(4):645–59.

    CAS  PubMed  Google Scholar 

  353. Cha S. Update on brain tumor imaging: from anatomy to physiology. AJNR Am J Neuroradiol. 2006;27(3):475–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  354. Kang Y, Choi SH, Kim YJ, et al. Gliomas: histogram analysis of apparent diffusion coefficient maps with standard- or high-b-value diffusion-weighted MR imaging–correlation with tumor grade. Radiology. 2011;261(3):882–90.

    PubMed  Google Scholar 

  355. de Fatima Vasco Aragao M, Law M, de Almeida D, et al. Comparison of perfusion, diffusion, and MR spectroscopy between low-grade enhancing pilocytic astrocytomas and high-grade astrocytomas. Am J Neuroradiol. 2014;35(8):1495–502.

    PubMed  PubMed Central  Google Scholar 

  356. Hales PW, d'Arco F, Cooper J, et al. Arterial spin labelling and diffusion-weighted imaging in paediatric brain tumours. Neuroimage Clin. 2019;22:101696.

    PubMed  PubMed Central  Google Scholar 

  357. Murakami R, Hirai T, Sugahara T, et al. Grading astrocytic tumors by using apparent diffusion coefficient parameters: superiority of a one- versus two-parameter pilot method. Radiology. 2009;251(3):838–45.

    PubMed  Google Scholar 

  358. Lee EJ, Lee SK, Agid R, Bae JM, Keller A, Terbrugge K. Preoperative grading of presumptive low-grade astrocytomas on MR imaging: diagnostic value of minimum apparent diffusion coefficient. AJNR Am J Neuroradiol. 2008;29(10):1872–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  359. Hayashida Y, Hirai T, Morishita S, et al. Diffusion-weighted imaging of metastatic brain tumors: comparison with histologic type and tumor cellularity. AJNR Am J Neuroradiol. 2006;27(7):1419–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  360. Pauleit D, Langen KJ, Floeth F, et al. Can the apparent diffusion coefficient be used as a noninvasive parameter to distinguish tumor tissue from peritumoral tissue in cerebral gliomas? J Magn Reson Imaging. 2004;20(5):758–64.

    PubMed  Google Scholar 

  361. Chiang IC, Kuo YT, Lu CY, et al. Distinction between high-grade gliomas and solitary metastases using peritumoral 3-T magnetic resonance spectroscopy, diffusion, and perfusion imagings. Neuroradiology. 2004;46(8):619–27.

    PubMed  Google Scholar 

  362. Rollin N, Guyotat J, Streichenberger N, Honnorat J, Tran Minh VA, Cotton F. Clinical relevance of diffusion and perfusion magnetic resonance imaging in assessing intra-axial brain tumors. Neuroradiology. 2006;48(3):150–9.

    CAS  PubMed  Google Scholar 

  363. Lee EJ, terBrugge K, Mikulis D, et al. Diagnostic value of peritumoral minimum apparent diffusion coefficient for differentiation of glioblastoma multiforme from solitary metastatic lesions. Am J Roentgenol. 2011;196(1):71–6.

    Google Scholar 

  364. Hall DE, Moffat BA, Stojanovska J, et al. Therapeutic efficacy of DTI-015 using diffusion magnetic resonance imaging as an early surrogate marker. Clin Cancer Res. 2004;10(23):7852–9.

    CAS  PubMed  Google Scholar 

  365. Schubert MI, Wilke M, Muller-Weihrich S, Auer DP. Diffusion-weighted magnetic resonance imaging of treatment-associated changes in recurrent and residual medulloblastoma: preliminary observations in three children. Acta Radiol. 2006;47(10):1100–4.

    CAS  PubMed  Google Scholar 

  366. Mardor Y, Pfeffer R, Spiegelmann R, et al. Early detection of response to radiation therapy in patients with brain malignancies using conventional and high b-value diffusion-weighted magnetic resonance imaging. J Clin Oncol. 2003;21(6):1094–100.

    PubMed  Google Scholar 

  367. Tomura N, Narita K, Izumi J, et al. Diffusion changes in a tumor and peritumoral tissue after stereotactic irradiation for brain tumors: possible prediction of treatment response. J Comput Assist Tomogr. 2006;30(3):496–500.

    PubMed  Google Scholar 

  368. Hamstra DA, Chenevert TL, Moffat BA, et al. Evaluation of the functional diffusion map as an early biomarker of time-to-progression and overall survival in high-grade glioma. Proc Natl Acad Sci U S A. 2005;102(46):16759–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  369. Moffat BA, Chenevert TL, Lawrence TS, et al. Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc Natl Acad Sci U S A. 2005;102(15):5524–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  370. Chenevert TL, Ross BD. Diffusion imaging for therapy response assessment of brain tumor. Neuroimaging Clin N Am. 2009;19(4):559–71.

    PubMed  PubMed Central  Google Scholar 

  371. Hein PA, Eskey CJ, Dunn JF, Hug EB. Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. AJNR Am J Neuroradiol. 2004;25(2):201–9.

    PubMed  PubMed Central  Google Scholar 

  372. Hsu CH, Lober RM, Li MD, et al. Decreased tumor apparent diffusion coefficient correlates with objective response of pediatric low-grade glioma to bevacizumab. J Neuro-Oncol. 2015;122(3):491–6.

    CAS  Google Scholar 

  373. Galla N, Chiang G, Chakraborty S, et al. Apparent diffusion coefficient changes predict survival after intra-arterial bevacizumab treatment in recurrent glioblastoma. Neuroradiology. 2017;59(5):499–505.

    PubMed  Google Scholar 

  374. Kwee TC, Galban CJ, Tsien C, et al. Intravoxel water diffusion heterogeneity imaging of human high-grade gliomas. NMR Biomed. 2010;23(2):179–87.

    PubMed  PubMed Central  Google Scholar 

  375. Zeng QS, Li CF, Liu H, Zhen JH, Feng DC. Distinction between recurrent glioma and radiation injury using magnetic resonance spectroscopy in combination with diffusion-weighted imaging. Int J Radiat Oncol Biol Phys. 2007;68(1):151–8.

    PubMed  Google Scholar 

  376. Asao C, Korogi Y, Kitajima M, et al. Diffusion-weighted imaging of radiation-induced brain injury for differentiation from tumor recurrence. AJNR Am J Neuroradiol. 2005;26(6):1455–60.

    PubMed  PubMed Central  Google Scholar 

  377. Chu HH, Choi SH, Ryoo I, et al. Differentiation of true progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide: comparison study of standard and high-b-value diffusion-weighted imaging. Radiology. 2013;269(3):831–40.

    PubMed  Google Scholar 

  378. Jain R, Scarpace LM, Ellika S, et al. Imaging response criteria for recurrent gliomas treated with bevacizumab: role of diffusion weighted imaging as an imaging biomarker. J Neuro-Oncol. 2010;96(3):423–31.

    CAS  Google Scholar 

  379. Gerstner ER, Chen PJ, Wen PY, Jain RK, Batchelor TT, Sorensen G. Infiltrative patterns of glioblastoma spread detected via diffusion MRI after treatment with cediranib. Neuro-Oncology. 2010;12(5):466–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  380. Farid N, Almeida-Freitas DB, White NS, et al. Restriction-spectrum imaging of bevacizumab-related necrosis in a patient with GBM. Front Oncol. 2013;3:258.

    PubMed  PubMed Central  Google Scholar 

  381. LaViolette PS, Mickevicius NJ, Cochran EJ, et al. Precise ex vivo histological validation of heightened cellularity and diffusion-restricted necrosis in regions of dark apparent diffusion coefficient in 7 cases of high-grade glioma. Neuro-Oncology. 2014;16(12):1599–606.

    CAS  PubMed  PubMed Central  Google Scholar 

  382. Rieger J, Bahr O, Muller K, Franz K, Steinbach J, Hattingen E. Bevacizumab-induced diffusion-restricted lesions in malignant glioma patients. J Neuro-Oncol. 2010;99(1):49–56.

    CAS  Google Scholar 

  383. Mong S, Ellingson BM, Nghiemphu PL, et al. Persistent diffusion-restricted lesions in bevacizumab-treated malignant gliomas are associated with improved survival compared with matched controls. AJNR Am J Neuroradiol. 2012;33(9):1763–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  384. Pruzincova L, Steno J, Srbecky M, et al. MR imaging of late radiation therapy- and chemotherapy-induced injury: a pictorial essay. Eur Radiol. 2009;19(11):2716–27.

    CAS  PubMed  Google Scholar 

  385. Tung GA, Evangelista P, Rogg JM, Duncan JA 3rd. Diffusion-weighted MR imaging of rim-enhancing brain masses: is markedly decreased water diffusion specific for brain abscess? AJR Am J Roentgenol. 2001;177(3):709–12.

    CAS  PubMed  Google Scholar 

  386. Stadnik TW, Chaskis C, Michotte A, et al. Diffusion-weighted MR imaging of intracerebral masses: comparison with conventional MR imaging and histologic findings. AJNR Am J Neuroradiol. 2001;22(5):969–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  387. Horger M, Fenchel M, Nagele T, et al. Water diffusivity: comparison of primary CNS lymphoma and astrocytic tumor infiltrating the corpus callosum. AJR Am J Roentgenol. 2009;193(5):1384–7.

    PubMed  Google Scholar 

  388. Barajas RF Jr, Rubenstein JL, Chang JS, Hwang J, Cha S. Diffusion-weighted MR imaging derived apparent diffusion coefficient is predictive of clinical outcome in primary central nervous system lymphoma. AJNR Am J Neuroradiol. 2010;31(1):60–6.

    PubMed  PubMed Central  Google Scholar 

  389. Forghani R, Farb RI, Kiehl TR, Bernstein M. Fourth ventricle epidermoid tumor: radiologic, intraoperative, and pathologic findings. Radiographics. 2007;27(5):1489–94.

    PubMed  Google Scholar 

  390. Bukte Y, Paksoy Y, Genc E, Uca AU. Role of diffusion-weighted MR in differential diagnosis of intracranial cystic lesions. Clin Radiol. 2005;60(3):375–83.

    CAS  PubMed  Google Scholar 

  391. Hakyemez B, Yildirim N, Gokalp G, Erdogan C, Parlak M. The contribution of diffusion-weighted MR imaging to distinguishing typical from atypical meningiomas. Neuroradiology. 2006;48(8):513–20.

    PubMed  Google Scholar 

  392. Nagar VA, Ye JR, Ng WH, et al. Diffusion-weighted MR imaging: diagnosing atypical or malignant meningiomas and detecting tumor dedifferentiation. AJNR Am J Neuroradiol. 2008;29(6):1147–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  393. Filippi CG, Edgar MA, Ulug AM, Prowda JC, Heier LA, Zimmerman RD. Appearance of meningiomas on diffusion-weighted images: correlating diffusion constants with histopathologic findings. AJNR Am J Neuroradiol. 2001;22(1):65–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  394. Huisman TA, Sorensen AG, Hergan K, Gonzalez RG, Schaefer PW. Diffusion-weighted imaging for the evaluation of diffuse axonal injury in closed head injury. J Comput Assist Tomogr. 2003;27(1):5–11.

    PubMed  Google Scholar 

  395. Kinoshita T, Moritani T, Hiwatashi A, et al. Conspicuity of diffuse axonal injury lesions on diffusion-weighted MR imaging. Eur J Radiol. 2005;56(1):5–11.

    PubMed  Google Scholar 

  396. Borja MJ, Chung S, Lui YW. Diffusion MR imaging in mild traumatic brain injury. Neuroimaging Clin N Am. 2018;28(1):117–26.

    PubMed  PubMed Central  Google Scholar 

  397. Schaefer PW, Huisman TA, Sorensen AG, Gonzalez RG, Schwamm LH. Diffusion-weighted MR imaging in closed head injury: high correlation with initial glasgow coma scale score and score on modified Rankin scale at discharge. Radiology. 2004;233(1):58–66.

    PubMed  Google Scholar 

  398. Hou DJ, Tong KA, Ashwal S, et al. Diffusion-weighted magnetic resonance imaging improves outcome prediction in adult traumatic brain injury. J Neurotrauma. 2007;24(10):1558–69.

    PubMed  Google Scholar 

  399. Inglese M, Makani S, Johnson G, et al. Diffuse axonal injury in mild traumatic brain injury: a diffusion tensor imaging study. J Neurosurg. 2005;103(2):298–303.

    PubMed  Google Scholar 

  400. Salmond CH, Menon DK, Chatfield DA, et al. Diffusion tensor imaging in chronic head injury survivors: correlations with learning and memory indices. NeuroImage. 2006;29(1):117–24.

    CAS  PubMed  Google Scholar 

  401. Kraus MF, Susmaras T, Caughlin BP, Walker CJ, Sweeney JA, Little DM. White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study. Brain. 2007;130(Pt 10):2508–19.

    PubMed  Google Scholar 

  402. Little DM, Kraus MF, Joseph J, et al. Thalamic integrity underlies executive dysfunction in traumatic brain injury. Neurology. 2010;74(7):558–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  403. Wang J, Takashima S, Takayama F, et al. Head and neck lesions: characterization with diffusion-weighted echo-planar MR imaging. Radiology. 2001;220(3):621–30.

    CAS  PubMed  Google Scholar 

  404. Abdel Razek AA, Soliman NY, Elkhamary S, Alsharaway MK, Tawfik A. Role of diffusion-weighted MR imaging in cervical lymphadenopathy. Eur Radiol. 2006;16(7):1468–77.

    PubMed  Google Scholar 

  405. Srinivasan A, Dvorak R, Perni K, Rohrer S, Mukherji SK. Differentiation of benign and malignant pathology in the head and neck using 3T apparent diffusion coefficient values: early experience. AJNR Am J Neuroradiol. 2008;29(1):40–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  406. Politi LS, Forghani R, Godi C, et al. Ocular adnexal lymphoma: diffusion-weighted MR imaging for differential diagnosis and therapeutic monitoring. Radiology. 2010;256(2):565–74.

    PubMed  Google Scholar 

  407. Razek AA, Elkhamary S, Mousa A. Differentiation between benign and malignant orbital tumors at 3-T diffusion MR-imaging. Neuroradiology. 2011;53(7):517–22.

    PubMed  Google Scholar 

  408. Connolly M, Srinivasan A. Diffusion-weighted imaging in head and neck cancer: technique, limitations, and applications. Magn Reson Imaging Clin N Am. 2018;26(1):121–33.

    PubMed  Google Scholar 

  409. Driessen JP, van Bemmel AJ, van Kempen PM, et al. Correlation of human papillomavirus status with apparent diffusion coefficient of diffusion-weighted MRI in head and neck squamous cell carcinomas. Head Neck. 2016;38(Suppl 1):E613–8.

    PubMed  Google Scholar 

  410. Kim S, Loevner L, Quon H, et al. Diffusion-weighted magnetic resonance imaging for predicting and detecting early response to chemoradiation therapy of squamous cell carcinomas of the head and neck. Clin Cancer Res. 2009;15(3):986–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  411. Srinivasan A, Chenevert TL, Dwamena BA, et al. Utility of pretreatment mean apparent diffusion coefficient and apparent diffusion coefficient histograms in prediction of outcome to chemoradiation in head and neck squamous cell carcinoma. J Comput Assist Tomogr. 2012;36(1):131–7.

    PubMed  Google Scholar 

  412. Guo W, Luo D, Lin M, et al. Pretreatment intra-voxel incoherent motion diffusion-weighted imaging (IVIM-DWI) in predicting induction chemotherapy response in locally advanced hypopharyngeal carcinoma. Medicine. 2016;95(10):e3039.

    PubMed  PubMed Central  Google Scholar 

  413. Chung SR, Choi YJ, Suh CH, Lee JH, Baek JH. Diffusion-weighted magnetic resonance imaging for predicting response to chemoradiation therapy for head and neck squamous cell carcinoma: a systematic review. Korean J Radiol. 2019;20(4):649–61.

    PubMed  PubMed Central  Google Scholar 

  414. Fitzek C, Mewes T, Fitzek S, Mentzel HJ, Hunsche S, Stoeter P. Diffusion-weighted MRI of cholesteatomas of the petrous bone. J Magn Reson Imaging. 2002;15(6):636–41.

    PubMed  Google Scholar 

  415. Schwartz KM, Lane JI, Neff BA, Bolster BD Jr, Driscoll CL, Beatty CW. Diffusion-weighted imaging for cholesteatoma evaluation. Ear Nose Throat J. 2010;89(4):E14–9.

    PubMed  Google Scholar 

  416. Schwartz KM, Lane JI, Bolster BD Jr, Neff BA. The utility of diffusion-weighted imaging for cholesteatoma evaluation. AJNR Am J Neuroradiol. 2011;32(3):430–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  417. Jindal M, Riskalla A, Jiang D, Connor S, O'Connor AF. A systematic review of diffusion-weighted magnetic resonance imaging in the assessment of postoperative cholesteatoma. Otol Neurotol. 2011;32(8):1243–9.

    PubMed  Google Scholar 

  418. Cavaliere M, Di Lullo AM, Caruso A, et al. Diffusion-weighted intensity magnetic resonance in the preoperative diagnosis of cholesteatoma. ORL J Otorhinolaryngol Relat Spec. 2014;76(4):212–21.

    PubMed  Google Scholar 

  419. Bender B, Heine C, Danz S, et al. Diffusion restriction of the optic nerve in patients with acute visual deficit. J Magn Reson Imaging. 2014;40(2):334–40.

    PubMed  Google Scholar 

  420. Wan H, Sha Y, Zhang F, Hong R, Tian G, Fan H. Diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging, and two-dimensional navigator-based reacquisition in detecting acute optic neuritis. J Magn Reson Imaging. 2016;43(3):655–60.

    PubMed  Google Scholar 

  421. Marcel C, Kremer S, Jeantroux J, Blanc F, Dietemann JL, De Sèze J. Diffusion-weighted imaging in noncompressive myelopathies: a 33-patient prospective study. J Neurol. 2010;257(9):1438–45.

    PubMed  Google Scholar 

  422. Andre JB, Zaharchuk G, Saritas E, et al. Clinical evaluation of reduced field-of-view diffusion-weighted imaging of the cervical and thoracic spine and spinal cord. AJNR Am J Neuroradiol. 2012;33(10):1860–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  423. Seeger A, Klose U, Bischof F, Strobel J, Ernemann U, Hauser TK. Zoomed EPI DWI of acute spinal ischemia using a parallel transmission system. Clin Neuroradiol. 2016;26(2):177–82.

    CAS  PubMed  Google Scholar 

  424. Artemis D, Wolf M, Blahak C, Szabo K, Hennerici MG, Fatar M. Diagnostic and prognostic relevance of magnetic resonance imaging and electrophysiological findings in acute spinal ischemia. J Stroke Cerebrovasc Dis. 2017;26(3):459–64.

    PubMed  Google Scholar 

  425. Lecouvet FE. Whole-Body MR imaging: musculoskeletal applications. Radiology. 2016;279(2):345–65.

    PubMed  Google Scholar 

  426. Tanenbaum LN. Clinical applications of diffusion imaging in the spine. Magn Reson Imaging Clin N Am. 2013;21(2):299–320.

    PubMed  Google Scholar 

  427. Vargas MI, Delattre BMA, Boto J, et al. Advanced magnetic resonance imaging (MRI) techniques of the spine and spinal cord in children and adults. Insights Imaging. 2018;9(4):549–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  428. Forghani R. Machine Intelligence in Neurologic and Head and Neck Imaging. Neuroimaging Clin N Am. 2020;30(4):xvii–xviii.

    PubMed  Google Scholar 

  429. Maleki F, Le WT, Sananmuang T, Kadoury S, Forghani R. Machine learning applications for head and neck imaging. Neuroimaging Clin N Am. 2020;30(4):517–29.

    PubMed  Google Scholar 

  430. Forghani R. Precision digital oncology: emerging role of radiomics-based biomarkers and artificial intelligence for advanced imaging and characterization of brain tumors. Radiology. 2020;2(4):e190047.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Forghani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Márquez, J., Sananmuang, T., Srinivasan, A., Schaefer, P.W., Forghani, R. (2023). Clinical Applications of Diffusion. In: Faro, S.H., Mohamed, F.B. (eds) Functional Neuroradiology. Springer, Cham. https://doi.org/10.1007/978-3-031-10909-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10909-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10908-9

  • Online ISBN: 978-3-031-10909-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics