Skip to main content

Diffusion Tensor Magnetic Resonance Imaging – Physical Principles

  • Chapter
  • First Online:
Functional Neuroradiology

Abstract

Diffusion tensor MR imaging (DTI) is an advanced technique, born out of conventional diffusion-weighted imaging, that is able to characterize anisotropic diffusion of water in the central nervous system. This chapter will focus on the physical principles underlying DTI, including its foundation in probability theory and the use of a Gaussian model of diffusion in three dimensions. A review of conventional diffusion-weighted MR imaging and the determination of apparent diffusion coefficients is provided and then extended to the case of multidirectional DTI acquisition. The procedure for filling a diffusion tensor matrix and extracting its eigenvalues and eigenvectors is explained and the role of these parameters in shaping a Gaussian “ellipsoid” into a visual representation of anisotropic diffusion is presented. The dominant forms of tensor ellipsoids (spherical, oblate, and prolate) are introduced along with an overview of how directional DTI information is rendered as an image. Scalar metrics derived from the diffusion tensor eigenvalues, including fractional anisotropy (FA), are discussed, followed by an introduction to white matter fiber tracking (“tractography”). Inherent limitations of the tensor model are highlighted throughout the discussion, including the nonspecific nature of anisotropy measurements, awareness of nonprolate tensors in the brain, and the inability of the tensor model to resolve crossing fibers within a voxel. The chapter concludes with a brief look at several promising techniques that move beyond the Gaussian model of diffusion, such as diffusion kurtosis imaging and other multicompartment biophysical models, as well as technological advances that serve to enhance the current state of the field and continue to move it into new horizons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown R. A brief account of microscopical observations on the particles contained in the pollen of plants: and of the general existence of active molecules in organic and inorganic bodies. Philos Mag. 1828;4:358–71.

    Google Scholar 

  2. Einstein A. Investigations on the theory of the Brownian movement. New York: Courier Corporation; 1956.

    Google Scholar 

  3. Anton H, Rorres C. Elementary linear algebra: applications version. 7th ed. New York, NY: Wiley; 1994.

    Google Scholar 

  4. Jellison BJ, Field AS, Medow J, Lazar M, Salamat MS, Alexander AL. Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. AJNR Am J Neuroradiol. 2004;25(3):356–69.

    PubMed  PubMed Central  Google Scholar 

  5. Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B. 1994;103(3):247–54.

    CAS  PubMed  Google Scholar 

  6. Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of time dependent field gradient. J Chem Phys. 1965;42(1):288–92.

    CAS  Google Scholar 

  7. Le Bihan D, Breton E. Imagerie de diffusion in-vivo par résonance magnétique nucléaire. Comptes-Rendus de l'Académie des Sciences. 1985;93(5):27–34.

    Google Scholar 

  8. Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of the brain. Neurotherapeutics. 2007;4(3):316–29.

    PubMed  PubMed Central  Google Scholar 

  9. Moseley ME, Cohen Y, Kucharczyk J, Mintorovitch J, Asgari HS, Wendland MF, et al. Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology. 1990;176(2):439–45.

    CAS  PubMed  Google Scholar 

  10. Moseley ME, Kucharczyk J, Asgari HS, Norman D. Anisotropy in diffusion-weighted MRI. Magn Reson Med. 1991;19(2):321–6.

    CAS  PubMed  Google Scholar 

  11. Beaulieu C, Allen PS. Water diffusion in the giant axon of the squid: implications for diffusion-weighted MRI of the nervous system. Magn Reson Med. 1994;32(5):579–83.

    CAS  PubMed  Google Scholar 

  12. Beaulieu C, Allen PS. Determinants of anisotropic water diffusion in nerves. Magn Reson Med. 1994;31(4):394–400.

    CAS  PubMed  Google Scholar 

  13. Beaulieu C. The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed. 2002;15(7–8):435–55.

    PubMed  Google Scholar 

  14. Jones DK. Studying connections in the living human brain with diffusion MRI. Cortex. 2008;44(8):936–52.

    PubMed  Google Scholar 

  15. Mukherjee P, Berman JI, Chung SW, Hess CP, Henry RG. Diffusion tensor MR imaging and fiber tractography: theoretic underpinnings. AJNR Am J Neuroradiol. 2008;29(4):632–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, et al. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging. 2001;13(4):534–46.

    PubMed  Google Scholar 

  17. Mukherjee P, Chung SW, Berman JI, Hess CP, Henry RG. Diffusion tensor MR imaging and fiber tractography: technical considerations. AJNR Am J Neuroradiol. 2008;29(5):843–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Alexander AL, Tsuruda JS, Parker DL. Elimination of eddy current artifacts in diffusion-weighted echo-planar images: the use of bipolar gradients. Magn Reson Med. 1997;38(6):1016–21.

    CAS  PubMed  Google Scholar 

  19. Setsompop K, Cohen-Adad J, Gagoski BA, Raij T, Yendiki A, Keil B, et al. Improving diffusion MRI using simultaneous multi-slice echo planar imaging. Neuroimage. 2012;63(1):569–80.

    CAS  PubMed  Google Scholar 

  20. Basser PJ, Pajevic S. Statistical artifacts in diffusion tensor MRI (dt-MRI) caused by background noise. Magn Reson Med. 2000;44(1):41–50.

    CAS  PubMed  Google Scholar 

  21. Hasan KM, Parker DL, Alexander AL. Comparison of gradient encoding schemes for diffusion-tensor MRI. J Magn Reson Imaging. 2001;13(5):769–80.

    CAS  PubMed  Google Scholar 

  22. Jones DK. The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study. Magn Reson Med. 2004;51(4):807–15.

    PubMed  Google Scholar 

  23. Westin CF, Peled S, Gudbjartsson H, Kikinis R, Jolesz FA. Geometrical diffusion measure for MRI from tensor basis analysis. ISMRM. 1997:1742.

    Google Scholar 

  24. Pajevic S, Pierpaoli C. Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn Reson Med. 2000;43(6):921.

    CAS  PubMed  Google Scholar 

  25. Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B. 1996;111(3):209–19.

    CAS  PubMed  Google Scholar 

  26. Mori S, Crain BJ, Chacko VP, van Zijl PC. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol. 1999;45(2):265–9.

    CAS  PubMed  Google Scholar 

  27. Conturo TE, Lori NF, Cull TS, Akbudak E, Snyder AZ, Shimony JS, et al. Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A. 1999;96(18):10422–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Roberts TP, Liu F, Kassner A, Mori S, Guha A. Fiber density index correlates with reduced fractional anisotropy in white matter of patients with glioblastoma. AJNR Am J Neuroradiol. 2005;26(9):2183–6.

    PubMed  PubMed Central  Google Scholar 

  29. Field AS. Diffusion tensor imaging at the crossroads: Fiber tracking meets tissue characterization in brain tumors. AJNR Am J Neuroradiol. 2005;26(9):2168–9.

    PubMed  PubMed Central  Google Scholar 

  30. Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med. 2005;53(6):1432–40.

    PubMed  Google Scholar 

  31. Fieremans E, Jensen JH, Helpern JA. White matter characterization with diffusional kurtosis imaging. Neuroimage. 2011;58(1):177–88.

    PubMed  Google Scholar 

  32. Van Cauter S, Veraart J, Sijbers J, Peeters RR, Himmelreich U, De Keyzer F, et al. Gliomas: Diffusion kurtosis MR imaging in grading. Radiology. 2012;263(2):492–501.

    PubMed  Google Scholar 

  33. Bai Y, Lin YS, Tian J, Shi DP, Cheng JL, Haacke EM, et al. Grading of gliomas by using monoexponential, biexponential, and stretched exponential diffusion-weighted MR imaging and diffusion kurtosis MR imaging. Radiology. 2016;278(2):496–504.

    PubMed  Google Scholar 

  34. Raab P, Hattingen E, Franz K, Zanella FE, Lanfermann H. Cerebral gliomas: diffusional kurtosis imaging analysis of microstructural differences. Radiology. 2010;254(3):876–81.

    PubMed  Google Scholar 

  35. Hui ES, Fieremans E, Jensen JH, Tabesh A, Feng W, Bonilha L, et al. Stroke assessment with diffusional kurtosis imaging. Stroke. 2012;43(11):2968–73.

    PubMed  PubMed Central  Google Scholar 

  36. Weber RA, Hui ES, Jensen JH, Nie X, Falangola MF, Helpern JA, et al. Diffusional kurtosis and diffusion tensor imaging reveal different time-sensitive stroke-induced microstructural changes. Stroke. 2015;46(2):545–50.

    PubMed  PubMed Central  Google Scholar 

  37. Cheung JS, Wang EF, Lo EH, Sun PZ. Stratification of heterogeneous diffusion MRI ischemic lesion with kurtosis imaging evaluation of mean diffusion and kurtosis MRI mismatch in an animal model of transient focal ischemia. Stroke. 2012;43(8):2252–4.

    PubMed  PubMed Central  Google Scholar 

  38. Falangola MF, Jensen JH, Tabesh A, Hu C, Deardorff RL, Babb JS, et al. Non-gaussian diffusion MRI assessment of brain microstructure in mild cognitive impairment and Alzheimer’s disease. Magn Reson Imaging. 2013;31(6):840–6.

    PubMed  PubMed Central  Google Scholar 

  39. Gong NJ, Wong CS, Chan CC, Leung LM, Chu YC. Correlations between microstructural alterations and severity of cognitive deficiency in Alzheimer's disease and mild cognitive impairment: a diffusional kurtosis imaging study. Magn Reson Imaging. 2013;31(5):688–94.

    PubMed  Google Scholar 

  40. Yoshida M, Hori M, Yokoyama K, Fukunaga I, Suzuki M, Kamagata K, et al. Diffusional kurtosis imaging of normal-appearing white matter in multiple sclerosis: preliminary clinical experience. Jpn J Radiol. 2013;31(1):50–5.

    PubMed  Google Scholar 

  41. Guglielmetti C, Veraart J, Roelant E, Mai Z, Daans J, Van Audekerke J, et al. Diffusion kurtosis imaging probes cortical alterations and white matter pathology following cuprizone induced demyelination and spontaneous remyelination. Neuroimage. 2016;125:363–77.

    CAS  PubMed  Google Scholar 

  42. Zhuo J, Xu S, Proctor JL, Mullins RJ, Simon JZ, Fiskum G, et al. Diffusion kurtosis as an in vivo imaging marker for reactive astrogliosis in traumatic brain injury. Neuroimage. 2012;59(1):467–77.

    PubMed  Google Scholar 

  43. Grossman EJ, Ge YL, Jensen JH, Babb JS, Miles L, Reaume J, et al. Thalamus and cognitive impairment in mild traumatic brain injury: a diffusional kurtosis imaging study. J Neurotrauma. 2012;29(13):2318–27.

    PubMed  PubMed Central  Google Scholar 

  44. Grossman EJ, Jensen JH, Babb JS, Chen Q, Tabesh A, Fieremans E, et al. Cognitive impairment in mild traumatic brain injury: a longitudinal diffusional kurtosis and perfusion imaging study. AJNR Am J Neuroradiol. 2013;34(5):951–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Naess-Schmidt ET, Blicher JU, Eskildsen SF, Tietze A, Hansen B, Stubbs PW, et al. Microstructural changes in the thalamus after mild traumatic brain injury: a longitudinal diffusion and mean kurtosis tensor MRI study. Brain Inj. 2017;31(2):230–6.

    PubMed  Google Scholar 

  46. Schachter M, Does MD, Anderson AW, Gore JC. Measurements of restricted diffusion using an oscillating gradient spin-echo sequence. J Magn Reson. 2000;147(2):232–7.

    CAS  PubMed  Google Scholar 

  47. Parsons EC Jr, Does MD, Gore JC. Temporal diffusion spectroscopy: theory and implementation in restricted systems using oscillating gradients. Magn Reson Med. 2006;55(1):75–84.

    PubMed  Google Scholar 

  48. Xu J, Xie J, Jourquin J, Colvin DC, Does MD, Quaranta V, et al. Influence of cell cycle phase on apparent diffusion coefficient in synchronized cells detected using temporal diffusion spectroscopy. Magn Reson Med. 2011;65(4):920–6.

    PubMed  Google Scholar 

  49. Reynaud O, Winters KV, Hoang DM, Wadghiri YZ, Novikov DS, Kim SG. Pulsed and oscillating gradient MRI for assessment of cell size and extracellular space (pomace) in mouse gliomas. NMR Biomed. 2016;29(10):1350–63.

    PubMed  PubMed Central  Google Scholar 

  50. Li H, Gore JC, Xu J. Fast and robust measurement of microstructural dimensions using temporal diffusion spectroscopy. J Magn Reson. 2014;242:4–9.

    CAS  PubMed  Google Scholar 

  51. Aggarwal M, Jones MV, Calabresi PA, Mori S, Zhang J. Probing mouse brain microstructure using oscillating gradient diffusion MRI. Magn Reson Med. 2012;67(1):98–109.

    PubMed  Google Scholar 

  52. Baron CA, Beaulieu C. Oscillating gradient spin-echo (OGSE) diffusion tensor imaging of the human brain. Magn Reson Med. 2014;72(3):726–36.

    PubMed  Google Scholar 

  53. Andica C, Hori M, Kamiya K, Koshino S, Hagiwara A, Kamagata K, et al. Spatial restriction within intracranial epidermoid cysts observed using short diffusion-time diffusion-weighted imaging. Magn Reson Med Sci. 2018;17(3):269–72.

    PubMed  Google Scholar 

  54. Assaf Y, Basser PJ. Composite hindered and restricted model of diffusion (charmed) MR imaging of the human brain. Neuroimage. 2005;27(1):48–58.

    PubMed  Google Scholar 

  55. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. Noddi: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage. 2012;61(4):1000–16.

    PubMed  Google Scholar 

  56. Grussu F, Schneider T, Zhang H, Alexander DC, Wheeler-Kingshott CA. Neurite orientation dispersion and density imaging of the healthy cervical spinal cord in vivo. Neuroimage. 2015;111:590–601.

    PubMed  Google Scholar 

  57. Cox SR, Ritchie SJ, Tucker-Drob EM, Liewald DC, Hagenaars SP, Davies G, et al. Ageing and brain white matter structure in 3,513 UK biobank participants. Nat Commun. 2016;7.

    Google Scholar 

  58. By S, Xu JZ, Box BA, Bagnato FR, Smith SA. Application and evaluation of NODDI in the cervical spinal cord of multiple sclerosis patients. Neuroimage Clin. 2017;15:333–42.

    PubMed  PubMed Central  Google Scholar 

  59. Wen Q, Kelley DA, Banerjee S, Lupo JM, Chang SM, Xu D, et al. Clinically feasible NODDI characterization of glioma using multiband epi at 7 t. Neuroimage Clin. 2015;9:291–9.

    PubMed  PubMed Central  Google Scholar 

  60. Billiet T, Madler B, D'Arco F, Peeters R, Deprez S, Plasschaert E, et al. Characterizing the microstructural basis of “unidentified bright objects” in neurofibromatosis type 1: a combined in vivo multicomponent t2 relaxation and multi-shell diffusion MRI analysis. Neuroimage Clin. 2014;4:649–58.

    PubMed  PubMed Central  Google Scholar 

  61. Billiet T, Vandenbulcke M, Madler B, Peeters R, Dhollander T, Zhang H, et al. Age-related microstructural differences quantified using myelin water imaging and advanced diffusion MRI. Neurobiol Aging. 2015;36(6):2107–21.

    CAS  PubMed  Google Scholar 

  62. Caverzasi E, Papinutto N, Castellano A, Zhu AH, Scifo P, Riva M, et al. Neurite orientation dispersion and density imaging color maps to characterize brain diffusion in neurologic disorders. J Neuroimaging. 2016;26(5):494–8.

    PubMed  Google Scholar 

  63. Colgan N, Siowa B, O'Callaghan JM, Harrison IF, Wells JA, Holmes HE, et al. Application of neurite orientation dispersion and density imaging (NODDI) to a tau pathology model of Alzheimer’s disease. Neuroimage. 2016;125:739–44.

    CAS  PubMed  Google Scholar 

  64. Kamagata K, Hatano T, Okuzumi A, Motoi Y, Abe O, Shimoji K, et al. Neurite orientation dispersion and density imaging in the substantia nigra in idiopathic Parkinson disease. Eur Radiol. 2016;26(8):2567–77.

    PubMed  Google Scholar 

  65. Owen JP, Chang YS, Pojman NJ, Bukshpun P, Wakahiro ML, Marco EJ, et al. Aberrant white matter microstructure in children with 16p11.2 deletions. J Neurosci. 2014;34(18):6214–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Frank LR. Characterization of anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med. 2002;47(6):1083–99.

    PubMed  Google Scholar 

  67. Tournier JD, Calamante F, Connelly A. Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage. 2007;35(4):1459–72.

    PubMed  Google Scholar 

  68. Tournier JD, Calamante F, Gadian DG, Connelly A. Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage. 2004;23(3):1176–85.

    PubMed  Google Scholar 

  69. Hagmann P, Jonasson L, Maeder P, Thiran JP, Wedeen VJ, Meuli R. Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics. 2006;26(Suppl 1):S205–23.

    PubMed  Google Scholar 

  70. Tuch DS, Reese TG, Wiegell MR, Wedeen VJ. Diffusion MRI of complex neural architecture. Neuron. 2003;40(5):885–95.

    CAS  PubMed  Google Scholar 

  71. Wedeen VJ, Hagmann P, Tseng WY, Reese TG, Weisskoff RM. Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med. 2005;54(6):1377–86.

    PubMed  Google Scholar 

  72. Wedeen VJ, Wang RP, Schmahmann JD, Benner T, Tseng WY, Dai G, et al. Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage. 2008;41(4):1267–77.

    CAS  PubMed  Google Scholar 

  73. Tuch DS. Q-ball imaging. Magn Reson Med. 2004;52(6):1358–72.

    PubMed  Google Scholar 

  74. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang JM, et al. Generalized autocalibrating partially parallel acquisitions (grappa). Magn Reson Med. 2002;47(6):1202–10.

    PubMed  Google Scholar 

  75. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. Sense: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42(5):952–62.

    CAS  PubMed  Google Scholar 

  76. Moeller S, Yacoub E, Olman CA, Auerbach E, Strupp J, Harel N, et al. Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn Reson Med. 2010;63(5):1144–53.

    PubMed  PubMed Central  Google Scholar 

  77. Setsompop K, Kimmlingen R, Eberlein E, Witzel T, Cohen-Adad J, McNab JA, et al. Pushing the limits of in vivo diffusion MRI for the human connectome project. Neuroimage. 2013;80:220–33.

    CAS  PubMed  Google Scholar 

  78. Zhao T, Duan F, Liao X, Dai Z, Cao M, He Y, et al. Test-retest reliability of white matter structural brain networks: a multiband diffusion MRI study. Front Hum Neurosci. 2015;9:59.

    PubMed  PubMed Central  Google Scholar 

  79. Callaghan F, Maller JJ, Welton T, Middione MJ, Shankaranarayanan A, Grieve SM. Toward personalised diffusion MRI in psychiatry: improved delineation of fibre bundles with the highest-ever angular resolution in vivo tractography. Transl Psychiatry. 2018;8(1).

    Google Scholar 

  80. Basser PJ. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed. 1995;8(7–8):333–44.

    CAS  PubMed  Google Scholar 

  81. Jaermann T, Crelier G, Pruessmann KP, Golay X, Netsch T, van Muiswinkel AM, et al. Sense-DTI at 3 t. Magn Reson Med. 2004;51(2):230–6.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron S. Field .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guerrero, J., Gallagher, T.A., Alexander, A.L., Field, A.S. (2023). Diffusion Tensor Magnetic Resonance Imaging – Physical Principles. In: Faro, S.H., Mohamed, F.B. (eds) Functional Neuroradiology. Springer, Cham. https://doi.org/10.1007/978-3-031-10909-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10909-6_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10908-9

  • Online ISBN: 978-3-031-10909-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics