Skip to main content

Experimental Design and Data Analysis for fMRI

  • Chapter
  • First Online:
Functional Neuroradiology
  • 1484 Accesses

Abstract

Functional magnetic resonance imaging (fMRI) methods continue to evolve rapidly. Subtle experimental designs have been joined by more powerful data analysis methods to detect and interpret evoked changes in neural activity. Despite constant development, there are several core principles of fMRI methodology that can be used as a guide to understand the current state of the field and whatever advance awaits tomorrow. This chapter concerns itself primarily with this core understanding but considers several specific aspects of fMRI experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atlas SW, Howard RS II, Maldjian J, Alsop D, Detre JA, Listerud J, et al. Functional magnetic resonance imaging of regional brain activity in patients with intracerebral gliomas: findings and implications for clinical management. Neurosurgery. 1996;38(2):329–38.

    Article  CAS  PubMed  Google Scholar 

  2. Detre JA, Alsop DC, Aguirre GK, Sperling MR. Coupling of cortical and thalamic ictal activity in human partial epilepsy: demonstration by functional magnetic resonance imaging. Epilepsia. 1996;37(7):657–61.

    Article  CAS  PubMed  Google Scholar 

  3. Esteller R, Echauz J, D’Alessandro M, Worrell G, Cranstoun S, Vachtsevanos G, et al. Continuous energy variation during the seizure cycle: towards an on-line accumulated energy. Clin Neurophysiol. 2005;116:517–26.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Schiff ND, Rodriguez-Moreno D, Kamal A, Kim KH, Giacino JT, Plum F, et al. fMRI reveals large-scale network activation in minimally conscious patients. Neurology. 2005;64(3):514–23.

    Article  CAS  PubMed  Google Scholar 

  5. Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science. 2001;293:2425–30.

    Article  CAS  PubMed  Google Scholar 

  6. Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007;8:700–11.

    Article  CAS  PubMed  Google Scholar 

  7. Buchel C, Friston KJ. Assessing interactions among neuronal systems using functional neuroimaging. Neural Netw. 2000;13:871–82.

    Article  CAS  PubMed  Google Scholar 

  8. Price CJ, Friston KJ. Cognitive conjunctions: a new experimental design for fMRI. NeuroImage. 1997;5:261–70.

    Article  CAS  PubMed  Google Scholar 

  9. Sternberg S. Separate modifiability, mental modules, and the use of pure and composite measures to reveal them. Acta Psychol. 2001;106:147–246.

    Article  CAS  Google Scholar 

  10. Aguirre GK, Mattar MG, Magis-Weinberg L. de Bruijn cycles for neural decoding. NeuroImage. 2011;56:1293–300.

    Article  PubMed  Google Scholar 

  11. Grill-Spector K, Malach R. fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychol. 2001;107:293–321.

    Article  CAS  Google Scholar 

  12. Aguirre GK, Zarahn E, D’Esposito M. The variability of human BOLD hemodynamic responses. NeuroImage. 1998;8:360–9.

    Article  CAS  PubMed  Google Scholar 

  13. D’Esposito M, Zarahn E, Aguirre GK, Rypma B. The effect of normal aging on coupling of neural activity to the BOLD hemodynamic response. NeuroImage. 1999;10(1):6–14.

    Article  PubMed  Google Scholar 

  14. Worsley KJ, Friston KJ. The analysis of fMRI time-series revisited again. NeuroImage. 1995;2:173–82.

    Article  CAS  PubMed  Google Scholar 

  15. Detre JA, Alsop DC. Perfusion fMRI with arterial spin labeling. In: Bandettini PA, Moonen C, editors. Functional MRI. Berlin: Springer; 1999. p. 47–62.

    Google Scholar 

  16. Aguirre GK, Detre JA, Zarahn E, Alsop DC. Experimental design and the relative sensitivity of BOLD and perfusion fMRI. NeuroImage. 2002;15:488–500.

    Article  CAS  PubMed  Google Scholar 

  17. Friston KJ, Zarahn E, Josephs O, Henson RN, Dale AM. Stochastic designs in event-related fMRI. NeuroImage. 1999;10:607–19.

    Article  CAS  PubMed  Google Scholar 

  18. Liu T. Efficiency, power, and entropy in event-related fMRI with multiple trial types. Part II: design of experiments. Neuroimage. 2004;21:401–13.

    Article  PubMed  Google Scholar 

  19. Zarahn E, Aguirre GK, D’Esposito M. A trial-based experimental design for fMRI. Neuroimage. 1997;6(2):122–38.

    Article  CAS  PubMed  Google Scholar 

  20. Menon RS, Luknowsky DC, Gati JS. Mental chronometry using latency-resolved functional MRI. Proc Nat Acad Sci U S A. 1998;95:10902–7.

    Article  CAS  Google Scholar 

  21. Henson RNA, Price CJ, Rugg MD, Turner R, Friston KJ. Detecting latency differences in event-related BOLD responses: application to words versus nonwords and initial versus repeated face presentations. Neuroimage. 2002;15:83–97.

    Article  CAS  PubMed  Google Scholar 

  22. Engel SA, Rumelhart DE, Wandell BA, Lee AT, Glover GH, Chichilnisky EJ, et al. fMRI of human visual cortex [letter] [published erratum appears in Nature 1994 Jul 14;370(6485):106]. Nature. 1994;369(6481):525.

    Article  CAS  PubMed  Google Scholar 

  23. Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, et al. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging [see comments]. Science. 1995;268(5212):889–93.

    Article  CAS  PubMed  Google Scholar 

  24. McIntosh AR, Bookstein FL, Haxby JV, Grady CL, et al. Spatial pattern analysis of functional brain images using partial least squares. NeuroImage. 1996;3:143–57.

    Article  CAS  PubMed  Google Scholar 

  25. Glover GH, Li TQ, Ress D. Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med. 2000;44:162–7.

    Article  CAS  PubMed  Google Scholar 

  26. Aguirre GK, Zarahn E, D’Esposito M. The inferential impact of global signal covariates in functional neuroimaging analyses. NeuroImage. 1998;8(3):302–6.

    Article  CAS  PubMed  Google Scholar 

  27. Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp. 2002;15:1–25.

    Article  PubMed  Google Scholar 

  28. Nichols T, Hayasaka K. Controlling the familywise error rate in functional neuroimaging: a comparative review. Stat Methods Med Res. 2003;12(5):419–46.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey K. Aguirre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aguirre, G.K. (2023). Experimental Design and Data Analysis for fMRI. In: Faro, S.H., Mohamed, F.B. (eds) Functional Neuroradiology. Springer, Cham. https://doi.org/10.1007/978-3-031-10909-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10909-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10908-9

  • Online ISBN: 978-3-031-10909-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics