Skip to main content

Position Control of Lagrangian Robotic Systems via an Affine PID-Based Controller and Using the LMI Approach

  • Conference paper
  • First Online:
Advances in Italian Mechanism Science (IFToMM Italy 2022)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 122))

Included in the following conference series:

Abstract

In this paper, we are interested in the position control problem of Lagrangian robotic systems via an affine PID-based control law. To achieve such problem and in order to design the condition on the feedback gains ensuring the stabilization of the closed-loop system, we introduce the approximate linear dynamic model and we consider some Lipschitz condition on the nonlinear term defining the difference between the nonlinear dynamics and its linear model. Thus, we use the Linear Matrix Inequality (LMI) approach to design the stability conditions, which allow at the same time the maximization of the Lipschitz constant and reduction of the size of the feedback gains. This idea contributes therefore in reducing the control effort applied to the robotic system. Finally, a two-degree-of-freedom manipulator robot is considered in order to verify the validity of the adopted affine PID-based control law.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbas, M., Al Issa, S., Dwivedy, S.K.: Event-triggered adaptive hybrid position-force control for robot-assisted ultrasonic examination system. J. Intell. Robot. Syst. 102(4), 84 (2021)

    Article  Google Scholar 

  2. Biswal, P., Mohanty, P.K.: Development of quadruped walking robots: a review. Ain Shams Eng. J. 12(2), 2017–2031 (2021)

    Article  Google Scholar 

  3. Carbone, G., Di Nuovo, A.: A hybrid multi-objective evolutionary approach for optimal path planning of a hexapod robot. In: Blesa, M.J., et al. (eds.) HM 2016. LNCS, vol. 9668, pp. 131–144. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39636-1_10

    Chapter  Google Scholar 

  4. Chai, H., et al.: A survey of the development of quadruped robots: joint configuration, dynamic locomotion control method and mobile manipulation approach. Biomim. Intell. Robot. 2(1), 100029 (2022)

    Article  Google Scholar 

  5. Choukchou-Braham, A., Cherki, B., Djemaï, M., Busawon, K.: Control design schemes for underactuated mechanical systems. In: Analysis and Control of Underactuated Mechanical Systems, pp. 55–91. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02636-7_5

    Chapter  MATH  Google Scholar 

  6. da Costa Barros, I.R., Nascimento, T.P.: Robotic mobile fulfillment systems: a survey on recent developments and research opportunities. Robot. Auton. Syst. 137, 103729 (2021)

    Article  Google Scholar 

  7. Gritli, H., Belghith, S.: Robust feedback control of the underactuated inertia wheel inverted pendulum under parametric uncertainties and subject to external disturbances: LMI formulation. J. Franklin Inst. 355(18), 9150–9191 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gritli, H., Jenhani, S., Carbone, G.: Position control of robotic systems via an affine PD-based controller: comparison between two design approaches. In: 2022 5th International Conference on Advanced Systems and Emergent Technologies (IC_ASET), pp. 424–432 (2022)

    Google Scholar 

  9. Jenhani, S., Gritli, H., Carbone, G.: Design and computation aid of command gains for the position control of manipulator robots. In: 2022 International Conference on Decision Aid Sciences and Applications (DASA), pp. 1558–1564 (2022)

    Google Scholar 

  10. Jenhani, S., Gritli, H., Carbone, G.: Design of an affine control law for the position control problem of robotic systems based on the development of a linear dynamic model. In: 2022 5th International Conference on Advanced Systems and Emergent Technologies (IC_ASET), pp. 403–411 (2022)

    Google Scholar 

  11. Jenhani, S., Gritli, H., Carbone, G.: Determination of conditions on feedback gains for the position control of robotic systems under an affine PD-based control law. In: 2022 5th International Conference on Advanced Systems and Emergent Technologies (IC_ASET), pp. 518–526 (2022)

    Google Scholar 

  12. Jenhani, S., Gritli, H., Carbone, G.: Position feedback control of Lagrangian robotic systems via an affine PD-based control law. Part 1: design of LMI conditions. In: 2022 IEEE 2nd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA 2022) (2022)

    Google Scholar 

  13. Jenhani, S., Gritli, H., Carbone, G.: Position feedback control of Lagrangian robotic systems via an affine PD-based control law. Part 2: improved results. In: 2022 IEEE 2nd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA 2022) (2022)

    Google Scholar 

  14. Kalita, B., Narayan, J., Dwivedy, S.K.: Development of active lower limb robotic-based orthosis and exoskeleton devices: a systematic review. Int. J. Soc. Robot. 3(4), 775–793 (2021)

    Article  Google Scholar 

  15. Kelly, R., Davila, V.S., Loría, A.: Control of Robot Manipulators in Joint Space. Advanced Textbooks in Control and Signal Processing. Springer, London (2005). https://doi.org/10.1007/b135572

  16. Krafes, S., Chalh, Z., Saka, A.: A review on the control of second order underactuated mechanical systems. Complexity 2018, 9573514 (2018). https://doi.org/10.1155/2018/9573514

    Article  MATH  Google Scholar 

  17. Kurdila, A.J., Ben-Tzvi, P.: Dynamics and Control of Robotic Systems. Control Process & Measurements, 1st edn. Wiley (2019)

    Google Scholar 

  18. Li, X., Liu, B., Wang, L.: Control system of the six-axis serial manipulator based on active disturbance rejection control. Int. J. Adv. Rob. Syst. 17(4), 1729881420939476 (2020)

    Google Scholar 

  19. Liu, P., Huda, M.N., Sun, L., Yu, H.: A survey on underactuated robotic systems: bio-inspiration, trajectory planning and control. Mechatronics 72, 102443 (2020)

    Article  Google Scholar 

  20. Liu, Y., Yu, H.: A survey of underactuated mechanical systems. IET Control Theor. Appl. 7(7), 921–935 (2013)

    Article  MathSciNet  Google Scholar 

  21. Narayan, J., Dwivedy, S.K.: Robust LQR-based neural-fuzzy tracking control for a lower limb exoskeleton system with parametric uncertainties and external disturbances. Appl. Bionics Biomech. 2021, 5573041 (2021)

    Article  Google Scholar 

  22. Orozco-Magdaleno, E.C., Gomez-Bravo, F., Castillo-Castaneda, E., Carbone, G.: Evaluation of locomotion performances for a Mecanum-wheeled hybrid hexapod robot. IEEE/ASME Trans. Mechatron. 26(3), 1657–1667 (2021)

    Article  Google Scholar 

  23. Sariyildiz, E., Sekiguchi, H., Nozaki, T., Ugurlu, B., Ohnishi, K.: A stability analysis for the acceleration-based robust position control of robot manipulators via disturbance observer. IEEE/ASME Trans. Mechatron. 23(5), 2369–2378 (2018)

    Article  Google Scholar 

  24. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control, 2nd edn. Wiley (2020)

    Google Scholar 

  25. Tipary, B., Erdos, G.: Generic development methodology for flexible robotic pick-and-place workcells based on digital twin. Robot. Comput. Integrat. Manuf. 71, 102140 (2021)

    Article  Google Scholar 

  26. Wang, J., Chen, W., Xiao, X., Xu, Y., Li, C., Jia, X., Meng, M.Q.H.: A survey of the development of biomimetic intelligence and robotics. Biomim. Intell. Robot. 1, 100001 (2021)

    Article  Google Scholar 

  27. Zhang, C., Wu, Y.: P-Rob six-degree-of-freedom robot manipulator dynamics modeling and anti-disturbance control. IEEE Access 9, 141403–141420 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassène Gritli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jenhani, S., Gritli, H., Carbone, G. (2022). Position Control of Lagrangian Robotic Systems via an Affine PID-Based Controller and Using the LMI Approach. In: Niola, V., Gasparetto, A., Quaglia, G., Carbone, G. (eds) Advances in Italian Mechanism Science. IFToMM Italy 2022. Mechanisms and Machine Science, vol 122. Springer, Cham. https://doi.org/10.1007/978-3-031-10776-4_84

Download citation

Publish with us

Policies and ethics