Skip to main content

Interventional Procedures for Chronic and Neuropathic Pains

  • Chapter
  • First Online:
Advances in Chronic and Neuropathic Pain

Part of the book series: Contemporary Rheumatology ((CR))

  • 656 Accesses

Abstract

Pain management is of growing importance in contemporary medical practice. In a comprehensive pain management, medical therapy, interventional therapy, and psychological therapy take up the most crucial parts. In this chapter, the principles of interventional pain management will be overviewed. Successful interventional pain management consists of 3 core factors: clever application of different modalities (e.g. different modes of radiofrequency), good manual technique with exquisite image guidance (ultrasound, fluoroscopy, CT or combination) and clinician’s clinical judgement skills. Of the 3 factors, different modalities for interventional application and principles for different image guiding tools will be reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mills SEE, Nicolson KP, Smith BH. Chronic pain: a review of its epidemiology and associated factors in population-based studies. Br J Anaesth. 2019;123(2):e273–e83.

    PubMed  PubMed Central  Google Scholar 

  2. Ilfeld BM, Gabriel RA, Trescot AM. Ultrasound-guided percutaneous cryoneurolysis for treatment of acute pain: could cryoanalgesia replace continuous peripheral nerve blocks? Br J Anaesth. 2017;119(4):703–6.

    CAS  PubMed  Google Scholar 

  3. Trescot AM. Cryoanalgesia in interventional pain management. Pain Physician. 2003;6(3):345–60.

    PubMed  Google Scholar 

  4. Rubinsky B. Cryosurgery. Annu Rev Biomed Eng. 2000;2:157–87.

    CAS  PubMed  Google Scholar 

  5. Mazur P. Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. J Gen Physiol. 1963;47:347–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Mazur P. Freezing of living cells: mechanisms and implications. Am J Phys. 1984;247(3 Pt 1):C125–42.

    CAS  Google Scholar 

  7. Burke CJ, Sanchez J, Walter WR, Beltran L, Adler R. Ultrasound-guided therapeutic injection and Cryoablation of the medial plantar proper digital nerve (Joplin’s nerve): sonographic findings, technique, and clinical outcomes. Acad Radiol. 2020;27(4):518–27.

    PubMed  Google Scholar 

  8. Yasin J, Thimmappa N, Kaifi JT, Avella DM, Davis R, Tewari SO, et al. CT-guided cryoablation for post-thoracotomy pain syndrome: a retrospective analysis. Diagn Interv Radiol. 2020;26(1):53–7.

    PubMed  Google Scholar 

  9. Campos NA, Chiles JH, Plunkett AR. Ultrasound-guided cryoablation of genitofemoral nerve for chronic inguinal pain. Pain Physician. 2009;12(6):997–1000.

    PubMed  Google Scholar 

  10. Prologo JD, Lin RC, Williams R, Corn D. Percutaneous CT-guided cryoablation for the treatment of refractory pudendal neuralgia. Skelet Radiol. 2015;44(5):709–14.

    Google Scholar 

  11. Stogicza A, Trescot A, Rabago D. New technique for Cryoneuroablation of the proximal greater occipital nerve. Pain Pract. 2019;19(6):594–601.

    PubMed  Google Scholar 

  12. Yoon JH, Grechushkin V, Chaudhry A, Bhattacharji P, Durkin B, Moore W. Cryoneurolysis in patients with refractory chronic peripheral neuropathic pain. J Vasc Interv Radiol. 2016;27(2):239–43.

    PubMed  Google Scholar 

  13. Shah SB, Bremner S, Esparza M, Dorn S, Orozco E, Haghshenas C, et al. Does cryoneurolysis result in persistent motor deficits? A controlled study using a rat peroneal nerve injury model. Reg Anesth Pain Med. 2020;45(4):287.

    PubMed  Google Scholar 

  14. M K. Zur Elektrochirurgie. Arch Klin Chir. 1931;167:761–8.

    Google Scholar 

  15. Shealy CN. Percutaneous radiofrequency denervation of spinal facets. Treatment for chronic back pain and sciatica. J Neurosurg. 1975;43(4):448–51.

    CAS  PubMed  Google Scholar 

  16. Vatansever D, Tekin I, Tuglu I, Erbuyun K, Ok G. A comparison of the neuroablative effects of conventional and pulsed radiofrequency techniques. Clin J Pain. 2008;24(8):717–24.

    PubMed  Google Scholar 

  17. Tun K, Cemil B, Gurcay AG, Kaptanoglu E, Sargon MF, Tekdemir I, et al. Ultrastructural evaluation of pulsed radiofrequency and conventional radiofrequency lesions in rat sciatic nerve. Surg Neurol. 2009;72(5):496–500. discussion 1

    PubMed  Google Scholar 

  18. Erdine S, Yucel A, Cimen A, Aydin S, Sav A, Bilir A. Effects of pulsed versus conventional radiofrequency current on rabbit dorsal root ganglion morphology. Eur J Pain. 2005;9(3):251–6.

    PubMed  Google Scholar 

  19. Cosman ER Jr, Dolensky JR, Hoffman RA. Factors that affect radiofrequency heat lesion size. Pain Med. 2014;15(12):2020–36.

    PubMed  Google Scholar 

  20. Vinas FC, Zamorano L, Dujovny M, Zhao JZ, Hodgkinson D, Ho KL, et al. In vivo and in vitro study of the lesions produced with a computerized radiofrequency system. Stereotact Funct Neurosurg. 1992;58(1–4):121–33.

    CAS  PubMed  Google Scholar 

  21. Provenzano DA, Lassila HC, Somers D. The effect of fluid injection on lesion size during radiofrequency treatment. Reg Anesth Pain Med. 2010;35(4):338–42.

    PubMed  Google Scholar 

  22. Provenzano DA, Lutton EM, Somers DL. The effects of fluid injection on lesion size during bipolar radiofrequency treatment. Reg Anesth Pain Med. 2012;37(3):267–76.

    CAS  PubMed  Google Scholar 

  23. Provenzano DA, Liebert MA, Somers DL. Increasing the NaCl concentration of the preinjected solution enhances monopolar radiofrequency lesion size. Reg Anesth Pain Med. 2013;38(2):112–23.

    CAS  PubMed  Google Scholar 

  24. Cohen SP, Moon JY, Brummett CM, White RL, Larkin TM. Medial branch blocks or intra-articular injections as a prognostic tool before lumbar facet radiofrequency denervation: a multicenter. Case-Control Study Reg Anesth Pain Med. 2015;40(4):376–83.

    CAS  PubMed  Google Scholar 

  25. Cohen SP, Doshi TL, Constantinescu OC, Zhao Z, Kurihara C, Larkin TM, et al. Effectiveness of lumbar facet joint blocks and predictive value before radiofrequency denervation: the facet treatment study (FACTS), a randomized. Controlled Clinical Trial Anesthesiology. 2018;129(3):517–35.

    CAS  PubMed  Google Scholar 

  26. Lau P, Mercer S, Govind J, Bogduk N. The surgical anatomy of lumbar medial branch neurotomy (facet denervation). Pain Med. 2004;5(3):289–98.

    PubMed  Google Scholar 

  27. Dreyfuss P, Halbrook B, Pauza K, Joshi A, McLarty J, Bogduk N. Efficacy and validity of radiofrequency neurotomy for chronic lumbar zygapophysial joint pain. Spine (Phila Pa 1976). 2000;25(10):1270–7.

    CAS  PubMed  Google Scholar 

  28. Arakawa K, Kaku R, Kurita M, Matsuoka Y, Morimatsu H. Prolonged-duration pulsed radiofrequency is associated with increased neuronal damage without further antiallodynic effects in neuropathic pain model rats. J Pain Res. 2018;11:2645–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Erdine S, Bilir A, Cosman ER, Cosman ER Jr. Ultrastructural changes in axons following exposure to pulsed radiofrequency fields. Pain Pract. 2009;9(6):407–17.

    PubMed  Google Scholar 

  30. Higuchi Y, Nashold BS Jr, Sluijter M, Cosman E, Pearlstein RD. Exposure of the dorsal root ganglion in rats to pulsed radiofrequency currents activates dorsal horn lamina I and II neurons. Neurosurgery. 2002;50(4):850–5. discussion 6

    PubMed  Google Scholar 

  31. Vallejo R, Tilley DM, Williams J, Labak S, Aliaga L, Benyamin RM. Pulsed radiofrequency modulates pain regulatory gene expression along the nociceptive pathway. Pain Physician. 2013;16(5):E601–13.

    PubMed  Google Scholar 

  32. Ren H, Jin H, Jia Z, Ji N, Luo F. Pulsed radiofrequency applied to the sciatic nerve improves neuropathic pain by Down-regulating the expression of calcitonin gene-related peptide in the dorsal root ganglion. Int J Med Sci. 2018;15(2):153–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang YH, Hou SY, Cheng JK, Wu CH, Lin CR. Pulsed radiofrequency attenuates diabetic neuropathic pain and suppresses formalin-evoked spinal glutamate release in rats. Int J Med Sci. 2016;13(12):984–91.

    PubMed  PubMed Central  Google Scholar 

  34. Jiang R, Li P, Yao YX, Li H, Liu R, Huang LE, et al. Pulsed radiofrequency to the dorsal root ganglion or the sciatic nerve reduces neuropathic pain behavior, decreases peripheral pro-inflammatory cytokines and spinal beta-catenin in chronic constriction injury rats. Reg Anesth Pain Med. 2019;

    Google Scholar 

  35. Fu M, Meng L, Ren H, Luo F. Pulsed radiofrequency inhibits expression of P2X3 receptors and alleviates neuropathic pain induced by chronic constriction injury in rats. Chin Med J. 2019;132(14):1706–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang JA, Niu SN, Luo F. Pulsed radiofrequency alleviated neuropathic pain by down-regulating the expression of substance P in chronic constriction injury rat model. Chin Med J. 2020;133(2):190–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Jia Z, Ren H, Li Q, Ji N, Luo F. Pulsed radiofrequency reduced neuropathic pain behavior in rats associated with upregulation of GDNF expression. Pain Physician. 2016;19(2):49–58.

    PubMed  Google Scholar 

  38. Das B, Conroy M, Moore D, Lysaght J, McCrory C. Human dorsal root ganglion pulsed radiofrequency treatment modulates cerebrospinal fluid lymphocytes and neuroinflammatory markers in chronic radicular pain. Brain Behav Immun. 2018;70:157–65.

    PubMed  Google Scholar 

  39. Gofeld M, Bristow SJ, Chiu SC, McQueen CK, Bollag L. Ultrasound-guided lumbar transforaminal injections: feasibility and validation study. Spine (Phila Pa 1976). 2012;37(9):808–12.

    PubMed  Google Scholar 

  40. Watanabe I, Masaki R, Min N, Oshikawa N, Okubo K, Sugimura H, et al. Cooled-tip ablation results in increased radiofrequency power delivery and lesion size in the canine heart: importance of catheter-tip temperature monitoring for prevention of popping and impedance rise. J Interv Card Electrophysiol. 2002;6(1):9–16.

    PubMed  Google Scholar 

  41. Lorentzen T. A cooled needle electrode for radiofrequency tissue ablation: thermodynamic aspects of improved performance compared with conventional needle design. Acad Radiol. 1996;3(7):556–63.

    CAS  PubMed  Google Scholar 

  42. Goldberg SN, Gazelle GS, Solbiati L, Rittman WJ, Mueller PR. Radiofrequency tissue ablation: increased lesion diameter with a perfusion electrode. Acad Radiol. 1996;3(8):636–44.

    CAS  PubMed  Google Scholar 

  43. Abdalla EK, Schell SR. Paraplegia following intraoperative celiac plexus injection. J Gastrointest Surg. 1999;3(6):668–71.

    CAS  PubMed  Google Scholar 

  44. Benzon HT, Raj PP. Raj’s practical management of pain. 4th ed. Philadelphia: Mosby-Elsevier; 2008. xix, 1319

    Google Scholar 

  45. Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150(3699):971–9.

    CAS  PubMed  Google Scholar 

  46. Wallin J, Fiska A, Tjolsen A, Linderoth B, Hole K. Spinal cord stimulation inhibits long-term potentiation of spinal wide dynamic range neurons. Brain Res. 2003;973(1):39–43.

    CAS  PubMed  Google Scholar 

  47. Song Z, Ansah OB, Meyerson BA, Pertovaara A, Linderoth B. Exploration of supraspinal mechanisms in effects of spinal cord stimulation: role of the locus coeruleus. Neuroscience. 2013;253:426–34.

    CAS  PubMed  Google Scholar 

  48. Song Z, Ansah OB, Meyerson BA, Pertovaara A, Linderoth B. The rostroventromedial medulla is engaged in the effects of spinal cord stimulation in a rodent model of neuropathic pain. Neuroscience. 2013;247:134–44.

    CAS  PubMed  Google Scholar 

  49. Moore R, Groves D, Nolan J, Scutt D, Pumprla J, Chester MR. Altered short term heart rate variability with spinal cord stimulation in chronic refractory angina: evidence for the presence of procedure related cardiac sympathetic blockade. Heart. 2004;90(2):211–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Latif OA, Nedeljkovic SS, Stevenson LW. Spinal cord stimulation for chronic intractable angina pectoris: a unified theory on its mechanism. Clin Cardiol. 2001;24(8):533–41.

    CAS  PubMed  Google Scholar 

  51. Naoum JJ, Arbid EJ. Spinal cord stimulation for chronic limb ischemia. Methodist Debakey Cardiovasc J. 2013;9(2):99–102.

    PubMed  PubMed Central  Google Scholar 

  52. Deer TR, Mekhail N, Provenzano D, Pope J, Krames E, Leong M, et al. The appropriate use of neurostimulation of the spinal cord and peripheral nervous system for the treatment of chronic pain and ischemic diseases: the neuromodulation appropriateness consensus committee. Neuromodulation. 2014;17(6):515–50. discussion 50

    PubMed  Google Scholar 

  53. Deer TR, Pope JE, Hayek SM, Lamer TJ, Veizi IE, Erdek M, et al. The Polyanalgesic consensus conference (PACC): recommendations for intrathecal drug delivery: guidance for improving safety and mitigating risks. Neuromodulation. 2017;20(2):155–76.

    PubMed  Google Scholar 

  54. Prager J, Deer T, Levy R, Bruel B, Buchser E, Caraway D, et al. Best practices for intrathecal drug delivery for pain. Neuromodulation. 2014;17(4):354–72. discussion 72

    PubMed  Google Scholar 

  55. Deer TR, Hayek SM, Pope JE, Lamer TJ, Hamza M, Grider JS, et al. The Polyanalgesic consensus conference (PACC): recommendations for trialing of intrathecal drug delivery infusion therapy. Neuromodulation. 2017;20(2):133–54.

    PubMed  Google Scholar 

  56. Kim ED, Bak HH, Jo DH, Park HJ. Clinical efficacy of transforaminal epidural injection for management of zoster-associated pain: a retrospective analysis. Skelet Radiol. 2018;47(2):253–60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tang, D.TY., Lin, CP. (2022). Interventional Procedures for Chronic and Neuropathic Pains. In: de Castro, J., El Miedany, Y. (eds) Advances in Chronic and Neuropathic Pain. Contemporary Rheumatology. Springer, Cham. https://doi.org/10.1007/978-3-031-10687-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10687-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10686-6

  • Online ISBN: 978-3-031-10687-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics