Skip to main content

Adjunctive Therapies for Dental Sleep Appliances

  • Chapter
  • First Online:
Dental Sleep Medicine

Abstract

Dental sleep appliances achieve a 50% response in around 65% of patients with obstructive sleep apnea and a complete response in 35–40%. This means that all practitioners will need to augment the effect of a dental sleep appliance at some stage. There are many ways in which adjunctive therapies can be used to augment both the objective and subjective outcomes of DSA therapy. This chapter discusses the use of multiple adjunct therapies including positional therapies, positive airway pressure therapies, therapies aimed at stabilizing or improving compromised anatomy in the upper airway, and therapies aimed at improving the subjective outcomes of sleep.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 17 November 2022

    In chapter 12, an author’s name has been changed from Charolte de Coursey to Charlotte de Courcey-Bayley.

Abbreviations

AHI:

Apnea-hypopnea index

APAP:

Auto-adjusting positive airway pressure

BLT:

Bright light therapy

CBT-I:

Cognitive behavioral therapy for insomnia

CPAP:

Continuous positive airway pressure

CRD:

Circadian rhythm disorders

DISE:

Drug-induced sleep endoscopy

DSA:

Dental sleep appliance

EPAP:

Expiratory positive airway pressure

FRC:

Functional residual capacity

nEPAP:

Nasal EPAP

ODI:

Oxygen desaturation index

oEPAP:

Oral EPAP

OSA:

Obstructive sleep apnea

PAP:

Positive airway pressure

POSA:

Positional obstructive sleep apnea

PT:

Positional therapy

QOL:

Quality of life

SCT:

Stimulus control therapy

SRT:

Sleep restriction therapy

SWS:

Slow wave sleep

TST:

Total sleep time

References

  1. Dieltjens M, Braem MJ, Vroegop AVMT, Wouters K, Verbraecken JA, De Backer WA, Van de Heyning PH, Vanderveken OM. Objectively measured vs self-reported compliance during oral appliance therapy for sleep-disordered breathing. Chest. 2013;144:1495–502. https://doi.org/10.1378/chest.13-0613.

    Article  PubMed  Google Scholar 

  2. Heinzer R, Petitpierre NJ, Marti-Soler H, Haba-Rubio J. Prevalence and characteristics of positional sleep apnea in the HypnoLaus population-based cohort. Sleep Med. 2018;48:157–62. https://doi.org/10.1016/j.sleep.2018.02.011.

    Article  PubMed  Google Scholar 

  3. Cartwright RD. Effect of sleep position on sleep apnea severity. Sleep. 1984;7:110–4. https://doi.org/10.1093/sleep/7.2.110.

    Article  PubMed  Google Scholar 

  4. Frank MH, Ravesloot M, van Maanen JP, Verhagen E, de Lange J, de Vries N. Positional OSA part 1: towards a clinical classification system for position-dependent obstructive sleep apnoea. Sleep Breath. 2015;19:473–80. https://doi.org/10.1007/s11325-014-1022-9.

    Article  PubMed  Google Scholar 

  5. Mador MJ, Kufel TJ, Magalang UJ, Rajesh SK, Watwe V, Grant BJ. Prevalence of positional sleep apnea in patients undergoing polysomnography. Chest. 2005;128:2130–7. https://doi.org/10.1378/chest.128.4.2130.

    Article  PubMed  Google Scholar 

  6. Oksenberg A, Silverberg D, Offenbach D, Arons E. Positional therapy for obstructive sleep apnea patients: a 6-month follow-up study. Laryngoscope. 2006;116:1995–2000. https://doi.org/10.1097/01.mlg.0000237674.66716.a7.

    Article  PubMed  Google Scholar 

  7. Oksenberg A, Arons E, Radwan H, Silverberg DS. Positional vs. nonpositional obstructive sleep apnea patients: anthropomorphic, nocturnal polysomnographic and multiple sleep latency test data. Chest. 1997;112:629–39. https://doi.org/10.1378/chest.112.3.629.

    Article  PubMed  Google Scholar 

  8. Richard W, Kox D, den Herder C, Laman M, van Tinteren H, de Vries N. The role of sleep position in obstructive sleep apnea syndrome. Eur Arch Otorhinolaryngol. 2006;263:946–50. https://doi.org/10.1007/s00405-006-0090-2.

    Article  PubMed  Google Scholar 

  9. Pevernagie DA, Shepard JW Jr. Relations between sleep stage, posture and effective nasal CPAP levels in OSA. Sleep. 1992;15:162–7. https://doi.org/10.1093/sleep/15.2.162.

    Article  PubMed  Google Scholar 

  10. Levendowski DJ, Oksenberg A, Vicini C, Penzel T, Levi M, Westbrook PR. A systematic comparison of factors that could impact treatment recommendations for patients with positional obstructive sleep apnea (POSA). Sleep Med. 2018;50:145–51. https://doi.org/10.1016/j.sleep.2018.05.012.

    Article  PubMed  Google Scholar 

  11. Cartwright R, Ristanovic R, Diaz F, Caldarelli D, Alder G. A comparative study of treatments for positional sleep apnea. Sleep. 1991;14:546–52. https://doi.org/10.1093/sleep/14.6.546.

    Article  PubMed  Google Scholar 

  12. Permut I, Diaz-Abad M, Chatila W, Crocetti J, Gaughan JP, D’Alonzo GE, Krachman SL. Comparison of positional therapy to CPAP in patients with positional obstructive sleep apnea. J Clin Sleep Med. 2010;6:238–43. https://doi.org/10.5664/jcsm.27820.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zuberi NA, Rekab K, Nguyen HV. Sleep apnea avoidance pillow effects on obstructive sleep apnea syndrome and snoring. Sleep Breath. 2004;8:201–7. https://doi.org/10.1055/s-2004-860897.

    Article  PubMed  Google Scholar 

  14. Oksenberg A, Gadoth N, Töyräs J, Leppänen T. Prevalence and characteristics of positional obstructive sleep apnea (POSA) in patients with severe OSA. Sleep Breath. 2019;24:1–9. https://doi.org/10.1007/s11325-019-01897-1.

    Article  Google Scholar 

  15. Neill AM, Angus SM, Sajkov D, McEvoy RD. Effects of sleep posture on upper airway stability in patients with obstructive sleep apnea. Am J Respir Crit Care Med. 1997;155:199–204. https://doi.org/10.1164/ajrccm.155.1.9001312.

    Article  PubMed  Google Scholar 

  16. Series F, Cormier Y, La Forge J. Role of lung volumes in sleep apnoea-related oxygen desaturation. Eur Respir J. 1989;2:26–30. https://doi.org/10.1136/thx.44.1.52.

    Article  PubMed  Google Scholar 

  17. Yildirim N, Fitzpatrick MF, Whyte KF, Jalleh R, Wightman AJ, Douglas NJ. The effect of posture on upper airway dimensions in normal subjects and in patients with the sleep apnea/hypopnea syndrome. Am Rev Respir Dis. 1991;144:845–7. https://doi.org/10.1164/ajrccm/144.4.845.

    Article  PubMed  Google Scholar 

  18. Zhu K, Bradley TD, Patel M, Alshaer H. Influence of head position on obstructive sleep apnea severity. Sleep Breath. 2017;21:821–8. https://doi.org/10.1007/s11325-017-1525-2.

    Article  PubMed  Google Scholar 

  19. Oksenberg A, Goizman V, Eitan E, Nasser K, Gadoth N, Leppänen T. Obstructive sleep apnea: do positional patients become nonpositional patients with time? Laryngoscope. 2020;130:2263–8. https://doi.org/10.1002/lary.28387.

    Article  PubMed  Google Scholar 

  20. Ravesloot M, Van Maanen JP, Dun L, De Vries N. The undervalued potential of positional therapy in position-dependent snoring and obstructive sleep apnea—a review of the literature. Sleep Breath. 2013;17:39–49. https://doi.org/10.1007/s11325-012-0683-5.

    Article  PubMed  Google Scholar 

  21. Sabil A, Blanchard M, Trzepizur W, Goupil F, Meslier N, Paris A, Pigeanne T, Priou P, Le Vaillant M, Gagnadoux F. Positional obstructive sleep apnea within a large multicenter French cohort: prevalence, characteristics, and treatment outcomes. J Clin Sleep Med. 2020;16(12):2037–46. https://doi.org/10.5664/jcsm.8752.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Joosten SA, O'Driscoll DM, Berger PJ, Hamilton GS. Supine position related obstructive sleep apnea in adults: pathogenesis and treatment. Sleep Med Rev. 2014;18:7–17. https://doi.org/10.1016/j.smrv.2013.01.005.

    Article  PubMed  Google Scholar 

  23. Sawyer AM, Gooneratne NS, Marcus CL, Ofer D, Richards KC, Weaver TE. A systematic review of CPAP adherence across age groups: clinical and empiric insights for developing CPAP adherence interventions. Sleep Med Rev. 2011;15:343356. https://doi.org/10.1016/j.smrv.2011.01.003.

    Article  Google Scholar 

  24. Epstein LJ, Kristo D, Strollo PJ Jr, Friedman N, Malhotra A, Patil SP, Ramar K, Rogers R, Schwab RJ, Weaver EM, Weinstein MD, Adult Obstructive Sleep Apnea Task Force of the American Academy of Sleep, Medicine. Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J Clin Sleep Med. 2009;5:263–76. https://doi.org/10.5664/jcsm.27497.

    Article  PubMed  Google Scholar 

  25. Mok Y, Tan A, Hsu PP, Seow A, Chan YH, Wong HS, Poh Y, Wong KKH. Comparing treatment effects of a convenient vibratory positional device to CPAP in positional OSA: a crossover randomised controlled trial. Thorax. 2020;75:331–7. https://doi.org/10.1136/thoraxjnl-2019-213547.

    Article  PubMed  Google Scholar 

  26. Barnes H, Edwards BA, Joosten SA, Naughton MT, Hamilton GS, Dabscheck E. Positional modification techniques for supine obstructive sleep apnea: a systematic review and meta-analysis. Sleep Med Rev. 2017;36:107–15. https://doi.org/10.1016/j.smrv.2016.11.004.

    Article  PubMed  Google Scholar 

  27. Ha SC, Hirai HW, Tsoi KK. Comparison of positional therapy versus continuous positive airway pressure in patients with positional obstructive sleep apnea: a meta-analysis of randomized trials. Sleep Med Rev. 2014;18:19–24. https://doi.org/10.1016/j.smrv.2013.05.003.

    Article  PubMed  Google Scholar 

  28. Berry RB, Uhles ML, Abaluck BK, Winslow DH, Schweitzer PK, Gaskins RA Jr, Doekel RC Jr, Emsellem HA. NightBalance sleep position treatment device versus auto-adjusting positive airway pressure for treatment of positional obstructive sleep apnea. J Clin Sleep Med. 2019;15:947–56. https://doi.org/10.5664/jcsm.7868.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Beyers J, Vanderveken OM, Kastoer C, Boudewyns A, De Volder I, Van Gastel A, Verbraecken JA, De Backer WA, Braem MJ, De Heyning V, Paul H. Treatment of sleep-disordered breathing with positional therapy: long-term results. Sleep Breath. 2019;23:1141–9. https://doi.org/10.1007/s11325-019-01792-9.

    Article  PubMed  Google Scholar 

  30. Grote L, Hedner J, Grunstein R, Kraiczi H. Therapy with nCPAP: incomplete elimination of sleep related breathing disorder. Eur Respir J. 2000;16:921927. https://doi.org/10.1183/09031936.00.16592100.

    Article  Google Scholar 

  31. Kribbs NB, Pack AI, Kline LR, Smith PL, Schwartz AR, Schubert NM, Redline S, Henry JN, Getsy JE, Dinges DF. Objective measurement of patterns of nasal CPAP use by patients with obstructive sleep apnea. Am Rev Respir Dis. 2012;147:2405–34. https://doi.org/10.1164/ajrccm/147.4.887

  32. Sullivan C, Berthon-Jones M, Issa F, Eves L. Reversal of obstructive sleep apnoea by continuous positive airway pressure applied through the nares. Lancet. 1981;317:862–5. https://doi.org/10.1016/s0140-6736(81)92140-1.

    Article  Google Scholar 

  33. Bignold JJ, Deans-Costi G, Goldsworthy MR, Robertson CA, McEvoy D, Catcheside PG, Mercer JD. Poor long-term patient compliance with the tennis ball technique for treating positional obstructive sleep apnea. J Clin Sleep Med. 2009;5:428–30. https://doi.org/10.5664/jcsm.27597.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Heinzer RC, Pellaton C, Rey V, Rossetti AO, Lecciso G, Haba-Rubio J, Tafti M, Lavigne G. Positional therapy for obstructive sleep apnea: an objective measurement of patients’ usage and efficacy at home. Sleep Med. 2012;13:425–8. https://doi.org/10.1016/j.sleep.2011.11.004.

    Article  PubMed  Google Scholar 

  35. Ravesloot MJL, White D, Heinzer R, Oksenberg A, Pepin JL. Efficacy of the new generation of devices for positional therapy for patients with positional obstructive sleep apnea: a systematic review of the literature and meta-analysis. J Clin Sleep Med. 2017;13:813–24. https://doi.org/10.5664/jcsm.6622.

    Article  PubMed  PubMed Central  Google Scholar 

  36. de Vries GE, Hoekema A, Doff MH, Kerstjens HA, Meijer PM, van der Hoeven JH, Wijkstra PJ. Usage of positional therapy in adults with obstructive sleep apnea. J Clin Sleep Med. 2015;11:131–7. https://doi.org/10.5664/jcsm.4458.

    Article  PubMed  PubMed Central  Google Scholar 

  37. van Maanen JP, de Vries N. Long-term effectiveness and compliance of positional therapy with the sleep position trainer in the treatment of positional obstructive sleep apnea syndrome. Sleep. 2014;37:1209–15. https://doi.org/10.5665/sleep.3840.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Calik MW. Treatments for obstructive sleep apnea. J Clin Outcomes Manag. 2016;23:181–92. PMID: 27134515

    PubMed  PubMed Central  Google Scholar 

  39. Levendowski DJ, Seagraves S, Popovic D, Westbrook PR. Assessment of a neck-based treatment and monitoring device for positional obstructive sleep apnea. J Clin Sleep Med. 2014;10:863–71. https://doi.org/10.5664/jcsm.3956.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Marklund M, Persson M, Franklin KA. Treatment success with a mandibular advancement device is related to supine-dependent sleep apnea. Chest. 1998;114:1630–5. https://doi.org/10.1378/chest.114.6.1630.

    Article  PubMed  Google Scholar 

  41. Marklund M, Stenlund H, Franklin KA. Mandibular advancement devices in 630 men and women with obstructive sleep apnea and snoring: tolerability and predictors of treatment success. Chest. 2004;125:1270–8. https://doi.org/10.1378/chest.125.4.1270.

    Article  PubMed  Google Scholar 

  42. Sutherland K, Chan A, Ngiam J, Dalci O, Darendeliler A, Cistulli PA. Multimodal phenotyping for prediction of Oral appliance treatment outcome in obstructive sleep apnea. In: A98. Does this mean i have to wear that dsak? non pap therapies for SDB. New York, New York: American Thoracic Society; 2016. p. A2635. https://doi.org/10.5664/jcsm.7484.

    Chapter  Google Scholar 

  43. Ten Berge DM, Braem MJ, Altenburg A, Dieltjens M, Van de Heyning PH, Vanhaecht K, Vanderveken OM. Evaluation of the impact of a clinical pathway on the organization of a multidisciplinary dental sleep clinic. Sleep Breath. 2014;18:325–34. https://doi.org/10.1007/s11325-013-0888-2.

    Article  PubMed  Google Scholar 

  44. Dieltjens M, Braem MJ, Van de Heyning PH, Wouters K, Vanderveken OM. Prevalence and clinical significance of supine-dependent obstructive sleep apnea in patients using oral appliance therapy. J Clin Sleep Med. 2014;10:959–64. https://doi.org/10.5664/jcsm.4024.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Pevernagie DA, Gnidovec-Strazisar B, Grote L, Heinzer R, McNicholas WT, Penzel T, Randerath W, Schiza S, Verbraecken J, Arnardottir ES. On the rise and fall of the apnea− hypopnea index: a historical review and critical appraisal. J Sleep Res. 2020;29:e13066. https://doi.org/10.1111/jsr.13066.

    Article  PubMed  Google Scholar 

  46. Cielo CM, Tapia IE. Diving deeper: rethinking AHI as the primary measure of OSA severity. J Clin Sleep Med. 2019;15:1075–6. https://doi.org/10.5664/jcsm.7856.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kainulainen S, Duce B, Korkalainen H, Oksenberg A, Leino A, Arnardottir ES, Kulkas A, Myllymaa S, Toyras J, Leppanen T. Severe desaturations increase psychomotor vigilance task-based median reaction time and number of lapses in obstructive sleep apnoea patients. Eur Respir J. 2020;55:1901849. https://doi.org/10.1183/13993003.01849-2019.

    Article  PubMed  PubMed Central  Google Scholar 

  48. McCloy K, Duce B, Swarnkar V, Hukins C, Abeyratne U. Polysomnographic risk factors for vigilance-related cognitive decline and obstructive sleep apnea. Sleep Breath. 2020:1–9. https://doi.org/10.1007/s11325-020-02050-z.

  49. Zirak P, Gregori-Pla C, Blanco I, Fortuna A, Cotta G, Bramon P, Serra I, Mola A, Solà-Soler J, Giraldo-Giraldo BF. Characterization of the microvascular cerebral blood flow response to obstructive apneic events during night sleep. Neurophotonics. 2018;5:045003. https://doi.org/10.1117/1.nph.5.4.045003.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kainulainen S, Töyräs J, Oksenberg A, Korkalainen H, Sefa S, Kulkas A, Leppänen T. Severity of desaturations reflects OSA-related daytime sleepiness better than AHI. J Clin Sleep Med. 2019;15:1135–42. https://doi.org/10.5664/jcsm.7806.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Dieltjens M, Vroegop AV, Verbruggen AE, Wouters K, Willemen M, De Backer WA, Verbraecken JA, de Heyning V, Paul H, Braem MJ, de Vries N. A promising concept of combination therapy for positional obstructive sleep apnea. Sleep Breath. 2015;19:637–44. https://doi.org/10.1007/s11325-014-1068-8.

    Article  PubMed  Google Scholar 

  52. To KW, Chan TO, Ng S, Ngai J, Hui DS. Role of nasal positive end expiratory pressure valve as an alternative treatment for obstructive sleep apnoea in Chinese patients. Respirology. 2016;21:541–5. https://doi.org/10.1111/resp.12703.

    Article  PubMed  Google Scholar 

  53. Levendowski D, Cunnington D, Swieca J, Westbrook P. User compliance and behavioral adaptation associated with supine avoidance therapy. Behav Sleep Med. 2018;16:27–37. https://doi.org/10.1080/15402002.2016.1163704.

    Article  PubMed  Google Scholar 

  54. Vrijland van Beest EC. 10 problems and solutions for positional therapy: technical aspects of the sleep position trainer. In: Positional Therapy in Obstructive Sleep Apnea. New York: Springer; 2015. p. 279–87. https://doi.org/10.1007/978-3-319-09626-1_25.

    Chapter  Google Scholar 

  55. Braver HM, Block AJ. Effect of nasal spray, positional therapy, and the combination thereof in the asymptomatic snorer. Sleep. 1994;17:516–21. https://doi.org/10.1093/sleep/17.6.516.

    Article  PubMed  Google Scholar 

  56. Jokic R, KliDSAzewski A, Crossley M, Sridhar G, Fitzpatrick MF. Positional treatment vs continuous positive airway pressure in patients with positional obstructive sleep apnea syndrome. Chest. 1999;115:771–81. https://doi.org/10.1378/chest.115.3.771.

    Article  PubMed  Google Scholar 

  57. Newell J, Mairesse O, Neu D. Can positional therapy be simple, effective and well tolerated all together? A prospective study on treatment response and compliance in positional sleep apnea with a positioning pillow. Sleep Breath. 2018;22:1143–51. https://doi.org/10.1007/s11325-018-1650-6.

    Article  PubMed  Google Scholar 

  58. Newell J, Mairesse O, Smith P, Neu D. Preliminary data of a prospective study on the effectiveness and compliance of a mandibular advancement device alone versus a mandibular advancement device combined with a sleep positioning pillow in the treatment of mild to moderate sleep apnea. Sleep Med. 2017;40:e240. https://doi.org/10.1016/j.sleep.2017.11.700.

    Article  Google Scholar 

  59. Lai V, Tong BK, Tran C, Ricciardiello A, Donegan M, Murray NP, Carberry JC, Eckert DJ. Combination therapy with mandibular advancement and expiratory positive airway pressure valves reduces obstructive sleep apnea severity. Sleep. 2019;42(zsz119) https://doi.org/10.1093/sleep/zsz119.

  60. Lai V, Tong B, Tran C, Ricciardiello A, Donegan M, Murray N, Carberry J, Eckert D. Combination therapy with mandibular advancement and expiratory positive airway pressure valves reduces OSA severity. J Sleep Res. 2018;27 https://doi.org/10.1093/sleep/zsz119.

  61. Mayoral P, Lagravère MO, Míguez-Contreras M, Garcia M. Antero-posterior mandibular position at different vertical levels for mandibular advancing device design. BMC Oral Health. 2019;19:85. https://doi.org/10.1186/s12903-019-0783-8.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Barbero M, Flores-Mir C, Blanco JC, Nuño VC, Casellas JB, Calvo Girado JL, Amezaga JA, De Carlos F. Tridimensional upper airway assessment in male patients with OSA using oral advancement devices modifying their vertical dimension. J Clin Sleep Med. 2020;16(10):1721–9. https://doi.org/10.5664/jcsm.8666.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Pitsis AJ, Darendeliler MA, Gotsopoulos H, Petocz P, Cistulli PA. Effect of vertical dimension on efficacy of oral appliance therapy in obstructive sleep apnea. Am J Respir Crit Care Med. 2002;166:860–4. https://doi.org/10.1164/rccm.200204-342oc.

    Article  PubMed  Google Scholar 

  64. Milano F, Mutinelli S, Sutherland K, Milioli G, Scaramuzzino G, Cortesi A, Siciliani G, Lombardo L, Cistulli P. Influence of vertical mouth opening on oral appliance treatment outcome in positional obstructive sleep apnea. J Dent Sleep Med. 2018;5:17–23. https://doi.org/10.15331/jdsm.6918.

    Article  Google Scholar 

  65. Norrhem N, Marklund M. An oral appliance with or without elastic bands to control mouth opening during sleep—a randomized pilot study. Sleep Breath. 2016;20:929–38. https://doi.org/10.1007/s11325-016-1312-5.

    Article  PubMed  Google Scholar 

  66. Chung JW, Enciso R, Levendowski DJ, Morgan TD, Westbrook PR, Clark GT. Treatment outcomes of mandibular advancement devices in positional and nonpositional OSA patients. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109:724–31. https://doi.org/10.1016/j.tripleo.2009.11.031.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sutherland K, Takaya H, Qian J, Petocz P, Ng AT, Cistulli PA. Oral appliance treatment response and polysomnographic phenotypes of obstructive sleep apnea. J Clin Sleep Med. 2015;11(8):861–8. https://doi.org/10.5664/jcsm.4934.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Patil SP, Ayappa IA, Caples SM, Kimoff RJ, Patel SR, Harrod CG. Treatment of adult obstructive sleep apnea with positive airway pressure: an American Academy of sleep medicine systematic review, meta-analysis, and GRADE assessment. J Clin Sleep Med. 2019;15:301–34. https://doi.org/10.5664/jcsm.7640.

    Article  PubMed  PubMed Central  Google Scholar 

  69. El-Solh AA, Moitheennazima B, Akinnusi ME, Churder PM, Lafornara AM. Combined oral appliance and positive airway pressure therapy for obstructive sleep apnea: a pilot study. Sleep Breath. 2011;15:203–8. https://doi.org/10.1007/s11325-010-0437-1.

    Article  PubMed  Google Scholar 

  70. Liu H, Chen Y, Lai Y, Huang C, Huang Y, Lin M, Han S, Chen C, Yu C, Lee P. Combining MAD and CPAP as an effective strategy for treating patients with severe sleep apnea intolerant to high-pressure PAP and unresponsive to MAD. PLoS One. 2017;12(10):e0187032. https://doi.org/10.1371/journal.pone.0187032.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bamagoos AA, Eckert DJ, Sutherland K, Ngiam J, Cistulli PA. Dose-dependent effects of mandibular advancement on optimal positive airway pressure requirements in obstructive sleep apnoea. Sleep Breath. 2020;24(3):961–9. https://doi.org/10.1007/s11325-019-01930-3.

    Article  PubMed  Google Scholar 

  72. De Vries GE, Doff M, Hoekema A, Kerstjens HA, Wijkstra PJ. Continuous positive airway pressure and oral appliance hybrid therapy in obstructive sleep apnea: patient comfort, compliance, and preference: a pilot study. Journal of dental. J Dent Sleep Med. 2016;3(1):5–10. https://doi.org/10.15331/jdsm.5362.

    Article  Google Scholar 

  73. Tong BK, Tran C, Ricciardiello A, Donegan M, Chiang AK, Szollosi I, Amatoury J, Carberry JC, Eckert DJ. CPAP combined with oral appliance therapy reduces CPAP requirements and pharyngeal pressure swings in obstructive sleep apnea. J Appl Physiol. 2020;129(5):1085–91. https://doi.org/10.1152/japplphysiol.00393.2020.

    Article  PubMed  Google Scholar 

  74. Borel J, Gakwaya S, DSAse J, Melo-Silva CA, Sériès F. Impact of CPAP interface and mandibular advancement device on upper airway mechanical properties assessed with phrenic nerve stimulation in sleep apnea patients. Respir Physiol Neurobiol. 2012;183(2):170–6. https://doi.org/10.1016/j.resp.2012.06.018.

    Article  PubMed  Google Scholar 

  75. El-Solh AA, Moitheennazima B, Akinnusi ME, Churder PM, Lafornara AM. Combined oral appliance and positive airway pressure therapy for obstructive sleep apnea: a pilot study. Sleep Breat. 2011;15(2):203–8. https://doi.org/10.1007/s11325-010-0437-1.

    Article  Google Scholar 

  76. Berry RB, Kryger MH, DSAsie CA. A novel nasal expiratory positive airway pressure (EPAP) device for the treatment of obstructive sleep apnea: a randomized controlled trial. Sleep. 2011;34(4):479–85. https://doi.org/10.1093/sleep/34.4.479.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Chan AS, Sutherland K, Schwab RJ, Zeng B, Petocz P, Lee RW, Darendeliler MA, Cistulli PA. The effect of mandibular advancement on upper airway structure in obstructive sleep apnoea. Thorax. 2010;65:726–32. https://doi.org/10.1136/thx.2009.131094.

    Article  PubMed  Google Scholar 

  78. Brown EC, Cheng S, McKenzie DK, Butler JE, Gandevia SC, Bilston LE. Tongue and lateral upper airway movement with mandibular advancement. Sleep. 2013;36:397–404. https://doi.org/10.5665/sleep.2458.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Huon L, Liu SY, Shih TT, Chen Y, Lo M, Wang P. Dynamic upper airway collapse observed from sleep MRI: BMI-matched severe and mild OSA patients. Eur Arch Otorhinolaryngol. 2016;273(11):4021–6. https://doi.org/10.1007/s00405-016-4131-1.

    Article  PubMed  Google Scholar 

  80. Vanderveken OM, Vroegop AV, de Heyning V, Paul H, Braem MJ. Drug-induced sleep endoscopy completed with a simulation bite approach for the prediction of the outcome of treatment of obstructive sleep apnea with mandibular repositioning appliances. Oper Tech Otolaryngol Head Neck Surg. 2011;22:175–82. https://doi.org/10.1016/j.otot.2011.05.001.

    Article  Google Scholar 

  81. Marques M, Genta P, Sands SA, Taranto Montemurro L, Azarbarzin A, De Melo C, White DP, Wellman A. Characterizing site and severity of upper airway collapse To guide patient selection for Oral appliance therapy for obstructive sleep apnea. In: A80-a. NOVEL THERAPIES FOR OSA. Am J Respir Crit Care Med. 2017;195:A2584. https://doi.org/10.1093/sleep/zsx005.

    Article  Google Scholar 

  82. Oksenberg A, Arons E, Nasser K, Vander T, Radwan H. REM-related obstructive sleep apnea: the effect of body position. J Clin Sleep Med. 2010;6(4):343–8. https://doi.org/10.5664/jcsm.27875.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Younes M. Contributions of upper airway mechanics and control mechanisms to severity of obstructive apnea. Am J Respir Crit Care Med. 2003;168:645–58. https://doi.org/10.1164/rccm.200302-201oc.

    Article  PubMed  Google Scholar 

  84. Braga CW, Chen Q, Burschtin OE, Rapoport DM, Ayappa I. Changes in lung volume and upper airway using MRI during application of nasal expiratory positive airway pressure in patients with sleep-disordered breathing. J Appl Physiol. 2011;111(5):1400–9. https://doi.org/10.1152/japplphysiol.00218.2011.

    Article  PubMed  Google Scholar 

  85. Tong BK, Tran C, Ricciardiello A, Chiang A, Donegan M, Murray N, Szollosi I, Amatoury J, Carberry JC, Eckert DJ. Efficacy of a novel oral appliance and the role of posture on nasal resistance in obstructive sleep apnea. J Clin Sleep Med. 2020;16:483–92. https://doi.org/10.5664/jcsm.8244.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Biggs DA. Spirometry. In: Data Interpretation in Anesthesia. New York: Springer; 2017. p. 431–4. https://doi.org/10.1007/978-3-319-55862-2.

    Chapter  Google Scholar 

  87. Sanders MH, Moore SE. Inspiratory and expiratory partitioning of airway resistance during sleep in patients with sleep apnea. Am Rev Respir Dis. 1983;127(5):554–8. https://doi.org/10.1164/arrd.1983.127.5.554.

    Article  PubMed  Google Scholar 

  88. Sanders MH, Kern N. Obstructive sleep apnea treated by independently adjusted inspiratory and expiratory positive airway pressures via nasal DSAk: physiologic and clinical implications. Chest. 1990;98(2):317–24. https://doi.org/10.1378/chest.98.2.317.

    Article  PubMed  Google Scholar 

  89. Liu Y, Ying Y, Pandu JS, Wang Y, Dou S, Li Y, Ma D. Efficacy and safety assessment of expiratory positive airway pressure (EPAP) mask for OSAHS therapy. Auris Nasus Larynx. 2019;46(2):238–45. https://doi.org/10.1016/j.anl.2018.08.013.

    Article  PubMed  Google Scholar 

  90. Mahadevia AK, Önal E, Lopata M. Effects of expiratory positive airway pressure on sleep-induced respiratory abnormalities in patients with hypersomnia-sleep apnea syndrome. Am Rev Respir Dis. 1983;128(4):708–11. https://doi.org/10.1164/arrd.1983.127.5.554.

    Article  PubMed  Google Scholar 

  91. Heinzer RC, Stanchina ML, Malhotra A, Jordan AS, Patel SR, Lo Y, Wellman A, Schory K, Dover L, White DP. Effect of increased lung volume on sleep disordered breathing in patients with sleep apnoea. Thorax. 2006;61(5):435–9. https://doi.org/10.1164/arrd.1983.127.5.554.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Morrell MJ, Arabi Y, Zahn B, Badr MS. Progressive retropalatal narrowing preceding obstructive apnea. Am J Respir Crit Care Med. 1998;158(6):1974–81. https://doi.org/10.1164/ajrccm.158.6.9712107.

    Article  PubMed  Google Scholar 

  93. Deegan PC, Nolan P, Carey M, McNicholas WT. Effects of positive airway pressure on upper airway dilator muscle activity and ventilatory timing. J Appl Physiol. 1996;81(1):470–9. https://doi.org/10.1152/jappl.1996.81.1.470.

    Article  PubMed  Google Scholar 

  94. Schiza SE, Mermigkis C, Bouloukaki I. Expiratory positive airway pressure (EPAP) nasal device therapy: a welcome addition to obstructive sleep apnea syndrome therapy. Sleep and Breathing. 2015;19(3):775–6. https://doi.org/10.1007/s11325-014-1069-7.

  95. White DP. Auto-PEEP to treat obstructive sleep apnea. J Clin Sleep Med. 2009;5(6):538–9. https://doi.org/10.5664/jcsm.27654.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Rosenthal L, Massie CA, Dolan DC, Loomas B, Kram J, Hart RW. A multicenter, prospective study of a novel nasal EPAP device in the treatment of obstructive sleep apnea: efficacy and 30-day adherence. J Clin Sleep Med. 2009;5(6):532–7. https://doi.org/10.5664/jcsm.27653.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Kryger MH, Berry RB, Massie CA. Long-term use of a nasal expiratory positive airway pressure (EPAP) device as a treatment for obstructive sleep apnea (OSA). J Clin Sleep Med. 2011;7(5):449–53B. https://doi.org/10.5664/jcsm.1304.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Patel AV, Hwang D, Masdeu MJ, Chen G, Rapoport DM, Ayappa I. Predictors of response to a nasal expiratory resistor device and its potential mechanisms of action for treatment of obstructive sleep apnea. J Clin Sleep Med. 2011;7(1):13–22. https://doi.org/10.5664/jcsm.28036.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Friedman M, Hwang MS, Yalamanchali S, Pott T, Sidhu M, Joseph NJ. Provent therapy for obstructive sleep apnea: impact of nasal obstruction. Laryngoscope. 2016;126(1):254–9. https://doi.org/10.1002/lary.25312.

    Article  PubMed  Google Scholar 

  100. Colrain IM, Brooks S, Black J. A pilot evaluation of a nasal expiratory resistance device for the treatment of obstructive sleep apnea. J Clin Sleep Med. 2008;4(5):426–33. https://doi.org/10.5664/jcsm.27277.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Walsh JK, Griffin KS, Forst EH, Ahmed HH, Eisenstein RD, Curry DT, Hall-Porter JM, Schweitzer PK. A convenient expiratory positive airway pressure nasal device for the treatment of sleep apnea in patients non-adherent with continuous positive airway pressure. Sleep Med. 2011;12(2):147–52. https://doi.org/10.1016/j.sleep.2010.06.011.

    Article  PubMed  Google Scholar 

  102. Riaz M, Certal V, Nigam G, Abdullatif J, Zaghi S, Kushida CA, Camacho M. Nasal expiratory positive airway pressure devices (Provent) for OSA: a systematic review and meta-analysis. Sleep Disord. 2015;2015:734798. https://doi.org/10.1155/2015/734798.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Kureshi SA, Gallagher PR, McDonough JM, Cornaglia MA, Maggs J, Samuel J, Traylor J, Marcus CL. Pilot study of nasal expiratory positive airway pressure devices for the treatment of childhood obstructive sleep apnea syndrome. J Clin Sleep Med. 2014;10(6):663–9. https://doi.org/10.5664/jcsm.3796.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Carberry JC, Amatoury J, Eckert DJ. Personalized management approach for obstructive sleep apnea. Chest. 2017;153(3):744–55. https://doi.org/10.1016/j.chest.2017.06.011.

    Article  PubMed  Google Scholar 

  105. Eckert DJ, White DP, Jordan AS, Malhotra A, Wellman A. Defining phenotypic causes of obstructive sleep apnea. Identification of novel therapeutic targets. Am J Respir Crit Care Med. 2013;188:996–1004. https://doi.org/10.1164/rccm.201303-0448oc.

    Article  PubMed  PubMed Central  Google Scholar 

  106. MacKay SG, Lewis R, McEvoy D, Joosten S, Holt NR. Surgical management of obstructive sleep apnoea: a position statement of the Australasian Sleep Association. Respirology. 2020;25(12):1292–308. https://doi.org/10.1111/resp.13967.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Certal V, Nishino N, Camacho M, Capasso R. Reviewing the systematic reviews in OSA surgery. Otolaryngol Head Neck Surg. 2013;149(6):817–29. https://doi.org/10.1177/0194599813509959.

    Article  PubMed  Google Scholar 

  108. Ravesloot M, De Vries N. Reliable calculation of the efficacy of non-surgical and surgical treatment of obstructive sleep apnea revisited. Sleep. 2011;34(1):105–10. https://doi.org/10.1093/sleep/34.1.105.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Mantero M, Carioli D, Romano M, Borsa N, Marra M, Tobaldini E. Multidisciplinary evaluation can find effective alternative treatment to CPAP in OSA patients. Eur Respir J. 2017;50:PA2295. https://doi.org/10.1183/1393003.congress-2017.pa2295.

    Article  Google Scholar 

  110. Camacho M, Riley RW, Capasso R, O'Connor P, Chang ET, Reckley LK, Guilleminault C. Sleep surgery tool: a medical checklist to review prior to operating. J Cranio-Maxillofac Surg. 2017;45(3):381–6. https://doi.org/10.1016/j.jcms.2017.01.001.

    Article  Google Scholar 

  111. Won T, Lee CH, Rhee C. Changes in site of obstruction in obstructive sleep apnea patients according to sleep position. In: Positional Therapy in Obstructive Sleep Apnea. New York: Springer; 2015. p. 119–28. https://doi.org/10.1007/978-3-319-09626-1_10.

    Chapter  Google Scholar 

  112. Croft CB, Pringle M. Sleep nasendoscopy: a technique of assessment in snoring and obstructive sleep apnoea. Clin Otolaryngol Allied Sci. 1991;16(5):504–9. https://doi.org/10.1111/j.1365-2273.1991.tb02103.x.

    Article  PubMed  Google Scholar 

  113. De Vito A, Llatas MC, Vanni A, Bosi M, Braghiroli A, Campanini A, de Vries N, Hamans E, Hohenhorst W, Kotecha BT. European position paper on drug-induced sedation endoscopy (DISE). Sleep Breath. 2014;18(3):453–65. https://doi.org/10.1007/s11325-014-0989-6.

    Article  PubMed  Google Scholar 

  114. Lechner M, Wilkins D, Kotecha B. A review on drug-induced sedation endoscopy–technique, grading systems and controversies. Sleep Med Rev. 2018;41:141–8. https://doi.org/10.1016/j.smrv.2018.02.001.

    Article  PubMed  Google Scholar 

  115. Battagel JM, Johal A, Kotecha BT. Sleep nasendoscopy as a predictor of treatment success in snorers using dental sleep appliances. J Laryngol Otol. 2005;119:106–11. https://doi.org/10.1258/0022215053419916.

    Article  PubMed  Google Scholar 

  116. Johal A, Battagel JM, Kotecha BT. Sleep nasendoscopy: a diagnostic tool for predicting treatment success with dental sleep appliances in obstructive sleep apnoea. Eur J Orthod. 2005;27:607–14. https://doi.org/10.1093/ejo/cji063.

    Article  PubMed  Google Scholar 

  117. Huntley C, Cooper J, Stiles M, Grewal R, Boon M. Predicting success of oral appliance therapy in treating obstructive sleep apnea using drug-induced sleep endoscopy. J Clin Sleep Med. 2018;14(8):1333–7. https://doi.org/10.5664/jcsm.7266.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Vroegop AV, Vanderveken OM, Dieltjens M, Wouters K, Saldien V, Braem MJ. Sleep endoscopy with simulation bite for prediction of oral appliance treatment outcome. J Sleep Res. 2013;22:348–55. https://doi.org/10.1111/jsr.12008.

    Article  PubMed  Google Scholar 

  119. Sutherland K, Chan AS, Ngiam J, Darendeliler MA, Cistulli PA. Qualitative assessment of awake nasopharyngoscopy for prediction of oral appliance treatment response in obstructive sleep apnoea. Sleep Breath. 2018;22(4):1029–36. https://doi.org/10.1007/s11325-018-1624-8.

    Article  PubMed  Google Scholar 

  120. Okuno K, Sasao Y, Nohara K, Sakai T, Pliska BT, Lowe AA, Ryan CF, Almeida FR. Endoscopy evaluation to predict oral appliance outcomes in obstructive sleep apnoea. Eur Respir J. 2016;47:1410–9. https://doi.org/10.1183/13993003.01088-2015.

    Article  PubMed  Google Scholar 

  121. Ferris BG Jr, Mead J, Opie LH. Partitioning of respiratory flow resistance in man. J Appl Physiol. 1964;19:653–8. https://doi.org/10.1152/jappl.1964.19.4.653.

    Article  PubMed  Google Scholar 

  122. Miljeteig H, Cole P, Haight JS. Nasal resistance in recumbency and sleep. Rhinology. 1995;33(2):82–3. PMID: 7569657

    PubMed  Google Scholar 

  123. Franklin K, Rehnqvist N, Axelsson S (2007) Obstructive Sleep Apnoea Syndrome:: a Systematic Literature Review. Swedish Council on Technology Assessment in Health Care. PMID: 28876733.

    Google Scholar 

  124. Sugiura T, Noda A, Nakata S, Yasuda Y, Soga T, Miyata S, Nakai S, Koike Y. Influence of nasal resistance on initial acceptance of continuous positive airway pressure in treatment for obstructive sleep apnea syndrome. Respiration. 2007;74(1):56–60. https://doi.org/10.1159/000089836.

    Article  PubMed  Google Scholar 

  125. Zeng B, Ng AT, Qian J, Petocz P, Darendeliler MA, Cistulli PA. Influence of nasal resistance on oral appliance treatment outcome in obstructive sleep apnea. Sleep. 2008;31(4):543–7. https://doi.org/10.1093/sleep/31.4.543.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Avidan AY, Kryger M. Physical examination in sleep medicine in thePrinciples and Practice of Sleep Medicine (Sixth Edition) Elsevier 2017:587–606e3. https://doi.org/10.1016/b978-0-323-24288-2.00059-3.

  127. Augé J, Vent J, Agache I, Airaksinen L, Campo Mozo P, Chaker A, Cingi C, Durham S, Fokkens W, Gevaert P. EAACI position paper on the standardization of nasal allergen challenges. Allergy. 2018;73(8):1597–608. https://doi.org/10.1111/all.13416.

    Article  PubMed  Google Scholar 

  128. McColley SA, Carroll JL, Curtis S, Loughlin GM, Sampson HA. High prevalence of allergic sensitization in children with habitual snoring and obstructive sleep apnea. Chest. 1997;111(1):170–3. https://doi.org/10.1378/chest.111.1.170.

    Article  PubMed  Google Scholar 

  129. Miller JD. The role of dust mites in allergy. Clin Rev Allergy Immunol. 2019;57(3):312–29. https://doi.org/10.1007/s12016-018-8693-0.

    Article  PubMed  Google Scholar 

  130. Kanjanawasee D, Seresirikachorn K, Chitsuthipakorn W, Snidvongs K. Hypertonic saline versus isotonic saline nasal irrigation: systematic review and meta-analysis. Am J Rhinol Allergy. 2018;32(4):269–79. https://doi.org/10.1177/1945892418773566.

    Article  PubMed  Google Scholar 

  131. Sahin E, Çakır B, Vogt K. Clinical assessment of nasal airway obstruction. In: All around the nose. New York: Springer; 2020. p. 93–100. https://doi.org/10.1007/978-3-030-21217-9_11.

    Chapter  Google Scholar 

  132. de Barros Souza FJF, Souza B, Fabrício FJ, Genta PR, de Souza Filho AJ, José A, Wellman A, Lorenzi-Filho G. The influence of head-of-bed elevation in patients with obstructive sleep apnea. Sleep Breath. 2017;21:815–20. https://doi.org/10.1007/s11325-017-1524-3.

    Article  Google Scholar 

  133. Skinner MA, Kingshott RN, Jones DR, Homan SD, Taylor DR. Elevated posture for the management of obstructive sleep apnea. Sleep Breath. 2004;8(4):193–200. https://doi.org/10.1055/s-2004-860896.

    Article  PubMed  Google Scholar 

  134. Jung YG, Kim HY, Min J, Dhong H, Chung S. Role of intranasal topical steroid in pediatric sleep disordered breathing and influence of allergy, sinusitis, and obesity on treatment outcome. Clin Exp Otorhinolaryngol. 2011;4(1):27–32. https://doi.org/10.3342/ceo.2011.4.1.27.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Kheirandish-Gozal L, Gozal D. Intranasal budesonide treatment for children with mild obstructive sleep apnea syndrome. Pediatrics. 2008;122:149. https://doi.org/10.1542/peds.2007-3398.

    Article  Google Scholar 

  136. Nguyen D, Liang J, Durr M. Topical nasal treatment efficacy on adult obstructive sleep apnea severity: a systematic review and meta-analysis. Int Forum Allergy Rhinol. 2020;11(2):153–61. https://doi.org/10.1002/alr.22658.

    Article  PubMed  Google Scholar 

  137. Morgenthaler TI, Kapen S, Lee-Chiong T, Alessi C, Boehlecke B, Brown T, Coleman J, Friedman L, Kapur V, Owens J, Pancer J, Swick T. Standards of Practice Committee; American Academy of Sleep Medic Practice parameters for the medical therapy of obstructive sleep apnea. Sleep. 2006;29(8):1031–5. https://doi.org/10.1093/sleep/29.8.1031.

    Article  PubMed  Google Scholar 

  138. Charakorn N, Hirunwiwatkul P, Chirakalwasan N, Chaitusaney B, Prakassajjatham M. The effects of topical nasal steroids on continuous positive airway pressure compliance in patients with obstructive sleep apnea: a systematic review and meta-analysis. Sleep Breath. 2017;21(1):3–8. https://doi.org/10.1007/s11325-016-1375-3.

    Article  PubMed  Google Scholar 

  139. Hornung DE, Smith DJ, Kurtz DB, White T, Leopold DA. Effect of nasal dilators on nasal structures, sniffing strategies, and olfactory ability. Rhinology. 2001;39(2):84–7.

    PubMed  Google Scholar 

  140. Kiyohara N, Badger C, Tjoa T, Wong B. A comparison of over-the-counter mechanical nasal dilators: a systematic review. JAMA Facial Plast Surg. 2016;18(5):385–9. https://doi.org/10.1001/jamafacial.2016.0291.

    Article  PubMed  Google Scholar 

  141. Krakow B, Melendrez D, Sisley B, Warner TD, Krakow J, Leahigh L, Lee S. Nasal dilator strip therapy for chronic sleep-maintenance insomnia and symptoms of sleep-disordered breathing: a randomized controlled trial. Sleep Breath. 2006;10(1):16–28. https://doi.org/10.1007/s11325-005-0037-7.

    Article  PubMed  Google Scholar 

  142. Scharf MB, McDannold M. A subjective evaluation of a nasal dilator on sleep & snoring. Ear Nose Throat J. 1994;73(6):395–401. https://doi.org/10.1177/014556139407300609.

    Article  PubMed  Google Scholar 

  143. Scho B, Franklin KA, Bru H, Wehde H, Ko D. Effect of nasal-valve dilation on obstructive sleep apnea. Chest. 2000;118(3):587–90. https://doi.org/10.1378/chest.118.3.587.

    Article  Google Scholar 

  144. Yagihara F, Lorenzi-Filho G, Santos-Silva R. Nasal dilator strip is an effective placebo intervention for severe obstructive sleep apnea. J Clin Sleep Med. 2017;13(2):215–21. https://doi.org/10.5664/jcsm.6450.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Metes A, Cole P, Hoffstein V, Miljeteig H. Nasal airway dilation and obstructed breathing in sleep. Laryngoscope. 1992;102(9):1053–5. https://doi.org/10.1288/00005537-199209000-00017.

    Article  PubMed  Google Scholar 

  146. Matteo G, Pierluigi I, Giuseppe P, Vitaliano NQ, Onofrio R, Nicola Q, Giorgio C. Internal nasal dilator in patients with obstructive sleep apnea syndrome and treated with continuous positive airway pressure. Acta Biomed. 2019;90(2-S):24–7.

    PubMed Central  Google Scholar 

  147. Schönhofer B, Kerl J, Suchi S, Köhler D, Franklin KA. Effect of nasal valve dilation on effective CPAP level in obstructive sleep apnea. Respir Med. 2003;97(9):1001–5. https://doi.org/10.1016/s0954-6111(03)00125-2.

    Article  PubMed  Google Scholar 

  148. Matteo G, Giuseppe P, Brigida S, Nicola Q, Giorgio C, on Snoring, Italian Study Group. Internal and external nasal dilatator in patients who snore: a comparison in clinical practice. Acta Biomed. 2019;90(2-S):10–4.

    PubMed Central  Google Scholar 

  149. Ohtsuka K, Baba R, YaDSAawa W, Shirahama R, Hattori Y, Senoura H, Betsuyaku T, Fukunaga K. The effectiveness of nasal airway stent therapy for the treatment of mild-to-moderate obstructive sleep apnea syndrome. Respiration. 2020;100(3):193–200. https://doi.org/10.1159/000512319.

    Article  PubMed  Google Scholar 

  150. Camacho M, Malu OO, Kram YA, Nigam G, Riaz M, Song SA, Tolisano AM, Kushida CA. Nasal dilators (breathe right strips and NoZovent) for snoring and OSA: a systematic review and meta-analysis. Pulm Med. 2016;2016:4841310. https://doi.org/10.1155/2016/4841310.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Gruber RP, Lin AY, Richards T. Nasal strips for evaluating and classifying valvular nasal obstruction. Aesthet Plast Surg. 2011;35(2):211–5. https://doi.org/10.1007/s00266-010-9589-4.

    Article  Google Scholar 

  152. Verse T, Maurer JT, Pirsig W. Effect of nasal surgery on sleep-related breathing disorders. Laryngoscope. 2002;112(1):64–8. https://doi.org/10.1097/00005537-200201000-00012.

    Article  PubMed  Google Scholar 

  153. Ishii L, Roxbury C, Godoy A, Ishman S, Ishii M. Does nasal surgery improve OSA in patients with nasal obstruction and OSA? A meta-analysis. Otolaryngol Head Neck Surg. 2015;153(3):326–33. https://doi.org/10.1177/0194599815594374.

    Article  PubMed  Google Scholar 

  154. Friedman M, Tanyeri H, Lim JW, Landsberg R, Vaidyanathan K, Caldarelli D. Effect of improved nasal breathing on obstructive sleep apnea. Otolaryngol Head Neck Surg. 2000;122(1):71–4. https://doi.org/10.1016/s0194-5998(00)70147-1.

    Article  PubMed  Google Scholar 

  155. Nakata S, Noda A, Yasuma F, Morinaga M, Sugiura M, Katayama N, Sawaki M, Teranishi M, Nakashima T. Effects of nasal surgery on sleep quality in obstructive sleep apnea syndrome with nasal obstruction. Am J Rhinol. 2008;22(1):59–63. https://doi.org/10.2500/ajr.2008.22.3120.

    Article  PubMed  Google Scholar 

  156. Choi JH, Kim EJ, Kim YS, Kim TH, Choi J, Kwon SY, Lee HM, Lee SH, Lee SH. Effectiveness of nasal surgery alone on sleep quality, architecture, position, and sleep-disordered breathing in obstructive sleep apnea syndrome with nasal obstruction. Am J Rhinol Allergy. 2011;25(5):338–41. https://doi.org/10.2500/ajra.2011.25.3654.

    Article  PubMed  Google Scholar 

  157. Yalamanchali S, Cipta S, Waxman J, Pott T, Joseph N, Friedman M. Effects of endoscopic sinus surgery and nasal surgery in patients with obstructive sleep apnea. Otolaryngol Head Neck Surg. 2014;151(1):171–5. https://doi.org/10.1177/0194599814528296.

    Article  PubMed  Google Scholar 

  158. Koutsourelakis I, Georgoulopoulos G, Perraki E, Vagiakis E, Roussos C, Zakynthinos SG. Randomised trial of nasal surgery for fixed nasal obstruction in obstructive sleep apnoea. Eur Respir J. 2008;31(1):110–7. https://doi.org/10.1183/09031936.00087607.

    Article  PubMed  Google Scholar 

  159. McLean HA, Urton AM, Driver HS, Tan A, Day AG, Munt PW, Fitzpatrick MF. Effect of treating severe nasal obstruction on the severity of obstructive sleep apnoea. Eur Respir J. 2005;25(3):521–7. https://doi.org/10.1183/09031936.05.00045004.

    Article  PubMed  Google Scholar 

  160. Li H, Wang P, Chen Y, Lee L, Fang T, Lin H. Critical appraisal and meta-analysis of nasal surgery for obstructive sleep apnea. Am J Rhinol Allergy. 2011;25(1):45–9. https://doi.org/10.2500/ajra.2011.25.3558.

    Article  PubMed  Google Scholar 

  161. Park CY, Hong JH, Lee JH, Lee KE, Cho HS, Lim SJ, Kwak JW, Kim KS, Kim HJ. Clinical effect of surgical correction for nasal pathology on the treatment of obstructive sleep apnea syndrome. PLoS One. 2014;9(6):e98765. https://doi.org/10.1371/journal.pone.0098765.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Kamal I. Objective assessment of nasal obstruction in snoring and obstructive sleep apnea patients: experience of a police authority hospital. Ann Saudi Med. 2002;22(3-4):158–62. https://doi.org/10.5144/0256-4947.2002.158.

    Article  Google Scholar 

  163. Camacho M, Riaz M, Capasso R, Ruoff CM, Guilleminault C, Kushida CA, Certal V. The effect of nasal surgery on continuous positive airway pressure device use and therapeutic treatment pressures: a systematic review and meta-analysis. Sleep. 2015;38(2):279–86. https://doi.org/10.5665/sleep.4414.

    Article  PubMed  PubMed Central  Google Scholar 

  164. El-Anwar MW, Amer HS, Askar SM, Elsobki A, Awad A. Could nasal surgery affect multilevel surgery results for obstructive sleep apnea? J Craniofac Surg. 2018;29(7):1897–9. https://doi.org/10.1097/scs.0000000000004883.

    Article  PubMed  Google Scholar 

  165. Sieśkiewicz A, Walenczak I, Olszewska E, Luczaj J, Rogowski M. The assessment of nasal surgery and uvulopalatopharyngoplasty (UPPP) in the treatment of patients with mild and moderate obstructive sleep apnea (OSA). Pol Merkur Lekarski. 2007;22(128):130–3.

    PubMed  Google Scholar 

  166. Woodson BT, Toohill RJ, Garancis JC. Histopathologic changes in snoring and obstructive sleep apnea syndrome. Laryngoscope. 1991;101(12 Pt 1):1318–22. https://doi.org/10.1002/lary.5541011211.

    Article  PubMed  Google Scholar 

  167. Sekosan M, Zakkar M, Wenig BL, Olopade CO, Rubinstein I. Inflammation in the uvula mucosa of patients with obstructive sleep apnea. Laryngoscope. 1996;106(8):1018–20. https://doi.org/10.1097/00005537-199608000-00021.

    Article  PubMed  Google Scholar 

  168. Friberg D, Ansved T, Borg K, Carlsson-Nordlander B, Larsson H, Svanborg E. Histological indications of a progressive snorers disease in an upper airway muscle. Am J Respir Crit Care Med. 1998;157:586–93. https://doi.org/10.1164/ajrccm.157.2.96-06049.

    Article  PubMed  Google Scholar 

  169. Hagander L, Harlid R, Svanborg E. Quantitative sensory testing in the oropharynx: a means of showing nervous lesions in patients with obstructive sleep apnea and snoring. Chest J. 2009;136:481–9. https://doi.org/10.1378/chest.08-2747.

    Article  Google Scholar 

  170. Gouveia CJ, Yalamanchili A, Ghadersohi S, Price CP, Bove M, Attarian HP, Tan BK. Are chronic cough and laryngopharyngeal reflux more common in obstructive sleep apnea patients? Laryngoscope. 2019;129(5):1244–9. https://doi.org/10.1002/lary.27557.

    Article  PubMed  Google Scholar 

  171. Ryan CF, Lowe AA, Li D, Fleetham JA. Magnetic resonance imaging of the upper airway in obstructive sleep apnea before and after chronic nasal continuous positive airway pressure therapy. Am Rev Respir Dis. 1991;144(4):939–44. https://doi.org/10.1164/ajrccm/144.4.939.

    Article  PubMed  Google Scholar 

  172. Kayamori F, Bianchini EMG. Effects of orofacial myofunctional therapy on the symptoms and physiological parameters of sleep breathing disorders in adults: a systematic review. Revista CEFAC. 2017;19(6):868–78. https://doi.org/10.1590/1982-0216201719613317.

    Article  Google Scholar 

  173. Browaldh N, Nerfeldt P, Lysdahl M, Bring J, Friberg D. SKUP3 randomised controlled trial: polysomnographic results after uvulopalatopharyngoplasty in selected patients with obstructive sleep apnoea. Thorax. 2013;68(9):846–53. https://doi.org/10.1136/thoraxjnl-2012-202610.

    Article  PubMed  Google Scholar 

  174. Pang KP, Plaza G, Reina CO, Chan YH, Pang KA, Pang EB, Wang CMZ, Rotenberg B. Palate surgery for obstructive sleep apnea: a 17-year meta-analysis. Eur Arch Otorhinolaryngol. 2018;275(7):1697–707. https://doi.org/10.1007/s00405-018-5015-3.

    Article  PubMed  Google Scholar 

  175. Ryan CF, Love LL. Unpredictable results of laser assisted uvulopalatoplasty in the treatment of obstructive sleep apnoea. Thorax. 2000;55(5):399–404. https://doi.org/10.1136/thorax.55.5.399.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Lowe AA, Gionhaku N, Takeuchi K, Fleetham JA. Three-dimensional CT reconstructions of tongue and airway in adult subjects with obstructive sleep apnea. Am J Orthod Dentofac Orthop. 1986;90(5):364–74. https://doi.org/10.1016/0889-5406(86)90002-8.

    Article  Google Scholar 

  177. Iida-Kondo C, Yoshino N, Kurabayashi T, Mataki S, Hasegawa M, Kurosaki N. Comparison of tongue volume/oral cavity volume ratio between obstructive sleep apnea syndrome patients and normal adults using magnetic resonance imaging. J Med Dent Sci. 2006;53(2):119–26. https://doi.org/10.11480/jmds.530205.

    Article  PubMed  Google Scholar 

  178. Kim AM, Keenan BT, Jackson N, Chan EL, Staley B, Poptani H, Torigian DA, Pack AI, Schwab RJ. Tongue fat and its relationship to obstructive sleep apnea. Sleep. 2014;37(10):1639–48. https://doi.org/10.5665/sleep.4072.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Ahn SH, Kim J, Min HJ, Chung HJ, Hong JM, Lee J, Kim C, Cho H. Tongue volume influences lowest oxygen saturation but not apnea-hypopnea index in obstructive sleep apnea. PLoS One. 2015;10(8):e0135796. https://doi.org/10.1371/journal.pone.0135796.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Simmonds JC, Patel AK, Mildenhall NR, Mader NS, Scott AR. Neonatal macroglossia: demographics, cost of care, and associated comorbidities. Cleft Palate Craniofac J. 2018;55(8):1122–9. https://doi.org/10.1177/1055665618760898.

    Article  PubMed  Google Scholar 

  181. Srivastava A, Pandey A, Srivastava S. Amyloidosis is a rare disease but still a frequent cause of macroglossia. Indian J Sci Res. 2017:GALE|A520586709.

    Google Scholar 

  182. Wittmann A. Macroglossia in acromegaly and hypothyroidism. Virchows Arch A Pathol Anat Histol. 1977;373(4):353–60. https://doi.org/10.1007/bf00432533.

    Article  PubMed  Google Scholar 

  183. Miller SC, Nguyen SA, Ong AA, Gillespie MB. Transoral robotic base of tongue reduction for obstructive sleep apnea: a systematic review and meta-analysis. Laryngoscope. 2017;127(1):258–65. https://doi.org/10.1002/lary.26060.

    Article  PubMed  Google Scholar 

  184. Murphey AW, Kandl JA, Nguyen SA, Weber AC, Gillespie MB. The effect of glossectomy for obstructive sleep apnea: a systematic review and meta-analysis. Otolaryngol Head Neck Surg. 2015;153(3):334–42. https://doi.org/10.1177/0194599815594347.

    Article  PubMed  Google Scholar 

  185. Young T, Peppard PE, Taheri S. Excess weight and sleep-disordered breathing. J Appl Physiol. 2005;99:1592–9. https://doi.org/10.1152/japplphysiol.00587.2005.

    Article  PubMed  Google Scholar 

  186. Peppard PE, Young T, Palta M, Dempsey J, Skatrud J. Longitudinal study of moderate weight change and sleep-disordered breathing. JAMA. 2000;284:3015–21. https://doi.org/10.1001/jama.284.23.3015.

    Article  PubMed  Google Scholar 

  187. Vuorjoki-Ranta T, Aarab G, Lobbezoo F, Tuomilehto H, Ahlberg J. Weight gain may affect mandibular advancement device therapy in patients with obstructive sleep apnea: a retrospective study. Sleep Breath. 2019;23(2):531–4. https://doi.org/10.1007/s11325-018-1728-1.

    Article  PubMed  Google Scholar 

  188. Kulkas A, Leppänen T, Sahlman J, Tiihonen P, Mervaala E, Kokkarinen J, Randell J, Seppä J, Töyräs J, Tuomilehto H. Weight loss alters severity of individual nocturnal respiratory events depending on sleeping position. Physiol Meas. 2014;35(10):2037–52. https://doi.org/10.1088/0967-3334/35/10/2037.

    Article  PubMed  Google Scholar 

  189. Stadler DL, McEvoy RD, Bradley J, Paul D, Catcheside PG. Changes in lung volume and diaphragm muscle activity at sleep onset in obese obstructive sleep apnea patients vs. healthy-weight controls. J Appl Physiol. 2010;109(4):1027–36. https://doi.org/10.1152/japplphysiol.01397.2009.

    Article  PubMed  Google Scholar 

  190. Horner RL, Mohiaddin RH, Lowell DG, Shea SA, Burman ED, Longmore DB, Guz A. Sites and sizes of fat deposits around the pharynx in obese patients with obstructive sleep apnoea and weight matched controls. Eur Respir J. 1989;2(7):613–22. https://erj.ersjournals.com/content/2/7/613

    Article  PubMed  Google Scholar 

  191. Li Y, Lin N, Ye J, Chang Q, Han D, Sperry A. Upper airway fat tissue distribution in subjects with obstructive sleep apnea and its effect on retropalatal mechanical loads. Respir Care. 2012;57(7):1098–105. https://doi.org/10.4187/respcare.00929.

    Article  PubMed  Google Scholar 

  192. Wang SH, Keenan BT, Wiemken A, Zang Y, Staley B, Sarwer DB, Torigian DA, Williams N, Pack AI, Schwab RJ. Effect of weight loss on upper airway anatomy and the apnea–hypopnea index. The Importance of Tongue Fat. Am J Respir Crit Care Med. 2020;201(6):718–27. https://doi.org/10.1164/rccm.201903-0692oc.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Kuna ST, Reboussin DM, Strotmeyer ES, Millman RP, Zammit G, Walkup MP, Wadden TA, Wing RR, Pi-Sunyer FX, Spira AP. Effects of weight loss on obstructive sleep apnea severity: 10-year results of the sleep AHEAD study. Am J Respir Crit Care Med. 2020;203(2):221–9. https://doi.org/10.1164/rccm.201912-2511oc.

    Article  Google Scholar 

  194. Tuomilehto H, Seppä J, Uusitupa M, Peltonen M, Martikainen T, Sahlman J, Kokkarinen J, Randell J, Pukkila M, Vanninen E. The impact of weight reduction in the prevention of the progression of obstructive sleep apnea: an explanatory analysis of a 5-year observational follow-up trial. Sleep Med. 2014;15(3):329–35. https://doi.org/10.1016/j.sleep.2013.11.786.

    Article  PubMed  Google Scholar 

  195. Greenburg DL, Lettieri CJ, Eliasson AH. Effects of surgical weight loss on measures of obstructive sleep apnea: a meta-analysis. Am J Med. 2009;122:535–42. https://doi.org/10.1016/j.amjmed.2008.10.037.

    Article  PubMed  Google Scholar 

  196. Sillo TO, Lloyd-Owen S, White E, Abolghasemi-Malekabadi K, Lock-Pullan P, Ali M, Perry A, Robinson SJ, Wadley MS. The impact of bariatric surgery on the resolution of obstructive sleep apnoea. BMC Res Notes. 2018;11(1):385. https://doi.org/10.1186/s13104-018-3484-5.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Zhang Y, Wang W, Yang C, Shen J, Shi M, Wang B. Improvement in nocturnal hypoxemia in obese patients with obstructive sleep apnea after bariatric surgery: a meta-analysis. Obes Surg. 2019;29(2):601–8. https://doi.org/10.1007/s11695-018-3573-5.

    Article  PubMed  Google Scholar 

  198. Dixon JB, Schachter LM, O'Brien PE, Jones K, Grima M, Lambert G, Brown W, Bailey M, Naughton MT. Surgical vs conventional therapy for weight loss treatment of obstructive sleep apnea: a randomized controlled trial. JAMA. 2012;308:1142–9. https://doi.org/10.1001/2012.jama.11580.

    Article  PubMed  Google Scholar 

  199. Elbahrawy A, Bougie A, Loiselle S, Demyttenaere S, Court O, Andalib A. Medium to long-term outcomes of bariatric surgery in older adults with super obesity. Surg Obes Relat Dis. 2018;14(4):470–6. https://doi.org/10.1016/j.soard.2017.11.008.

    Article  PubMed  Google Scholar 

  200. Lettieri CJ, Eliasson AH, Greenburg DL. Persistence of obstructive sleep apnea after surgical weight loss. J Clin Sleep Med. 2008;4:333–8. https://doi.org/10.5664/jcsm.27233.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Karmali S, Brar B, Shi X, Sharma AM, de Gara C, Birch DW. Weight recidivism post-bariatric surgery: a systematic review. Obes Surg. 2013;23(11):1922–33. https://doi.org/10.1007/s11695-013-1070-4.

    Article  PubMed  Google Scholar 

  202. Lynch A. When the honeymoon is over, the real work begins: Gastric bypass patients’ weight loss trajectories and dietary change experiences. Soc Sci Med. 2016;151:241–9. https://doi.org/10.1016/j.socscimed.2015.12.024.

    Article  PubMed  Google Scholar 

  203. Alghothani L, Iftikhar I. Comparative efficacy of treatments for restless legs syndrome: a network meta-analysis. Chest J. 2016;150:1267A. https://doi.org/10.1093/ndt/gfz097.

    Article  Google Scholar 

  204. Yong LC, Li J, Calvert GM. Sleep-related problems in the US working population: prevalence and association with shiftwork status. Occup Environ Med. 2017;74(2):93–104. https://doi.org/10.1136/oemed-2016-103638.

    Article  PubMed  Google Scholar 

  205. American Academy of Sleep Medicine (2014) International classification of sleep disorders—third edition (ICSD-3). Darien, IL American Academy of Sleep Medicine https://doi.org/10.1378/chest.14-0970.

  206. Krakow B, Romero E, Ulibarri VA, Kikta S. Prospective assessment of nocturnal awakenings in a case series of treatment-seeking chronic insomnia patients: a pilot study of subjective and objective causes. Sleep. 2012;35:1685–92. https://doi.org/10.5665/sleep.2244.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Luyster FS, Buysse DJ, Strollo PJ Jr. Comorbid insomnia and obstructive sleep apnea: challenges for clinical practice and research. J Clin Sleep Med. 2010;6:196–204. https://doi.org/10.5664/jcsm.27772.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Lichstein KL, ThoDSA SJ, Woosley JA, Geyer JD. Co-occurring insomnia and obstructive sleep apnea. Sleep Med. 2013;14(9):824–9. https://doi.org/10.1016/j.sleep.2013.02.0087.

    Article  PubMed  Google Scholar 

  209. Subramanian S, Guntupalli B, Murugan T, Bopparaju S, Chanamolu S, Casturi L, Surani S. Gender and ethnic differences in prevalence of self-reported insomnia among patients with obstructive sleep apnea. Sleep Breath. 2011;15(4):711–5. https://doi.org/10.1007/s11325-010-0426-4.

    Article  PubMed  Google Scholar 

  210. Wickwire EM, Collop NA. Insomnia and sleep-related breathing disorders. Chest. 2010;137(6):1449–63. https://doi.org/10.1378/chest.09-1485.

    Article  PubMed  Google Scholar 

  211. Krell SB, Kapur VK. Insomnia complaints in patients evaluated for obstructive sleep apnea. Sleep Breath. 2005;9(3):104–10. https://doi.org/10.1007/s11325-005-0026-x.

    Article  PubMed  Google Scholar 

  212. Machado MAC, de Carvalho LBC, Juliano ML, Taga M, do Prado LBF, do Prado GF. Clinical co-morbidities in obstructive sleep apnea syndrome treated with mandibular repositioning appliance. Respir Med. 2006;100(6):988–95. https://doi.org/10.1016/j.rmed.2005.10.002.

    Article  PubMed  Google Scholar 

  213. Pieh C, Bach M, Popp R, Jara C, Crönlein T, Hajak G, Geisler P. Insomnia symptoms influence CPAP compliance. Sleep Breath. 2013;17(1):99–104. https://doi.org/10.1007/s11325-012-0655-9.

    Article  PubMed  Google Scholar 

  214. Wickwire EM, Smith MT, Birnbaum S, Collop NA. Sleep maintenance insomnia complaints predict poor CPAP adherence: a clinical case series. Sleep Med. 2010;11(8):772–6. https://doi.org/10.1016/j.sleep.2010.03.012.

    Article  PubMed  Google Scholar 

  215. Riemann D, Baglioni C, Bassetti C, Bjorvatn B, Dolenc Groselj L, Ellis JG, Espie CA, Garcia-Borreguero D, Gjerstad M, Gonçalves M. European guideline for the diagnosis and treatment of insomnia. J Sleep Res. 2017;26(6):675–700. https://doi.org/10.1111/jsr.12594.

    Article  PubMed  Google Scholar 

  216. Perlis ML, Smith MT, Jungquist C, Nowakowski S, Orff H, Soeffing J. Cognitive-behavioral therapy for insomnia. In: Clinical handbook of insomnia. New York: Springer; 2010. p. 281–96. https://doi.org/10.1007/978-1-60327-042-7_22.

    Chapter  Google Scholar 

  217. Qaseem A, Kansagara D, Forciea MA, Cooke M, Denberg TD. Management of chronic insomnia disorder in adults: a clinical practice guideline from the American College of Physicians. Ann Intern Med. 2016;165(2):125–33. https://doi.org/10.7326/M15-2175.

    Article  PubMed  Google Scholar 

  218. Natsky AN, Vakulin A, Chai-Coetzer CL, Lack L, McEvoy RD, Lovato N, Sweetman A, Gordon CJ, Adams RJ, Kaambwa B. Economic evaluation of cognitive behavioural therapy for insomnia (CBT-I) for improving health outcomes in adult populations: a systematic review. Sleep Med Rev. 2020;54:101351. https://doi.org/10.1016/j.smrv.2020.101351.

    Article  PubMed  Google Scholar 

  219. Wilson S, Anderson K, Baldwin D, Dijk D, Espie A, Espie C, Gringras P, Krystal A, Nutt D, Selsick H. British Association for Psychopharmacology consensus statement on evidence-based treatment of insomnia, parasomnias and circadian rhythm disorders: an update. J Psychopharmacol. 2019;33(8):923–47. https://doi.org/10.1177/0269881110379307.

    Article  PubMed  Google Scholar 

  220. Anderson KN. Insomnia and cognitive behavioural therapy—how to assess your patient and why it should be a standard part of care. J Thorac Dis. 2018;10(Suppl 1):S94–S102. https://doi.org/10.21037/jtd.2018.01.35.

    Article  PubMed  PubMed Central  Google Scholar 

  221. van Straten A, Geraedts A, Verdonck-de Leeuw I, Andersson G, Cuijpers P. Psychological treatment of depressive symptoms in patients with medical disorders: a meta-analysis. J Psychosom Res. 2010;69(1):23–32. https://doi.org/10.1016/j.jpsychores.2010.01.019.

    Article  PubMed  Google Scholar 

  222. Drake CL, Kalmbach DA, Arnedt JT, Cheng P, Tonnu CV, Cuamatzi-Castelan A, Fellman-Couture C. Treating chronic insomnia in postmenopausal women: a randomized clinical trial comparing cognitive-behavioral therapy for insomnia, sleep restriction therapy, and sleep hygiene education. Sleep. 2019;42(2):zsy217. https://doi.org/10.1093/sleep/zsy217.

    Article  Google Scholar 

  223. Kalmbach DA, Cheng P, Arnedt JT, Anderson JR, Roth T, Fellman-Couture C, Williams RA, Drake CL. Treating insomnia improves depression, maladaptive thinking, and hyperarousal in postmenopausal women: comparing cognitive-behavioral therapy for insomnia (CBTI), sleep restriction therapy, and sleep hygiene education. Sleep Med. 2019;55:124–34. https://doi.org/10.1016/j.sleep.2018.11.019.

    Article  PubMed  Google Scholar 

  224. Kyle SD, Miller CB, Rogers Z, Siriwardena AN, MacMahon KM, Espie CA. Sleep restriction therapy for insomnia is associated with reduced objective total sleep time, increased daytime somnolence, and objectively impaired vigilance: implications for the clinical management of insomnia disorder. Sleep. 2014;37(2):229–37. https://doi.org/10.5665/sleep.3386.

    Article  PubMed  PubMed Central  Google Scholar 

  225. Kyle SD, Morgan K, Spiegelhalder K, Espie CA. No pain, no gain: an exploratory within-subjects mixed-methods evaluation of the patient experience of sleep restriction therapy (SRT) for insomnia. Sleep Med. 2011;12(8):735–47. https://doi.org/10.1016/j.sleep.2011.03.016.

    Article  PubMed  Google Scholar 

  226. Cheng P, Kalmbach D, Fellman-Couture C, Arnedt JT, Cuamatzi-Castelan A, Drake CL. Risk of excessive sleepiness in sleep restriction therapy and cognitive behavioral therapy for insomnia: a randomized controlled trial. J Clin Sleep Med. 2020;16(2):193–8. https://doi.org/10.5664/jcsm.8164. Epub 2020 Jan 13

    Article  PubMed  PubMed Central  Google Scholar 

  227. Sidani S, Epstein DR, Fox M, Collins L. Comparing the effects of single-and multiple-component therapies for insomnia on sleep outcomes. Worldviews Evid-Based Nurs. 2019;16(3):195–203. https://doi.org/10.1111/wvn.12367.

    Article  PubMed  PubMed Central  Google Scholar 

  228. Hauri PJ. Sleep hygiene, relaxation therapy, and cognitive interventions. In: Case studies in insomnia. New York: Springer; 1991. p. 65–84. https://doi.org/10.1007/978-1-4757-9586-8_5.

    Chapter  Google Scholar 

  229. Stepanski EJ, Wyatt JK. Use of sleep hygiene in the treatment of insomnia. Sleep Med Rev. 2003;7:215–25. https://doi.org/10.1053/smrv.2001.0246.

    Article  PubMed  Google Scholar 

  230. Irish LA, Kline CE, Gunn HE, Buysse DJ, Hall MH. The role of sleep hygiene in promoting public health: a review of empirical evidence. Sleep Med Rev. 2015;22:23–36. https://doi.org/10.1016/j.smrv.2014.10.001.

    Article  PubMed  Google Scholar 

  231. Chung K, Lee C, Yeung W, Chan M, Chung EW, Lin W. Sleep hygiene education as a treatment of insomnia: a systematic review and meta-analysis. Fam Pract. 2018;35(4):365–75. https://doi.org/10.1093/fampra/cmx122.

    Article  PubMed  Google Scholar 

  232. Mead MP, Irish LA. Application of health behaviour theory to sleep health improvement. J Sleep Res. 2020;29(5):e12950. https://doi.org/10.1111/jsr.12950.

    Article  PubMed  Google Scholar 

  233. Jansson-Fröjmark M, Evander J, Alfonsson S. Are sleep hygiene practices related to the incidence, persistence and remission of insomnia? Findings from a prospective community study. J Behav Med. 2019;42(1):128–38. https://doi.org/10.1007/s10865-018-9949-0.

    Article  PubMed  Google Scholar 

  234. Ogeil RP, Prasad S, O'Driscoll DM, Li WY, Lubman DI, Young AC. Psychoactive drug and medication use among patients referred to a tertiary sleep laboratory population. Psychiatry Res. 2020;294:113545. https://doi.org/10.1016/j.psychres.2020.113545.

    Article  PubMed  Google Scholar 

  235. Jin M, Yoon C, Ko H, Kim H, Kim A, Moon H, Jung S. The relationship of caffeine intake with depression, anxiety, stress, and sleep in Korean adolescents. Korean J Fam Med. 2016;37(2):111–6. https://doi.org/10.4082/kjfm.2016.37.2.111.

    Article  PubMed  PubMed Central  Google Scholar 

  236. Chaudhary NS, Grandner MA, Jackson NJ, Chakravorty S. Caffeine consumption, insomnia, and sleep duration: results from a nationally representative sample. Nutrition. 2016;32(11-12):1193–9. https://doi.org/10.1016/j.nut.2016.04.005.

    Article  PubMed  PubMed Central  Google Scholar 

  237. Frozi J, de Carvalho HW, Ottoni GL, Cunha RA, Lara DR. Distinct sensitivity to caffeine-induced insomnia related to age. J Psychopharmacol. 2018;32(1):89–95. https://doi.org/10.1177/0269881117722997.

    Article  PubMed  Google Scholar 

  238. Zhang B, Liu Y, Wang X, Deng Y, Zheng X. Cognition and brain activation in response to various doses of caffeine: a near-infrared spectroscopy study. Front Psychol. 2020;11:1393. https://doi.org/10.3389/fpsyg.2020.01393.

    Article  PubMed  PubMed Central  Google Scholar 

  239. Pasman WJ, Boessen R, Donner Y, Clabbers N, Boorsma A. Effect of caffeine on attention and alertness measured in a home-setting, using web-based cognition tests. JMIR Res Protoc. 2017;6(9):e169. https://doi.org/10.2196/resprot.6727.

    Article  PubMed  PubMed Central  Google Scholar 

  240. Wang C, Zhu Y, Dong C, Zhou Z, Zheng X. Effects of various doses of caffeine ingestion on intermittent exercise performance and cognition. Brain Sci. 2020;10(9):595. https://doi.org/10.3390/brainsci10090595.

    Article  PubMed Central  Google Scholar 

  241. Cornelis MC, Weintraub S, Morris MC. Recent caffeine drinking associates with cognitive function in the UK biobank. Nutrients. 2020;10(9):595. https://doi.org/10.3390/nu12071969.

    Article  Google Scholar 

  242. Drake C, Roehrs T, Shambroom J, Roth T. Caffeine effects on sleep taken 0, 3, or 6 hours before going to bed. J Clin Sleep Med. 2013;9:1195–200. https://doi.org/10.5664/jcsm.3170.

    Article  PubMed  PubMed Central  Google Scholar 

  243. Bertazzo-Silveira E, Kruger CM, De Toledo IP, Porporatti AL, Dick B, Flores-Mir C, Canto GDL. Association between sleep bruxism and alcohol, caffeine, tobacco, and drug abuse: a systematic review. J Am Dent Assoc. 2016;147(11):859–866.e4. https://doi.org/10.1016/j.adaj.2016.06.014.

    Article  PubMed  Google Scholar 

  244. Simou E, Britton J, Leonardi-Bee J. Alcohol and the risk of sleep apnoea: a systematic review and meta-analysis. Sleep Med. 2018;42:38–46. https://doi.org/10.1016/j.sleep.2017.12.005.

    Article  PubMed  PubMed Central  Google Scholar 

  245. Issa FG, Sullivan CE. Alcohol, snoring and sleep apnea. J Neurol Neurosurg Psychiatry. 1982;45:353–9. https://doi.org/10.1016/j.sleep.2017.12.005.

    Article  PubMed  PubMed Central  Google Scholar 

  246. Kolla BP, Foroughi M, Saeidifard F, Chakravorty S, Wang Z, Mansukhani MP. The impact of alcohol on breathing parameters during sleep: a systematic review and meta-analysis. Sleep Med Rev. 2018;42:59–67. https://doi.org/10.1136/jnnp.45.4.353.

    Article  PubMed  PubMed Central  Google Scholar 

  247. Irwin MR, Bjurstrom MF, Olmstead R. Polysomnographic measures of sleep in cocaine dependence and alcohol dependence: implications for age-related loss of slow wave, stage 3 sleep. Addiction. 2016;111(6):1084–92. https://doi.org/10.1111/add.13300.

    Article  PubMed  PubMed Central  Google Scholar 

  248. Chan JK, Trinder J, Andrewes HE, Colrain IM, Nicholas CL. The acute effects of alcohol on sleep architecture in late adolescence. Alcohol Clin Exp Res. 2013;37(10):1720–8. https://doi.org/10.1111/acer.12141.

    Article  PubMed  PubMed Central  Google Scholar 

  249. O’Malley MB, O’Malley EB. Psychophysiological insomnia. In: Clinical Handbook of Insomnia. New York: Springer; 2010. p. 155–65. https://doi.org/10.1007/978-1-60327-042-7_11.

    Chapter  Google Scholar 

  250. Pasman JA, Smit DJ, Kingma L, Vink JM, Treur JL, Verweij KJ. Causal relationships between substance use and insomnia. Drug Alcohol Depend. 2020;214:108151. https://doi.org/10.1101/2020.04.06.027003.

    Article  PubMed  Google Scholar 

  251. AlRyalat SA, Kussad S, El Khatib O, Hamad I, Ahmad A, Alshnneikat M, AbuMahfouz B. Assessing the effect of nicotine dose in cigarette smoking on sleep quality. Sleep Breath. 2020;25(3):1319–24. https://doi.org/10.1007/s11325-020-02238-3.

    Article  PubMed  Google Scholar 

  252. Teofilo L. Medications and their effects on sleep. Sleep Med. 2008; https://doi.org/10.1016/s1556-407x(18)30019-5.

  253. Jaehne A, Loessl B, Bárkai Z, Riemann D, Hornyak M. Effects of nicotine on sleep during consumption, withdrawal and replacement therapy. Sleep Med Rev. 2009;13(5):363–77. https://doi.org/10.1016/j.smrv.2008.12.003.

    Article  PubMed  Google Scholar 

  254. Brett EI, Miller MB, Leavens EL, Lopez SV, Wagener TL, Leffingwell TR. Electronic cigarette use and sleep health in young adults. J Sleep Res. 2020;29(3):e12902. https://doi.org/10.1111/jsr.12902.

    Article  PubMed  Google Scholar 

  255. Spadola CE, Guo N, Johnson DA, Sofer T, Bertisch SM, Jackson CL, Rueschman M, Mittleman MA, Wilson JG, Redline S. Evening intake of alcohol, caffeine, and nicotine: night-to-night associations with sleep duration and continuity among African Americans in the Jackson heart sleep study. Sleep. 2019;42(11):zsz136. https://doi.org/10.1093/sleep/zsz136.

    Article  PubMed  PubMed Central  Google Scholar 

  256. Bola KI, Lesage SR, Gamaldo CE, Neubauer DN, Funderburk FR, Cadet JL, David PM, Verdejo-Garcia A, Benbrook AR. Sleep disturbance in heavy marijuana users. Sleep. 2008;31(6):901–8. https://doi.org/10.1093/sleep/31.6.901.

    Article  Google Scholar 

  257. Soreca I, Conklin CA, Vella EJ, Salkeld RP, Joyce CJ, Mumma JM, Jakicic JM, Kupfer DJ. Can exercise alleviate sleep disturbances during acute nicotine withdrawal in cigarette smokers? Exp Clin Psychopharmacol. 2020;30(1):82–92. https://doi.org/10.1037/pha0000390.

    Article  PubMed  Google Scholar 

  258. Patterson F, Ashare R. Improved sleep as an adjunctive treatment for smoking cessation. In: Sleep and Health. Amsterdam: Elsevier; 2019. p. 283–301. https://doi.org/10.1016/b978-0-12-815373-4.00022-8.

    Chapter  Google Scholar 

  259. Short NA, Mathes BM, Gibby B, Oglesby ME, Zvolensky MJ, Schmidt NB. Insomnia symptoms as a risk factor for cessation failure following smoking cessation treatment. Addict Res Theory. 2017;25(1):17–23. https://doi.org/10.1080/16066359.2016.1190342.

    Article  PubMed  Google Scholar 

  260. Marques M, Pereira AT, Azevedo J, Xavier S, Bento E, Soares MJ, Freitas V, Macedo A. Validation of the insomnia assessment scale-adapted in a community sample of Portuguese pregnant women. Eur Psychiatry. 2016;33:S269. https://doi.org/10.1016/j.eurpsy.2016.01.705.

    Article  Google Scholar 

  261. Garland SN, Carlson LE, Stephens AJ, Antle MC, Samuels C, Campbell TS. Mindfulness-based stress reduction compared with cognitive behavioral therapy for the treatment of insomnia comorbid with cancer: a randomized, partially blinded, noninferiority trial. J Clin Oncol. 2014;32(5):449–57. https://doi.org/10.1200/jco.2012.47.7265.

    Article  PubMed  Google Scholar 

  262. Chen C, Pei Y, Chen N, Huang L, Chou S, Wu KP, Ko P, Wong AMK, Wu C. Sedative music facilitates deep sleep in Young adults. J Altern Complement Med. 2014;20(4):312–7. https://doi.org/10.1089/acm.2012.0050.

    Article  PubMed  Google Scholar 

  263. Wang Y, Wang F, Zheng W, Zhang L, Ng CH, Ungvari GS, Xiang Y. Mindfulness-based interventions for insomnia: a meta-analysis of randomized controlled trials. Behav Sleep Med. 2020;18(1):1–9. https://doi.org/10.1080/15402002.2018.1518228.

    Article  PubMed  Google Scholar 

  264. Aiello KD, Caughey WG, Nelluri B, Sharma A, Mookadam F, Mookadam M. Effect of exercise training on sleep apnea: a systematic review and meta-analysis. Respir Med. 2016;116:85–92. https://doi.org/10.1016/j.rmed.2016.05.015.

    Article  PubMed  Google Scholar 

  265. Mendelson M, Lyons OD, Yadollahi A, Inami T, Oh P, Bradley TD. Effects of exercise training on sleep apnoea in patients with coronary artery disease: a randomised trial. Eur Respir J. 2016;48:142–50. https://doi.org/10.1183/13993003.01897-2015.

    Article  PubMed  Google Scholar 

  266. Norman JF, Von Essen SG, Fuchs RH, McElligott M. Exercise training effect on obstructive sleep apnea syndrome. Sleep Res Online. 2000;3(3):121–9. https://doi.org/10.1183/13993003.01897-2015.

    Article  PubMed  Google Scholar 

  267. Schutz TCB, Cunha TCA, Moura-Guimaraes T, Luz GP, Ackel-D'Elia C, Alves ES, Pantiga Junior G, Mello MT, Tufik S, Bittencourt L. Comparison of the effects of continuous positive airway pressure, oral appliance and exercise training in obstructive sleep apnea syndrome. Clinics. 2013;68(8):1168–74. https://doi.org/10.6061/clinics/2013(08)17.

    Article  PubMed  PubMed Central  Google Scholar 

  268. Drager LF, Brunoni AR, Jenner R, Lorenzi-Filho G, Bensenor IM, Lotufo PA. Effects of CPAP on body weight in patients with obstructive sleep apnoea: a meta-analysis of randomised trials. Thorax. 2015;70:258–64. https://doi.org/10.1136/thoraxjnl-2014-205361.

    Article  PubMed  Google Scholar 

  269. Kline CE, Crowley EP, Ewing GB, Burch JB, Blair SN, Durstine JL, Davis JM, Youngstedt SD. The effect of exercise training on obstructive sleep apnea and sleep quality: a randomized controlled trial. Sleep. 2011;34(12):1631–40. https://doi.org/10.5665/sleep.1422.

    Article  PubMed  PubMed Central  Google Scholar 

  270. Guimaraes KC, Drager LF, Genta PR, Marcondes BF, Lorenzi-Filho G. Effects of oropharyngeal exercises on patients with moderate obstructive sleep apnea syndrome. Am J Respir Crit Care Med. 2009;179:962–6. https://doi.org/10.1164/rccm.200806-981oc.

    Article  PubMed  Google Scholar 

  271. Banno M, Harada Y, Taniguchi M, et al. Exercise can improve sleep quality: a systematic review and meta-analysis. PeerJ. 2018;6:e5172. https://doi.org/10.7717/peerj.5172.

    Article  PubMed  PubMed Central  Google Scholar 

  272. Rubio-Arias JÁ, Marín-Cascales E, Ramos-Campo DJ, Hernandez AV, Pérez-López FR. Effect of exercise on sleep quality and insomnia in middle-aged women: a systematic review and meta-analysis of randomized controlled trials. Maturitas. 2017;100:49–56. https://doi.org/10.1016/j.maturitas.2017.04.003.

    Article  PubMed  Google Scholar 

  273. Lowe H, Haddock G, Mulligan LD, Gregg L, Fuzellier-Hart A, Carter L, Kyle SD. Does exercise improve sleep for adults with insomnia? A systematic review with quality appraisal. Clin Psychol Rev. 2019;68:1–12. https://doi.org/10.1016/j.maturitas.2017.04.003.

    Article  PubMed  Google Scholar 

  274. Morita Y, Sasai-Sakuma T, Inoue Y. Effects of acute morning and evening exercise on subjective and objective sleep quality in older individuals with insomnia. Sleep Med. 2017;34:200–8. https://doi.org/10.1016/j.sleep.2017.03.014.

    Article  PubMed  Google Scholar 

  275. Ramos-Campo DJ, Ávila-Gandía V, Luque AJ, Rubio-Arias JÁ. Effects of hour of training and exercise intensity on nocturnal autonomic modulation and sleep quality of amateur ultra-endurance runners. Physiol Behav. 2019;198:134–9. https://doi.org/10.1016/j.physbeh.2018.10.020.

    Article  PubMed  Google Scholar 

  276. Morse CD, Klingman KJ, Jacob BL, Kodali L. Exercise and insomnia risk in middle-aged women. J Nurse Pract. 2019;15:236–240.e2. https://doi.org/10.1016/j.nurpra.2018.10.020.

    Article  Google Scholar 

  277. Purani H, Friedrichsen S, Allen AM. Sleep quality in cigarette smokers: associations with smoking-related outcomes and exercise. Addict Behav. 2019;90:71–6. https://doi.org/10.1016/j.addbeh.2018.10.023.

    Article  PubMed  Google Scholar 

  278. Bonardi JM, Lima LG, Campos GO, Bertani RF, Moriguti JC, Ferriolli E, Lima NK. Effect of different types of exercise on sleep quality of elderly subjects. Sleep Med. 2016;25:122–9. https://doi.org/10.1016/j.sleep.2016.06.025.

    Article  PubMed  Google Scholar 

  279. Ebrahimi M, Guilan-Nejad TN, Pordanjani AF. Effect of yoga and aerobics exercise on sleep quality in women with type 2 diabetes: a randomized controlled trial. Sleep Sci. 2017;10(2):68–72. https://doi.org/10.5935/1984-0063.20170012.

    Article  PubMed  PubMed Central  Google Scholar 

  280. Neubauer DN, Pandi-Perumal SR, Spence DW, Buttoo K, Monti JM. Pharmacotherapy of insomnia. J Cent Nerv Syst Dis. 2018;10:1179573518770672. https://doi.org/10.1111/j.1469-7580.2009.01106.x.

    Article  PubMed  PubMed Central  Google Scholar 

  281. Kim JH, Duffy JF. Circadian rhythm sleep-wake disorders in older adults. Sleep Med Clin. 2018;17(2):241–52. https://doi.org/10.1016/j.jsmc.2017.09.004.

    Article  Google Scholar 

  282. Kandeger A, Selvi Y, Tanyer DK. The effects of individual circadian rhythm differences on insomnia, impulsivity, and food addiction. Eat Weight Disord. 2019;24(1):47–55. https://doi.org/10.1007/s40519-018-0518-x.

    Article  PubMed  Google Scholar 

  283. Barion A, Zee PC. A clinical approach to circadian rhythm sleep disorders. Sleep Med. 2007;8(6):566–77. https://doi.org/10.1016/j.sleep.2006.11.017.

    Article  PubMed  PubMed Central  Google Scholar 

  284. Yazaki M, Shirakawa S, Okawa M, Takahashi K. Demography of sleep disturbances associated with circadian rhythm disorders in Japan. Psychiatry Clin Neurosci. 1999;53(2):267–8. https://doi.org/10.1046/j.1440-1819.1999.00533.x.

    Article  PubMed  Google Scholar 

  285. Schrader H, Bovim G, Sand T. The prevalence of delayed and advanced sleep phase syndromes. J Sleep Res. 1993;2(1):51–5. https://doi.org/10.1111/j.1365-2869.1993.tb00061.x.

    Article  PubMed  Google Scholar 

  286. Weitzman ED, Czeisler CA, Coleman RM, Spielman AJ, Zimmerman JC, Dement W, Pollak CP. Delayed sleep phase syndrome: a chronobiological disorder with sleep-onset insomnia. Arch Gen Psychiatry. 1981;38(7):737–46. https://doi.org/10.1001/archpsyc.1981.01780320017001.

    Article  PubMed  Google Scholar 

  287. Chesson AL, Littner M, Davila D, Anderson WM, Grigg-Damberger M, Hartse K, Johnson S, Wise M. Practice parameters for the use of light therapy in the treatment of sleep disorders. Standards of Practice Committee, American Academy of Sleep Medicine. Sleep. 1999;22(5):641–60. https://doi.org/10.1093/sleep/22.5.641.

    Article  PubMed  Google Scholar 

  288. Richardson C, Cain N, Bartel K, Micic G, Maddock B, Gradisar M. A randomised controlled trial of bright light therapy and morning activity for adolescents and young adults with delayed sleep-wake phase disorder. Sleep Med. 2018;45:114–23. https://doi.org/10.1016/j.sleep.2018.02.001.

    Article  PubMed  Google Scholar 

  289. Burgess HJ, Crowley SJ, Gazda CJ, Fogg LF, Eastman CI. Preflight adjustment to eastward travel: 3 days of advancing sleep with and without morning bright light. J Biol Rhythm. 2003;18:318–28. https://doi.org/10.1177/0748730403253585.

    Article  Google Scholar 

  290. Crowley SJ, Eastman CI. Phase advancing human circadian rhythms with morning bright light, afternoon melatonin, and gradually shifted sleep: can we reduce morning bright-light duration? Sleep Med. 2015;16(2):288–97. https://doi.org/10.1016/j.sleep.2014.12.004.

    Article  PubMed  Google Scholar 

  291. Warman VL, Dijk D, Warman GR, Arendt J, Skene DJ. Phase advancing human circadian rhythms with short wavelength light. Neurosci Lett. 2003;342(1-2):37–40. https://doi.org/10.1016/s0304-3940(03)00223-4.

    Article  PubMed  Google Scholar 

  292. Exelmans L, Van den Bulck J. Bedtime, shuteye time and electronic media: sleep displacement is a two-step process. J Sleep Res. 2017;26(3):364–70. https://doi.org/10.1111/jsr.12510.

    Article  PubMed  Google Scholar 

  293. Esaki Y, Kitajima T, Ito Y, Koike S, Nakao Y, Tsuchiya A, Hirose M, Iwata N. Wearing blue light-blocking glasses in the evening advances circadian rhythms in the patients with delayed sleep phase disorder: an open-label trial. Chronobiol Int. 2016;33(8):1037–44. https://doi.org/10.1080/07420528.2016.1194289.

    Article  PubMed  Google Scholar 

  294. Lack LC, Wright HR. Circadian rhythms and insomnia. In: Clinical handbook of insomnia. New York: Springer; 2010. p. 243–53. https://doi.org/10.1007/978-1-60327-042-7_18.

    Chapter  Google Scholar 

  295. Zerbini G, Kantermann T, Merrow M. Strategies to decrease social jetlag: reducing evening blue light advances sleep and melatonin. Eur J Neurosci. 2018;51(12):2355–66. https://doi.org/10.1111/ejn.14293.

    Article  PubMed  Google Scholar 

  296. van Geijlswijk IM, Korzilius HP, Smits MG. The use of exogenous melatonin in delayed sleep phase disorder: a meta-analysis. Sleep. 2010;33(12):1605–14. https://doi.org/10.1093/sleep/33.12.1605.

    Article  PubMed  PubMed Central  Google Scholar 

  297. Hughes RJ, Badia P. Sleep-promoting and hypothermic effects of daytime melatonin administration in humans. Sleep. 1997;20(2):124–31. https://doi.org/10.1093/sleep/20.2.124.

    Article  PubMed  Google Scholar 

  298. Marrin K, Drust B, Gregson W, Atkinson G. A meta-analytic approach to quantify the dose–response relationship between melatonin and core temperature. Eur J Appl Physiol. 2013;113(9):2323–9. https://doi.org/10.1007/s00421-013-2668-x.

    Article  PubMed  Google Scholar 

  299. Van der Heijden KB, Smits MG, Van Someren EJ, Boudewijn Gunning W. Prediction of melatonin efficacy by pretreatment dim light melatonin onset in children with idiopathic chronic sleep onset insomnia. J Sleep Res. 2005;14(2):187–94. https://doi.org/10.1111/j.1365-2869.2005.00451.x.

    Article  PubMed  Google Scholar 

  300. Burgess HJ, Revell VL, Eastman CI. A three pulse phase response curve to three milligrams of melatonin in humans. J Physiol Lond. 2008;586:639–47. https://doi.org/10.1113/jphysiol.2007.143180.

    Article  PubMed  Google Scholar 

  301. Lewy AJ, Emens JS, Bernert RA, Lefler BJ. Eventual entrainment of the human circadian pacemaker by melatonin is independent of the circadian phase of treatment initiation: clinical implications. J Biol Rhythm. 2004;19(1):68–75. https://doi.org/10.1177/0748730403259670.

    Article  Google Scholar 

  302. Lewy AJ, Ahmed S, Jackson JML, Sack RL. Melatonin shifts human orcadian rhythms according to a phase-response curve. Chronobiol Int. 1992;9:380–92. https://doi.org/10.3109/07420529209064550.

    Article  PubMed  Google Scholar 

  303. Cardinali DP, Furio AM, Reyes MP, Brusco LI. The use of chronobiotics in the resynchronization of the sleep–wake cycle. Cancer Causes Control. 2006;17(4):601–9. https://doi.org/10.1007/s10552-005-9009-2.

    Article  PubMed  Google Scholar 

  304. Skene DJ. Optimization of light and melatonin to phase-shift human circadian rhythms. J Neuroendocrinol. 2003;15(4):438–41. https://doi.org/10.1046/j.1365-2826.2003.01006.x.

    Article  PubMed  Google Scholar 

  305. Luboshizsky R, Lavie P. Sleep-inducing effects of exogenous melatonin administration. Sleep Med Rev. 1998;2(3):191–202. https://doi.org/10.1016/s1087-0792(98)90021-1.

    Article  PubMed  Google Scholar 

  306. Deacon S, Arendt J. Melatonin-induced temperature suppression and its acute phase-shifting effects correlate in a dose-dependent manner in humans. Brain Res. 1995;688:77–85. https://doi.org/10.1016/0006-8993(95)96872-i.

    Article  PubMed  Google Scholar 

  307. Foley HM, Steel AE. Adverse events associated with oral administration of melatonin: a critical systematic review of clinical evidence. Complement Ther Med. 2019;42:65–81. https://doi.org/10.1016/j.ctim.2018.11.003.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Courcey-Bayley, C., McCloy, K. (2022). Adjunctive Therapies for Dental Sleep Appliances. In: Demerjian, G.G., Patel, M., Chiappelli, F., Barkhordarian, A. (eds) Dental Sleep Medicine. Springer, Cham. https://doi.org/10.1007/978-3-031-10646-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10646-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10645-3

  • Online ISBN: 978-3-031-10646-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics