Skip to main content

Machine Learning for Capacity Utilization Along the Routes of an Urban Freight Service

  • Conference paper
  • First Online:
Intelligent Technologies and Applications (INTAP 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1616))

Included in the following conference series:

  • 622 Accesses

Abstract

A machine-learning based methodology has been developed to investigate its applicability in enhancing capacity utilization of freight services. Freight services employ vehicles for picking and delivering goods from and to retailers, and better utilization of freight capacity can save fuel, time and encourage environment friendly operations. The methodology developed here involves identifying the regions in the map where the services are expected to experience lower freight capacity and have good opportunity to enhance this capacity by considering the presence of nearby retailer density. For this, we compare ability of various machine learning models for (a) predicting the weight of freight in the van along various stops in its given freight route, and for (b) predicting the freight traffic counts of vehicles at a location. The data used for this work involves all the freight routes used by a commercial company for freight transport in the Oslo city in a given month along with corresponding freight weight data, as well as data on location of all the retailers in the city. The ML methods compared are Artificial Neural network, Support Vector Machine (SVM), Random forest and linear regression using cross-validation and learning curves. The random forest model performs better than most models for our data, and is used to predict freight weight at stops along new unseen routes. In unseen test scenario (new unseen freight routes), the ML-based methodology is able to predict two out of actual seven best locations for enhancing capacity utilization, thus showing its usefulness. The challenges lies in enhancing accuracy of ML models as the prediction of freight weight is expected to be dependent on input features that are not easy to measure (for example, unseen traffic congestion, local demand/supply changes, etc.). The scope and challenges encountered in this work can help in outlining future work with focus on relevant data acquisition and for integrating the proposed methodology in vehicle route optimization tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alex, J.S., Bernhard, S.: A tutorial on support vector regression. Stat. Comput. Arch. 14(3), 199–222 (2004)

    Article  MathSciNet  Google Scholar 

  2. Bakhtyar, S., Holmgren, J.: A data mining based method for route and freight estimation. Procedia Comput. Sci. 52, 396–403 (2015)

    Article  Google Scholar 

  3. Barua, L., Zou, B., Zhou, Y.: Machine learning for international freight transportation management: a comprehensive review. Res. Transp. Bus. Manag. 34, 100453 (2020)

    Google Scholar 

  4. Bengio, Y.: Practical recommendations for gradient-based training of deep architectures. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 437–478. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_26

    Chapter  Google Scholar 

  5. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT 1992, pp. 144–152. Association for Computing Machinery, New York (1992)

    Google Scholar 

  6. Boukerche, A., Wang, J.: Machine learning-based traffic prediction models for intelligent transportation systems. Comput. Netw. 181, 107530 (2020)

    Google Scholar 

  7. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  8. Gao, Y.: Forecasting of freight volume based on support vector regression optimized by genetic algorithm. In: 2009 2nd IEEE International Conference on Computer Science and Information Technology, pp. 550–553 (2009)

    Google Scholar 

  9. Guo, Z., Fu, J.Y.: Prediction method of railway freight volume based on genetic algorithm improved general regression neural network. J. Intell. Syst. 28(5), 835–848 (2019)

    Article  Google Scholar 

  10. Hassan, L.A.H., Mahmassani, H.S., Chen, Y.: Reinforcement learning framework for freight demand forecasting to support operational planning decisions. Transp. Res. Part E: Logist. Transp. Rev. 137, 101926 (2020)

    Google Scholar 

  11. Jiang, H., Chang, L., Li, Q., Chen, D.: Trajectory prediction of vehicles based on deep learning. In: 2019 4th International Conference on Intelligent Transportation Engineering (ICITE), pp. 190–195 (2019)

    Google Scholar 

  12. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  13. Ruesch, M., Schmid, T., Bohne, S., Haefeli, U., Walker, D.: Freight transport with VANs: developments and measures. Transp. Res. Procedia 12, 79–92 (2016)

    Article  Google Scholar 

  14. Rumelhart, D., Hinton, G., Williams, R.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    Article  Google Scholar 

  15. Taniguchi, E., Thompson, R., Yamada, T., Van Duin, J.: City logistics. In: Network Modelling and Intelligent Transport Systems, January 2001

    Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial support from the Norwegian Research council’s DigiMOB project (project number: 283331).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandar V. Tabib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tabib, M.V., Stene, J.K., Rasheed, A., Langeland, O., Gundersen, F. (2022). Machine Learning for Capacity Utilization Along the Routes of an Urban Freight Service. In: Sanfilippo, F., Granmo, OC., Yayilgan, S.Y., Bajwa, I.S. (eds) Intelligent Technologies and Applications. INTAP 2021. Communications in Computer and Information Science, vol 1616. Springer, Cham. https://doi.org/10.1007/978-3-031-10525-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10525-8_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10524-1

  • Online ISBN: 978-3-031-10525-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics