Skip to main content

Classification of Mechanical Fault-Excited Events Based on Frequency

  • Conference paper
  • First Online:
Intelligent Technologies and Applications (INTAP 2021)

Abstract

We propose a method for classifying periodic events generated at one or multiple frequencies on any one-dimensional space. This is very useful in problems where you need to find the type of event based on observations of location, e.g. in time. For each frequency, all events are mapped into periodic axes, which are represented independently of each other. Using an expectation-maximization algorithm, we can fit distributions to the events and classify them using maximum likelihood. The proposed method is applied to two mechanical faulty cases: a defect rolling-element bearing, and a gearbox with defect teeth. We show very good classification results in cases of multiple event types of similar frequency, multiple event types of different frequencies, and combinations of the two for artificially generated events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Antoni, J.: Fast computation of the kurtogram for the detection of transient faults. Mech. Syst. Sig. Process. 21(1), 108–124 (2007). https://doi.org/10.1016/j.ymssp.2005.12.002. https://www.sciencedirect.com/science/article/pii/S0888327005002414

  2. Antoni, J., Randall, R.: The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines. Mech. Syst. Sig. Process. 20(2), 308–331 (2006)

    Article  Google Scholar 

  3. Banerjee, A., Dhillon, I., Ghosh, J., Sra, S.: Clustering on the unit hypersphere using von Mises-Fisher distributions. J. Mach. Learn. Res. 6, 1345–1382 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Choudhary, A., Goyal, D., Shimi, S.L., Akula, A.: Condition monitoring and fault diagnosis of induction motors: a review. Arch. Comput. Methods Eng. 26(4), 1221–1238 (2019). https://doi.org/10.1007/s11831-018-9286-z

  5. Cunningham, P., Delany, S.J.: k-nearest neighbour classifiers: 2nd edition (with Python examples). CoRR abs/2004.04523 (2020). https://arxiv.org/abs/2004.04523

  6. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. Ser. B (Methodol.) 39(1), 1–38 (1977). http://www.jstor.org/stable/2984875

  7. Epps, I.: An investigation into vibrations excited by discrete faults in rolling element bearings. Ph.D. thesis, University of Canterbury, June 1991

    Google Scholar 

  8. Feng, Z., Liang, M., Chu, F.: Recent advances in time–frequency analysis methods for machinery fault diagnosis: a review with application examples. Mech. Syst. Sig. Process. 38(1), 165–205 (2013). https://doi.org/10.1016/j.ymssp.2013.01.017. https://www.sciencedirect.com/science/article/pii/S088832701300071X. Condition monitoring of machines in non-stationary operations

  9. Ismail, M., Klausen, A.: Multiple defect size estimation of rolling bearings using autonomous diagnosis and vibrational jerk. In: 7th World Conference on Structural Control and Monitoring (7WCSCM), China, July 2018

    Google Scholar 

  10. Jin, X., Han, J.: K-means clustering. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 563–564. Springer, Boston (2010). https://doi.org/10.1007/978-0-387-30164-8_425

  11. Klausen, A., Khang, H.V., Robbersmyr, K.G.: Multi-band identification for enhancing bearing fault detection in variable speed conditions. Mech. Syst. Sig. Process. 139, 106422 (2020). https://doi.org/10.1016/j.ymssp.2019.106422. https://www.sciencedirect.com/science/article/pii/S0888327019306430

  12. Klausen, A., Robbersmyr, K.G., Karimi, H.R.: Autonomous bearing fault diagnosis method based on envelope spectrum. IFAC-PapersOnLine 50(1), 13378–13383 (2017). https://doi.org/10.1016/j.ifacol.2017.08.2262. https://www.sciencedirect.com/science/article/pii/S2405896317330550. 20th IFAC World Congress

  13. Li, Y., Ding, K., He, G., Jiao, X.: Non-stationary vibration feature extraction method based on sparse decomposition and order tracking for gearbox fault diagnosis. Measurement 124, 453–469 (2018). https://doi.org/10.1016/j.measurement.2018.04.063. https://www.sciencedirect.com/science/article/pii/S0263224118303440

  14. Liu, Q., Wang, Y., Xu, Y.: Synchrosqueezing extracting transform and its application in bearing fault diagnosis under non-stationary conditions. Measurement 173, 108569 (2021). https://doi.org/10.1016/j.measurement.2020.108569. https://www.sciencedirect.com/science/article/pii/S0263224120310915

  15. Mardia, K.: Directional Statistics. Wiley Series in Probability and Statistics, 2nd edn. Wiley, Chichester (2000)

    Google Scholar 

  16. Sanna Passino, F., Heard, N.A.: Classification of periodic arrivals in event time data for filtering computer network traffic. Stat. Comput. 30(5), 1241–1254 (2020). https://doi.org/10.1007/s11222-020-09943-9

    Article  MathSciNet  MATH  Google Scholar 

  17. Randall, R.B., Antoni, J.: Rolling element bearing diagnostics–a tutorial. Mech. Syst. Sig. Process. 25(2), 485–520 (2011). https://doi.org/10.1016/j.ymssp.2010.07.017. https://www.sciencedirect.com/science/article/pii/S0888327010002530

  18. Sawalhi, N., Randall, R.: Vibration response of spalled rolling element bearings: observations, simulations and signal processing techniques to track the spall size. Mech. Syst. Sig. Process. 25(3), 846–870 (2011)

    Article  Google Scholar 

  19. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

    Article  MathSciNet  MATH  Google Scholar 

  20. Tang, G., Wang, Y., Huang, Y., Liu, N., He, J.: Compound bearing fault detection under varying speed conditions with virtual multichannel signals in angle domain. IEEE Trans. Instrum. Meas. 69(8), 5535–5545 (2020). https://doi.org/10.1109/TIM.2020.2965634

    Article  Google Scholar 

  21. Villa, L.F., Reñones, A., Perán, J.R., de Miguel, L.J.: Angular resampling for vibration analysis in wind turbines under non-linear speed fluctuation. Mech. Syst. Sig. Process. 25(6), 2157–2168 (2011). https://doi.org/10.1016/j.ymssp.2011.01.022. https://www.sciencedirect.com/science/article/pii/S0888327011000677. Interdisciplinary Aspects of Vehicle Dynamics

  22. Wang, W.: Early detection of gear tooth cracking using the resonance demodulation technique. Mech. Syst. Sig. Process. 15(5), 887–903 (2001). https://doi.org/10.1006/mssp.2001.1416. https://www.sciencedirect.com/science/article/pii/S0888327001914165

  23. Yu, G., Lin, T., Wang, Z., Li, Y.: Time-reassigned multisynchrosqueezing transform for bearing fault diagnosis of rotating machinery. IEEE Trans. Ind. Electron. 68(2), 1486–1496 (2021). https://doi.org/10.1109/TIE.2020.2970571

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arild Bergesen Husebø .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Husebø, A.B., Van Khang, H., Robbersmyr, K.G., Klausen, A. (2022). Classification of Mechanical Fault-Excited Events Based on Frequency. In: Sanfilippo, F., Granmo, OC., Yayilgan, S.Y., Bajwa, I.S. (eds) Intelligent Technologies and Applications. INTAP 2021. Communications in Computer and Information Science, vol 1616. Springer, Cham. https://doi.org/10.1007/978-3-031-10525-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10525-8_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10524-1

  • Online ISBN: 978-3-031-10525-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics