Skip to main content

Pediatric Cardiovascular Physiology

  • Chapter
  • First Online:
Congenital Heart Disease in Pediatric and Adult Patients

Abstract

Cardiac physiology is the underlying mechanism of the cardiovascular system which works in a beat-to-beat manner, especially in patients with congenital heart diseases. This field has improved significantly as a result of the developments in cellular and molecular medicine. In this chapter, after an introductory discussion about the evolutional transition in cardiac physiology from fetal to neonatal, childhood, and adulthood, the myocardial function has been presented with its three main ingredients: electrical function of the myocardium, excitation-contraction coupling, and mechanical function of the myocardium. Control mechanisms of cardiac function including receptors, signals, and neurohormonal pathways are among the most important controlling mechanisms in the human body which are described afterward.

Developmental changes in fetal cardiac muscle are mandatory for anyone who wants to work with patients having congenital heart disease; a full discussion could be reached in the previous chapter of the book.

Cardiac work includes the normal sequences in the cardiac cycle, the Frank-Starling relationship, and the factors involved in cardiac work which are described next.

And finally, the cardiac reflexes are described which are another main controller of cardiovascular physiologic response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ababneh AA, Sciacca RR, Kim B, Bergmann SR. Normal limits for left ventricular ejection fraction and volumes estimated with gated myocardial perfusion imaging in patients with normal exercise test results: influence of tracer, gender, and acquisition camera. J Nucl Cardiol. 2000;7:661–8.

    CAS  Google Scholar 

  • Ahmad S, Ahmad A, Hendry-Hofer TB, Loader JE, Claycomb WC, Mozziconacci O, Schoneich C, Reisdorph N, Powell RL, Chandler JD, Day BJ, Veress LA, White CW. Sarcoendoplasmic reticulum Ca(2+) ATPase. A critical target in chlorine inhalation-induced cardiotoxicity. Am J Respir Cell Mol Biol. 2015;52:492–502.

    CAS  Google Scholar 

  • Ait-Mou Y, Hsu K, Farman GP, Kumar M, Greaser ML, Irving TC, de Tombe PP. Titin strain contributes to the Frank-Starling law of the heart by structural rearrangements of both thin- and thick-filament proteins. Proc Natl Acad Sci U S A. 2016;113(8):2306–11.

    CAS  Google Scholar 

  • Amanfu RK, Saucerman JJ. Cardiac models in drug discovery and development: a review. Crit Rev Biomed Eng. 2011;39:379–95.

    Google Scholar 

  • Anderson BR, Granzier HL. Titin-based tension in the cardiac sarcomere: molecular origin and physiological adaptations. Prog Biophys Mol Biol. 2012;110:204–17.

    CAS  Google Scholar 

  • Arasho B, Sandu N, Spiriev T, Prabhakar H, Schaller B. Management of the trigeminocardiac reflex: facts and own experience. Neurol India. 2009;57:375–80.

    Google Scholar 

  • Aronson D, Krum H. Novel therapies in acute and chronic heart failure. Pharmacol Ther. 2012;135:1–17.

    CAS  Google Scholar 

  • Asghari P, Scriven DR, Sanatani S, Gandhi SK, Campbell AI, Moore ED. Nonuniform and variable arrangements of ryanodine receptors within mammalian ventricular couplons. Circ Res. 2014;115:252–62.

    CAS  Google Scholar 

  • Asp ML, Martindale JJ, Heinis FI, Wang W, Metzger JM. Calcium mishandling in diastolic dysfunction: mechanisms and potential therapies. Biochim Biophys Acta. 2013;1833:895–900.

    CAS  Google Scholar 

  • Atkinson A, Inada S, Li J, Tellez JO, Yanni J, Sleiman R, Allah EA, Anderson RH, Zhang H, Boyett MR, Dobrzynski H. Anatomical and molecular mapping of the left and right ventricular His-Purkinje conduction networks. J Mol Cell Cardiol. 2011;51:689–701.

    CAS  Google Scholar 

  • Ayling J. Managing head injuries. Emerg Med Serv. 2002;31:42.

    Google Scholar 

  • Azhibekov T, Noori S, Soleymani S, Seri I. Transitional cardiovascular physiology and comprehensive hemodynamic monitoring in the neonate: relevance to research and clinical care. Semin Fetal Neonatal Med. 2014;19:45–53.

    Google Scholar 

  • Aziz Q, Li Y, Tinker A. Potassium channels in the sinoatrial node and their role in heart rate control. Channels. 2018;12:356–66.

    Google Scholar 

  • Bai F, Wang L, Kawai M. A study of tropomyosin’s role in cardiac function and disease using thin-filament reconstituted myocardium. J Muscle Res Cell Motil. 2013;34:295–310.

    Google Scholar 

  • Baik N, Urlesberger B, Schwaberger B, Freidl T, Schmolzer GM, Pichler G. Cardiocirculatory monitoring during immediate fetal-to-neonatal transition: a systematic qualitative review of the literature. Neonatology. 2015;107:100–7.

    Google Scholar 

  • Barbieri R, Triedman JK, Saul JP. Heart rate control and mechanical cardiopulmonary coupling to assess central volume: a systems analysis. Am J Physiol Regul Integr Comp Physiol. 2002;283:R1210–20.

    Google Scholar 

  • Bartosh SM, Aronson AJ. Childhood hypertension. An update on etiology, diagnosis, and treatment. Pediatr Clin North Am. 1999;46:235–52.

    CAS  Google Scholar 

  • Bassareo PP, Mercuro G. Pediatric hypertension: an update on a burning problem. World J Cardiol. 2014;6:253–9.

    Google Scholar 

  • Bentley RET, Hindmarch CCT, Dunham-Snary KJ, Snetsinger B, Mewburn JD, Thébaud A, Lima PDA, Thébaud B, Archer SL. The molecular mechanisms of oxygen-sensing in human ductus arteriosus smooth muscle cells: a comprehensive transcriptome profile reveals a central role for mitochondria. Genomics. 2021;113:3128–40.

    CAS  Google Scholar 

  • Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415:198–205.

    CAS  Google Scholar 

  • Bhargava D, Thomas S, Chakravorty N, Dutt A. Trigeminocardiac reflex: a reappraisal with relevance to maxillofacial surgery. J Maxillofac Oral Surg. 2014;13:373–7.

    Google Scholar 

  • Bhupathy P, Babu GJ, Periasamy M. Sarcolipin and phospholamban as regulators of cardiac sarcoplasmic reticulum Ca2+ ATPase. J Mol Cell Cardiol. 2007;42:903–11.

    CAS  Google Scholar 

  • Blumenthal S, Epps RP, Heavenrich R, Lauer RM, Lieberman E, Mirkin B, Mitchell SC, Boyar Naito V, O'Hare D, McFate Smith W, Tarazi RC, Upson D. Report of the task force on blood pressure control in children. Pediatrics. 1977;59:I–II, 797–820.

    CAS  Google Scholar 

  • Boettcher DH, Zimpfer M, Vatner SF. Phylogenesis of the Bainbridge reflex. Am J Physiol. 1982;242:R244–6.

    CAS  Google Scholar 

  • Bollensdorff C, Lookin O, Kohl P. Assessment of contractility in intact ventricular cardiomyocytes using the dimensionless ‘Frank-Starling Gain’ index. Pflugers Arch. 2011;462:39–48.

    CAS  Google Scholar 

  • Bonafide CP, Brady PW, Keren R, Conway PH, Marsolo K, Daymont C. Development of heart and respiratory rate percentile curves for hospitalized children. Pediatrics. 2013;131:e1150–7.

    Google Scholar 

  • Brunet S, Emrick MA, Sadilek M, Scheuer T, Catterall WA. Phosphorylation sites in the Hook domain of CaVbeta subunits differentially modulate CaV1.2 channel function. J Mol Cell Cardiol. 2015;87:248–56.

    CAS  Google Scholar 

  • Brzezinski WA. Blood pressure. In: Walker HK, Hall WD, Hurst JW, editors. Clinical methods: the history, physical, and laboratory examinations. Boston: Butterworths, a division of Reed Publishing; 1990.

    Google Scholar 

  • Campagna JA, Carter C. Clinical relevance of the Bezold-Jarisch reflex. Anesthesiology. 2003;98:1250–60.

    Google Scholar 

  • Campanucci VA, Dookhoo L, Vollmer C, Nurse CA. Modulation of the carotid body sensory discharge by NO: an up-dated hypothesis. Respir Physiol Neurobiol. 2012;184:149–57.

    CAS  Google Scholar 

  • Campbell KS. Impact of myocyte strain on cardiac myofilament activation. Pflugers Arch. 2011;462:3–14.

    CAS  Google Scholar 

  • Carlsson M, Andersson R, Bloch KM, Steding-Ehrenborg K, Mosen H, Stahlberg F, Ekmehag B, Arheden H. Cardiac output and cardiac index measured with cardiovascular magnetic resonance in healthy subjects, elite athletes and patients with congestive heart failure. J Cardiovasc Magn Reson. 2012;14:51.

    Google Scholar 

  • Chandler CM, McDougal OM. Medicinal history of North American. Phytochem Rev. 2014;13:671–94.

    CAS  Google Scholar 

  • Chang AN, Parvatiyar MS, Potter JD. Troponin and cardiomyopathy. Biochem Biophys Res Commun. 2008;369:74–81.

    CAS  Google Scholar 

  • Chatterjee K. Pathophysiology of systolic and diastolic heart failure. Med Clin North Am. 2012;96:891–9.

    CAS  Google Scholar 

  • Chemla D, Coirault C, Hebert JL, Lecarpentier Y. Mechanics of relaxation of the human heart. News Physiol Sci. 2000;15:78–83.

    Google Scholar 

  • Chen F, Wetzel GT, Friedman WF, Klitzner TS. Single-channel recording of inwardly rectifying potassium currents in developing myocardium. J Mol Cell Cardiol. 1991;23:259–67.

    CAS  Google Scholar 

  • Cingolani HE, Perez NG, Cingolani OH, Ennis IL. The Anrep effect: 100 years later. Am J Physiol Heart Circ Physiol. 2013;304:H175–82.

    CAS  Google Scholar 

  • Cleland JG, Teerlink JR, Senior R, Nifontov EM, Mc Murray JJ, Lang CC, Tsyrlin VA, Greenberg BH, Mayet J, Francis DP, Shaburishvili T, Monaghan M, Saltzberg M, Neyses L, Wasserman SM, Lee JH, Saikali KG, Clarke CP, Goldman JH, Wolff AA, Malik FI. The effects of the cardiac myosin activator, omecamtiv mecarbil, on cardiac function in systolic heart failure: a double-blind, placebo-controlled, crossover, dose-ranging phase 2 trial. Lancet. 2011;378:676–83.

    CAS  Google Scholar 

  • Coronel R, Janse MJ, Opthof T, Wilde AA, Taggart P. Postrepolarization refractoriness in acute ischemia and after antiarrhythmic drug administration: action potential duration is not always an index of the refractory period. Heart Rhythm. 2012;9:977–82.

    Google Scholar 

  • Craig R, Lee KH, Mun JY, Torre I, Luther PK. Structure, sarcomeric organization, and thin filament binding of cardiac myosin-binding protein-C. Pflugers Arch. 2014;466:425–31.

    CAS  Google Scholar 

  • Crystal GJ, Salem MR. The Bainbridge and the “reverse” Bainbridge reflexes: history, physiology, and clinical relevance. Anesth Analg. 2012;114:520–32.

    CAS  Google Scholar 

  • Cui J, Gao Z, Blaha C, Herr MD, Mast J, Sinoway LI. Distension of central great vein decreases sympathetic outflow in humans. Am J Physiol Heart Circ Physiol. 2013;305:H378–85.

    CAS  Google Scholar 

  • De Castro F. The discovery of sensory nature of the carotid bodies—invited article. Adv Exp Med Biol. 2009;648:1–18.

    Google Scholar 

  • de Tombe PP, Ter Keurs HE. Cardiac muscle mechanics: Sarcomere length matters. J Mol Cell Cardiol. 2015;91:148–50.

    Google Scholar 

  • Desplantez T, Dupont E, Severs NJ, Weingart R. Gap junction channels and cardiac impulse propagation. J Membr Biol. 2007;218:13–28.

    CAS  Google Scholar 

  • Dickinson CJ. Reappraisal of the Cushing reflex: the most powerful neural blood pressure stabilizing system. Clin Sci. 1990;79:543–50.

    CAS  Google Scholar 

  • DiFrancesco D, Noble D. The funny current has a major pacemaking role in the sinus node. Heart Rhythm. 2012;9:299–301.

    Google Scholar 

  • Dinallo S, Waseem M. Cushing reflex. In: StatPearls. Treasure Island, FL: StatPearls; 2021.

    Google Scholar 

  • Ding Y, Li YL, Schultz HD. Role of blood flow in carotid body chemoreflex function in heart failure. J Physiol. 2011;589:245–58.

    CAS  Google Scholar 

  • Dionne JM, Abitbol CL, Flynn JT. Hypertension in infancy: diagnosis, management and outcome. Pediatr Nephrol. 2012;27:17–32.

    Google Scholar 

  • Duley L, Batey N. Optimal timing of umbilical cord clamping for term and preterm babies. Early Hum Dev. 2013;89:4.

    Google Scholar 

  • Dun W, Boyden PA. The Purkinje cell; 2008 style. J Mol Cell Cardiol. 2008;45:617–24.

    CAS  Google Scholar 

  • Dunville LM, Sood G, Kramer J. Oculocardiac reflex. In: StatPearls. Treasure Island, FL: StatPearls; 2021.

    Google Scholar 

  • Dyer LA, Rugonyi S. Fetal blood flow and genetic mutations in conotruncal congenital heart disease. J Cardiovasc Dev Dis. 2021;8:90.

    CAS  Google Scholar 

  • Espinoza-Fonseca LM, Autry JM, Ramirez-Salinas GL, Thomas DD. Atomic-level mechanisms for phospholamban regulation of the calcium pump. Biophys J. 2015;108:1697–708.

    CAS  Google Scholar 

  • Estanol B, Porras-Betancourt M, Padilla-Leyva MA, Senties-Madrid H. A brief history of the baroreceptor reflex: from Claude Bernard to Arthur C. Guyton. Illustrated with some classical experiments. Arch Cardiol Mex. 2011;81:330–6.

    Google Scholar 

  • Fabiato A. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol. 1983;245:C1–C14.

    CAS  Google Scholar 

  • Fabiato A, Fabiato F. Calcium release from the sarcoplasmic reticulum. Circ Res. 1977;40:119–29.

    CAS  Google Scholar 

  • Fabiato A, Fabiato F. Calcium-induced release of calcium from the sarcoplasmic reticulum of skinned cells from adult human, dog, cat, rabbit, rat, and frog hearts and from fetal and new-born rat ventricles. Ann N Y Acad Sci. 1978;307:491–522.

    CAS  Google Scholar 

  • Feld LG, Springate JE. Hypertension in children. Curr Probl Pediatr. 1988;18:317–73.

    CAS  Google Scholar 

  • Fodstad H, Kelly PJ, Buchfelder M. History of the cushing reflex. Neurosurgery. 2006;59:1132–7; discussion 1137.

    Google Scholar 

  • Frank JS, Mottino G, Chen F, Peri V, Holland P, Tuana BS. Subcellular distribution of dystrophin in isolated adult and neonatal cardiac myocytes. Am J Physiol. 1994;267:C1707–16.

    CAS  Google Scholar 

  • Frank KF, Bolck B, Erdmann E, Schwinger RH. Sarcoplasmic reticulum Ca2+-ATPase modulates cardiac contraction and relaxation. Cardiovasc Res. 2003;57:20–7.

    CAS  Google Scholar 

  • Fuchs F, Smith SH. Calcium, cross-bridges, and the Frank-Starling relationship. News Physiol Sci. 2001;16:5–10.

    CAS  Google Scholar 

  • Galinsky R, Hooper SB, Wallace MJ, Westover AJ, Black MJ, Moss TJ, Polglase GR. Intrauterine inflammation alters cardiopulmonary and cerebral haemodynamics at birth in preterm lambs. J Physiol. 2013;591:2127–37.

    CAS  Google Scholar 

  • Gao Y, Raj JU. Regulation of the pulmonary circulation in the fetus and newborn. Physiol Rev. 2010;90:1291–335.

    CAS  Google Scholar 

  • Garg V, Frishman WH. A new approach to inotropic therapy in the treatment of heart failure: cardiac myosin activators in treatment of HF. Cardiol Rev. 2013;21:155–9.

    Google Scholar 

  • George M, Rajaram M, Shanmugam E, VijayaKumar TM. Novel drug targets in clinical development for heart failure. Eur J Clin Pharmacol. 2014;70:765–74.

    CAS  Google Scholar 

  • Germano G, Kiat H, Kavanagh PB, Moriel M, Mazzanti M, Su HT, Van Train KF, Berman DS. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med. 1995;36:2138–47.

    CAS  Google Scholar 

  • Gibson DG, Francis DP. Clinical assessment of left ventricular diastolic function. Heart. 2003;89:231–8.

    Google Scholar 

  • Goldhaber JI, Philipson KD. Cardiac sodium-calcium exchange and efficient excitation-contraction coupling: implications for heart disease. Adv Exp Med Biol. 2013;961:355–64.

    CAS  Google Scholar 

  • Gordan R, Gwathmey JK, Xie LH. Autonomic and endocrine control of cardiovascular function. World J Cardiol. 2015;7:204–14.

    Google Scholar 

  • Grady PA, Blaumanis OR. Physiologic parameters of the Cushing reflex. Surg Neurol. 1988;29:454–61.

    CAS  Google Scholar 

  • Gustafsson AB, Gottlieb RA. Autophagy in ischemic heart disease. Circ Res. 2009;104:150–8.

    CAS  Google Scholar 

  • Hajdu MA, Cornish KG, Tan W, Panzenbeck MJ, Zucker IH. The interaction of the Bainbridge and Bezold-Jarisch reflexes in the conscious dog. Basic Res Cardiol. 1991;86:175–85.

    CAS  Google Scholar 

  • Hakumaki MO. Seventy years of the Bainbridge reflex. Acta Physiol Scand. 1987;130:177–85.

    CAS  Google Scholar 

  • Hamdani N, Franssen C, Lourenco A, Falcao-Pires I, Fontoura D, Leite S, Plettig L, Lopez B, Ottenheijm CA, Becher PM, Gonzalez A, Tschope C, Diez J, Linke WA, Leite-Moreira AF, Paulus WJ. Myocardial titin hypophosphorylation importantly contributes to heart failure with preserved ejection fraction in a rat metabolic risk model. Circ Heart Fail. 2013a;6:1239–49.

    CAS  Google Scholar 

  • Hamdani N, Krysiak J, Kreusser MM, Neef S, Dos Remedios CG, Maier LS, Kruger M, Backs J, Linke WA. Crucial role for Ca2(+)/calmodulin-dependent protein kinase-II in regulating diastolic stress of normal and failing hearts via titin phosphorylation. Circ Res. 2013b;112:664–74.

    CAS  Google Scholar 

  • Hennis K, Rötzer RD, Piantoni C, Biel M, Wahl-Schott C, Fenske S. Speeding up the heart? traditional and new perspectives on HCN4 function. Front Physiol. 2021;12:669029.

    Google Scholar 

  • Heys M, Lin SL, Lam TH, Leung GM, Schooling CM. Lifetime growth and blood pressure in adolescence: Hong Kong’s “Children of 1997” birth cohort. Pediatrics. 2013;131:e62–72.

    Google Scholar 

  • Hidalgo CG, Chung CS, Saripalli C, Methawasin M, Hutchinson KR, Tsaprailis G, Labeit S, Mattiazzi A, Granzier HL. The multifunctional Ca(2+)/calmodulin-dependent protein kinase II delta (CaMKIIdelta) phosphorylates cardiac titin’s spring elements. J Mol Cell Cardiol. 2013;54:90–7.

    CAS  Google Scholar 

  • Hines MH. Neonatal cardiovascular physiology. Semin Pediatr Surg. 2013;22:174–8.

    Google Scholar 

  • Hitchcock-DeGregori SE. Tropomyosin: function follows structure. Adv Exp Med Biol. 2008;644:60–72.

    CAS  Google Scholar 

  • Hoekstra M, van Ginneken ACG, Wilders R, Verkerk AO. HCN4 current during human sinoatrial node-like action potentials. Prog Biophys Mol Biol. 2021;166:105–18.

    CAS  Google Scholar 

  • Horan MJ, Sinaiko AR. Synopsis of the report of the second task force on blood pressure control in children. Hypertension. 1987;10:115–21.

    CAS  Google Scholar 

  • Ingelfinger JR. Clinical practice. The child or adolescent with elevated blood pressure. N Engl J Med. 2014;370:2316–25.

    Google Scholar 

  • Iwase S, Nishimura N, Mano T. Role of sympathetic nerve activity in the process of fainting. Front Physiol. 2014;5:343.

    Google Scholar 

  • Jagatheesan G, Rajan S, Wieczorek DF. Investigations into tropomyosin function using mouse models. J Mol Cell Cardiol. 2010;48:893–8.

    CAS  Google Scholar 

  • Jeon YK, Youm JB, Ha K, Woo J, Yoo HY, Leem CH, Lee SH, Kim SJ. Teaching cardiac excitation-contraction coupling using a mathematical computer simulation model of human ventricular myocytes. Adv Physiol Educ. 2020;44:323–33.

    Google Scholar 

  • Joukar S. A comparative review on heart ion channels, action potentials and electrocardiogram in rodents and human: extrapolation of experimental insights to clinic. Lab Anim Res. 2021;37:25.

    Google Scholar 

  • Kalyva A, Parthenakis FI, Marketou ME, Kontaraki JE, Vardas PE. Biochemical characterisation of Troponin C mutations causing hypertrophic and dilated cardiomyopathies. J Muscle Res Cell Motil. 2014;35:161–78.

    CAS  Google Scholar 

  • Kara T, Narkiewicz K, Somers VK. Chemoreflexes—physiology and clinical implications. Acta Physiol Scand. 2003;177:377–84.

    CAS  Google Scholar 

  • Kashihara K. Roles of arterial baroreceptor reflex during bezold-jarisch reflex. Curr Cardiol Rev. 2009;5:263–7.

    Google Scholar 

  • Kashihara K, Kawada T, Li M, Sugimachi M, Sunagawa K. Bezold-Jarisch reflex blunts arterial baroreflex via the shift of neural arc toward lower sympathetic nerve activity. Jpn J Physiol. 2004;54:395–404.

    CAS  Google Scholar 

  • Katheria A, Leone T. Altered transitional circulation in infants of diabetic mothers with strict antenatal obstetric management: a functional echocardiography study. J Perinatol. 2012;32:508–13.

    CAS  Google Scholar 

  • Kawamura Y, Ishiwata T, Takizawa M, Ishida H, Asano Y, Nonoyama S. Fetal and neonatal development of Ca2+ transients and functional sarcoplasmic reticulum in beating mouse hearts. Circ J. 2010;74:1442–50.

    CAS  Google Scholar 

  • Kawase Y, Hajjar RJ. The cardiac sarcoplasmic/endoplasmic reticulum calcium ATPase: a potent target for cardiovascular diseases. Nat Clin Pract Cardiovasc Med. 2008;5:554–65.

    CAS  Google Scholar 

  • Kekenes-Huskey PM, Lindert S, McCammon JA. Molecular basis of calcium-sensitizing and desensitizing mutations of the human cardiac troponin C regulatory domain: a multi-scale simulation study. PLoS Comput Biol. 2012;8:e1002777.

    CAS  Google Scholar 

  • Kenigsberg BB, Barnett CF, Mai JC, Chang JJ. Neurogenic stunned myocardium in severe neurological injury. Curr Neurol Neurosci Rep. 2019;19:90.

    Google Scholar 

  • Kim MS, Monfredi O, Maltseva LA, Lakatta EG, Maltsev VA. β-Adrenergic stimulation synchronizes a broad spectrum of action potential firing rates of cardiac pacemaker cells toward a higher population average. Cell. 2021;10:2124.

    CAS  Google Scholar 

  • Kobayashi T, Jin L, de Tombe PP. Cardiac thin filament regulation. Pflugers Arch. 2008;457:37–46.

    CAS  Google Scholar 

  • Kobirumaki-Shimozawa F, Inoue T, Shintani SA, Oyama K, Terui T, Minamisawa S, Ishiwata S, Fukuda N. Cardiac thin filament regulation and the Frank-Starling mechanism. J Physiol Sci. 2014;64:221–32.

    Google Scholar 

  • Kotter S, Gout L, Von Frieling-Salewsky M, Muller AE, Helling S, Marcus K, Dos Remedios C, Linke WA, Kruger M. Differential changes in titin domain phosphorylation increase myofilament stiffness in failing human hearts. Cardiovasc Res. 2013;99:648–56.

    Google Scholar 

  • Kuster DW, Bawazeer AC, Zaremba R, Goebel M, Boontje NM, van der Velden J. Cardiac myosin binding protein C phosphorylation in cardiac disease. J Muscle Res Cell Motil. 2012;33:43–52.

    CAS  Google Scholar 

  • Lakatta EG, Maltsev VA, Vinogradova TM. A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart's pacemaker. Circ Res. 2010;106:659–73.

    CAS  Google Scholar 

  • LeWinter MM, Wu Y, Labeit S, Granzier H. Cardiac titin: structure, functions and role in disease. Clin Chim Acta. 2007;375:1–9.

    CAS  Google Scholar 

  • Leyssens K, Mortelmans T, Menovsky T, Abramowicz D, Twickler MTB, Van Gaal L. The Cushing reflex: oliguria as a reflection of an elevated intracranial pressure. Case Rep Nephrol. 2017;2017:2582509.

    CAS  Google Scholar 

  • Li N, Artiga E, Kalyanasundaram A, Hansen BJ, Webb A, Pietrzak M, Biesiadecki B, Whitson B, Mokadam NA, Janssen PML, Hummel JD, Mohler PJ, Dobrzynski H, Fedorov VV. Altered microRNA and mRNA profiles during heart failure in the human sinoatrial node. Sci Rep. 2021;11:19328.

    CAS  Google Scholar 

  • Lomsky M, Johansson L, Gjertsson P, Bjork J, Edenbrandt L. Normal limits for left ventricular ejection fraction and volumes determined by gated single photon emission computed tomography—a comparison between two quantification methods. Clin Physiol Funct Imaging. 2008;28:169–73.

    Google Scholar 

  • Lopez-Barneo J, Ortega-Saenz P, Gonzalez-Rodriguez P, Fernandez-Aguera MC, Macias D, Pardal R, Gao L. Oxygen-sensing by arterial chemoreceptors: mechanisms and medical translation. Mol Aspects Med. 2016;47–48:90–108.

    Google Scholar 

  • Mackrill JJ, Shiels HA. Evolution of excitation-contraction coupling. Adv Exp Med Biol. 2020;1131:281–320.

    CAS  Google Scholar 

  • Mahadevan G, Davis RC, Frenneaux MP, Hobbs FD, Lip GY, Sanderson JE, Davies MK. Left ventricular ejection fraction: are the revised cut-off points for defining systolic dysfunction sufficiently evidence based? Heart. 2008;94:426–8.

    CAS  Google Scholar 

  • Mahony L. Calcium homeostasis and control of contractility in the developing heart. Semin Perinatol. 1996;20:510–9.

    CAS  Google Scholar 

  • Maier LS, Wahl-Schott C, Horn W, Weichert S, Pagel C, Wagner S, Dybkova N, Muller OJ, Nabauer M, Franz WM, Pieske B. Increased SR Ca2+ cycling contributes to improved contractile performance in SERCA2a-overexpressing transgenic rats. Cardiovasc Res. 2005;67:636–46.

    CAS  Google Scholar 

  • Malik FI, Morgan BP. Cardiac myosin activation part 1: from concept to clinic. J Mol Cell Cardiol. 2011;51:454–61.

    CAS  Google Scholar 

  • Maltsev VA, Lakatta EG. Cardiac pacemaker cell failure with preserved I(f), I(CaL), and I(Kr): a lesson about pacemaker function learned from ischemia-induced bradycardia. J Mol Cell Cardiol. 2007;42:289–94.

    CAS  Google Scholar 

  • Maltsev VA, Lakatta EG. The funny current in the context of the coupled-clock pacemaker cell system. Heart Rhythm. 2012;9:302–7.

    Google Scholar 

  • Maltsev VA, Vinogradova TM, Lakatta EG. The emergence of a general theory of the initiation and strength of the heartbeat. J Pharmacol Sci. 2006;100:338–69.

    CAS  Google Scholar 

  • Maltsev VA, Yaniv Y, Maltsev AV, Stern MD, Lakatta EG. Modern perspectives on numerical modeling of cardiac pacemaker cell. J Pharmacol Sci. 2014;125:6–38.

    CAS  Google Scholar 

  • Mangoni ME, Nargeot J. Genesis and regulation of the heart automaticity. Physiol Rev. 2008;88:919–82.

    CAS  Google Scholar 

  • Marcotti W, Johnson SL, Kros CJ. A transiently expressed SK current sustains and modulates action potential activity in immature mouse inner hair cells. J Physiol. 2004;560:691–708.

    CAS  Google Scholar 

  • Marionneau C, Abriel H. Regulation of the cardiac Na channel Na1.5 by post-translational modifications. J Mol Cell Cardiol. 2015;82:36–47.

    CAS  Google Scholar 

  • Markwalder J, Starling EH. On the constancy of the systolic output under varying conditions. J Physiol. 1914;48:348–56.

    CAS  Google Scholar 

  • Marston SB, Redwood CS. Modulation of thin filament activation by breakdown or isoform switching of thin filament proteins: physiological and pathological implications. Circ Res. 2003;93:1170–8.

    CAS  Google Scholar 

  • McDonald SJ, Middleton P, Dowswell T, Morris PS. Effect of timing of umbilical cord clamping of term infants on maternal and neonatal outcomes. Cochrane Database Syst Rev. 2013;7:CD004074.

    Google Scholar 

  • McLain LG. Hypertension in childhood: a review. Am Heart J. 1976;92:634–47.

    CAS  Google Scholar 

  • McNally EM, Barefield DY, Puckelwartz MJ. The genetic landscape of cardiomyopathy and its role in heart failure. Cell Metab. 2015;21:174–82.

    CAS  Google Scholar 

  • Mesirca P, Torrente AG, Mangoni ME. T-type channels in the sino-atrial and atrioventricular pacemaker mechanism. Pflugers Arch. 2014;466:791–9.

    CAS  Google Scholar 

  • Mesirca P, Torrente AG, Mangoni ME. Functional role of voltage gated Ca(2+) channels in heart automaticity. Front Physiol. 2015;6:19.

    Google Scholar 

  • Meuwly C, Golanov E, Chowdhury T, Erne P, Schaller B. Trigeminal cardiac reflex: new thinking model about the definition based on a literature review. Medicine. 2015;94:e484.

    CAS  Google Scholar 

  • Meyrelles SS, Bernardes CF, Modolo RP, Mill JG, Vasquez EC. Bezold-Jarisch reflex in myocardial infarcted rats. J Auton Nerv Syst. 1997;63:144–52.

    CAS  Google Scholar 

  • Mikawa T, Hurtado R. Development of the cardiac conduction system. Semin Cell Dev Biol. 2007;18:90–100.

    CAS  Google Scholar 

  • Mitchell JR, Wang JJ. Expanding application of the Wiggers diagram to teach cardiovascular physiology. Adv Physiol Educ. 2014;38:170–5.

    Google Scholar 

  • Molnar C, Nemes C, Szabo S, Fulesdi B. Harvey Cushing, a pioneer of neuroanesthesia. J Anesth. 2008;22:483–6.

    Google Scholar 

  • Motloch LJ, Larbig R, Gebing T, Reda S, Schwaiger A, Leitner J, Wolny M, Eckardt L, Hoppe UC. By Regulating Mitochondrial Ca2+-Uptake UCP2 Modulates Intracellular Ca2. PLoS One. 2016;11:e0148359.

    Google Scholar 

  • Myslivecek J, Trojan S. Regulation of adrenoceptors and muscarinic receptors in the heart. Gen Physiol Biophys. 2003;22:3–14.

    CAS  Google Scholar 

  • Nagappan R, Arora S, Winter C. Potential dangers of the Valsalva maneuver and adenosine in paroxysmal supraventricular tachycardia—beware preexcitation. Crit Care Resusc. 2002;4:107–11.

    CAS  Google Scholar 

  • Nakanishi T, Seguchi M, Takao A. Development of the myocardial contractile system. Experientia. 1988;44:936–44.

    CAS  Google Scholar 

  • National High Blood Pressure Education Program Working Group. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;114:555–76.

    Google Scholar 

  • Neves JS, Leite-Moreira AM, Neiva-Sousa M, Almeida-Coelho J, Castro-Ferreira R, Leite-Moreira AF. Acute myocardial response to stretch: what we (don’t) know. Front Physiol. 2015;6:408.

    Google Scholar 

  • Nevzorov IA, Levitsky DI. Tropomyosin: double helix from the protein world. Biochemistry (Mosc). 2011;76:1507–27.

    CAS  Google Scholar 

  • Nishikawa KC, Monroy JA, Uyeno TE, Yeo SH, Pai DK, Lindstedt SL. Is titin a ‘winding filament’? A new twist on muscle contraction. Proc Biol Sci. 2012;279:981–90.

    CAS  Google Scholar 

  • Noori S, Wlodaver A, Gottipati V, McCoy M, Schultz D, Escobedo M. Transitional changes in cardiac and cerebral hemodynamics in term neonates at birth. J Pediatr. 2012;160:943–8.

    Google Scholar 

  • Oh IY, Cha MJ, Lee TH, Seo JW, Oh S. Unsolved questions on the anatomy of the ventricular conduction system. Korean Circ J. 2018;48:1081–96.

    Google Scholar 

  • Ohtsuki I, Morimoto S. Troponin: regulatory function and disorders. Biochem Biophys Res Commun. 2008;369:62–73.

    CAS  Google Scholar 

  • Ono K, Iijima T. Cardiac T-type Ca(2+) channels in the heart. J Mol Cell Cardiol. 2010;48:65–70.

    CAS  Google Scholar 

  • Papaioannou VE, Verkerk AO, Amin AS, de Bakker JM. Intracardiac origin of heart rate variability, pacemaker funny current and their possible association with critical illness. Curr Cardiol Rev. 2013;9:82–96.

    Google Scholar 

  • Parham WA, Mehdirad AA, Biermann KM, Fredman CS. Hyperkalemia revisited. Tex Heart Inst J. 2006;33:40–7.

    Google Scholar 

  • Park WK, Kim MH, Ahn DS, Chae JE, Jee YS, Chung N, Lynch C 3rd. Myocardial depressant effects of desflurane: mechanical and electrophysiologic actions in vitro. Anesthesiology. 2007;106:956–66.

    CAS  Google Scholar 

  • Patterson SW, Piper H, Starling EH. The regulation of the heart beat. J Physiol. 1914;48:465–513.

    CAS  Google Scholar 

  • Pavlovic M, Schaller A, Pfammatter JP, Carrel T, Berdat P, Gallati S. Age-dependent suppression of SERCA2a mRNA in pediatric atrial myocardium. Biochem Biophys Res Commun. 2005;326:344–8.

    CAS  Google Scholar 

  • Periasamy M, Bhupathy P, Babu GJ. Regulation of sarcoplasmic reticulum Ca2+ ATPase pump expression and its relevance to cardiac muscle physiology and pathology. Cardiovasc Res. 2008;77:265–73.

    CAS  Google Scholar 

  • Pilowsky PM, Goodchild AK. Baroreceptor reflex pathways and neurotransmitters: 10 years on. J Hypertens. 2002;20:1675–88.

    CAS  Google Scholar 

  • Porth CJ, Bamrah VS, Tristani FE, Smith JJ. The Valsalva maneuver: mechanisms and clinical implications. Heart Lung. 1984;13:507–18.

    CAS  Google Scholar 

  • Prabhakar NR, Semenza GL. Regulation of carotid body oxygen sensing by hypoxia-inducible factors. Pflugers Arch. 2016;468:71–5.

    CAS  Google Scholar 

  • Prakash YS, Seckin I, Hunter LW, Sieck GC. Mechanisms underlying greater sensitivity of neonatal cardiac muscle to volatile anesthetics. Anesthesiology. 2002;96:893–906.

    CAS  Google Scholar 

  • Pyle WG, Solaro RJ. At the crossroads of myocardial signaling: the role of Z-discs in intracellular signaling and cardiac function. Circ Res. 2004;94:296–305.

    CAS  Google Scholar 

  • Qu Y, Karnabi E, Ramadan O, Yue Y, Chahine M, Boutjdir M. Perinatal and postnatal expression of Cav1.3 alpha1D Ca(2)(+) channel in the rat heart. Pediatr Res. 2011;69:479–84.

    CAS  Google Scholar 

  • Quinn TA, Kohl P, Ravens U. Cardiac mechano-electric coupling research: fifty years of progress and scientific innovation. Prog Biophys Mol Biol. 2014;115:71–5.

    Google Scholar 

  • Rabe H, Diaz-Rossello JL, Duley L, Dowswell T. Effect of timing of umbilical cord clamping and other strategies to influence placental transfusion at preterm birth on maternal and infant outcomes. Cochrane Database Syst Rev. 2012;8:CD003248.

    Google Scholar 

  • Rabi Y, Yee W, Chen SY, Singhal N. Oxygen saturation trends immediately after birth. J Pediatr. 2006;148:590–4.

    Google Scholar 

  • Racca AW, Klaiman JM, Pioner JM, Cheng Y, Beck AE, Moussavi-Harami F, Bamshad MJ, Regnier M. Contractile properties of developing human fetal cardiac muscle. J Physiol. 2016;594:437–52.

    CAS  Google Scholar 

  • Rain S, Bos Dda S, Handoko ML, Westerhof N, Stienen G, Ottenheijm C, Goebel M, Dorfmuller P, Guignabert C, Humbert M, Bogaard HJ, Remedios CD, Saripalli C, Hidalgo CG, Granzier HL, Vonk-Noordegraaf A, van der Velden J, de Man FS. Protein changes contributing to right ventricular cardiomyocyte diastolic dysfunction in pulmonary arterial hypertension. J Am Heart Assoc. 2014;3:e000716.

    Google Scholar 

  • Redwood C, Robinson P. Alpha-tropomyosin mutations in inherited cardiomyopathies. J Muscle Res Cell Motil. 2013;34:285–94.

    CAS  Google Scholar 

  • Ribaric S, Kordas M. Simulation of the Frank-Starling law of the heart. Comput Math Methods Med. 2012;2012:267834.

    Google Scholar 

  • Robbins MS, Robertson CE, Kaplan E, Ailani J, Lt C, Kuruvilla D, Blumenfeld A, Berliner R, Rosen NL, Duarte R, Vidwan J, Halker RB, Gill N, Ashkenazi A. The Sphenopalatine Ganglion: anatomy, pathophysiology, and therapeutic targeting in headache. Headache. 2015;56:240–58.

    Google Scholar 

  • Robertson D, Hollister AS, Forman MB, Robertson RM. Reflexes unique to myocardial ischemia and infarction. J Am Coll Cardiol. 1985;5:99B–104B.

    CAS  Google Scholar 

  • Rozanski A, Nichols K, Yao SS, Malholtra S, Cohen R, DePuey EG. Development and application of normal limits for left ventricular ejection fraction and volume measurements from 99mTc-sestamibi myocardial perfusion gates SPECT. J Nucl Med. 2000;41:1445–50.

    CAS  Google Scholar 

  • Sahli Costabal F, Hurtado DE, Kuhl E. Generating Purkinje networks in the human heart. J Biomech. 2016;49:2455–65.

    Google Scholar 

  • Salo LM, Woods RL, Anderson CR, McAllen RM. Nonuniformity in the von Bezold-Jarisch reflex. Am J Physiol Regul Integr Comp Physiol. 2007;293:R714–20.

    CAS  Google Scholar 

  • Sasse S, Brand NJ, Kyprianou P, Dhoot GK, Wade R, Arai M, Periasamy M, Yacoub MH, Barton PJ. Troponin I gene expression during human cardiac development and in end-stage heart failure. Circ Res. 1993;72:932–8.

    CAS  Google Scholar 

  • Schultz HD. Angiotensin and carotid body chemoreception in heart failure. Curr Opin Pharmacol. 2011;11:144–9.

    CAS  Google Scholar 

  • Schultz HD, Li YL. Carotid body function in heart failure. Respir Physiol Neurobiol. 2007;157:171–85.

    CAS  Google Scholar 

  • Schultz HD, Marcus NJ. Heart failure and carotid body chemoreception. Adv Exp Med Biol. 2012;758:387–95.

    CAS  Google Scholar 

  • Schultz HD, Sun SY. Chemoreflex function in heart failure. Heart Fail Rev. 2000;5:45–56.

    CAS  Google Scholar 

  • Schultz HD, Del Rio R, Ding Y, Marcus NJ. Role of neurotransmitter gases in the control of the carotid body in heart failure. Respir Physiol Neurobiol. 2012;184:197–203.

    CAS  Google Scholar 

  • Schultz HD, Marcus NJ, Del Rio R. Role of the carotid body chemoreflex in the pathophysiology of heart failure: a perspective from animal studies. Adv Exp Med Biol. 2015;860:167–85.

    CAS  Google Scholar 

  • Schwan J, Campbell SG. Prospects for in vitro myofilament maturation in stem cell-derived cardiac myocytes. Biomarker Insight. 2015;10:91–103.

    CAS  Google Scholar 

  • Seckin I, Sieck GC, Prakash YS. Volatile anaesthetic effects on Na+-Ca2+ exchange in rat cardiac myocytes. J Physiol. 2001;532:91–104.

    CAS  Google Scholar 

  • Shah SP, Waxman S. Two cases of Bezold-Jarisch reflex induced by intra-arterial nitroglycerin in critical left main coronary artery stenosis. Tex Heart Inst J. 2013;40:484–6.

    Google Scholar 

  • Shah AB, Hashmi SS, Sahulee R, Pannu H, Gupta-Malhotra M. Characteristics of systemic hypertension in preterm children. J Clin Hypertens (Greenwich). 2015;17:364–70.

    Google Scholar 

  • Shareef MA, Anwer LA, Poizat C. Cardiac SERCA2A/B: therapeutic targets for heart failure. Eur J Pharmacol. 2014;724:1–8.

    CAS  Google Scholar 

  • Sharir T, Kang X, Germano G, Bax JJ, Shaw LJ, Gransar H, Cohen I, Hayes SW, Friedman JD, Berman DS. Prognostic value of poststress left ventricular volume and ejection fraction by gated myocardial perfusion SPECT in women and men: gender-related differences in normal limits and outcomes. J Nucl Cardiol. 2006;13:495–506.

    Google Scholar 

  • Sharma M, Rana U, Joshi C, Michalkiewicz T, Afolayan A, Parchur A, Joshi A, Teng RJ, Konduri GG. Decreased cyclic GMP-protein kinase G signaling impairs angiogenesis in a lamb model of persistent pulmonary hypertension of newborn. Am J Respir Cell Mol Biol. 2021;65:555–67.

    CAS  Google Scholar 

  • Sharpey-Schafer EP. Effects of Valsalva’s manoeuvre on the normal and failing circulation. Br Med J. 1955;1:693–5.

    CAS  Google Scholar 

  • Shi WY, Li S, Collins N, Cottee DB, Bastian BC, James AN, Mejia R. Peri-operative Levosimendan in patients undergoing cardiac surgery: an overview of the evidence. Heart Lung Circ. 2015;24:667–72.

    Google Scholar 

  • Shieh HHBE, Bousso A, Ventura AC, Troster EJ. Update of the pediatric hypotension graphic adjusted for gender and height percentiles: diastolic blood pressure for girls, 1 to 17 years old. Crit Care. 2013;17(Suppl 3):23.

    Google Scholar 

  • Smith G. Management of supraventricular tachycardia using the Valsalva manoeuvre: a historical review and summary of published evidence. Eur J Emerg Med. 2012;19:346–52.

    Google Scholar 

  • Sobie EA, Song LS, Lederer WJ. Restitution of Ca(2+) release and vulnerability to arrhythmias. J Cardiovasc Electrophysiol. 2006;17(Suppl 1):S64–70.

    Google Scholar 

  • Solaro RJ. Remote control of A-band cardiac thin filaments by the I-Z-I protein network of cardiac sarcomeres. Trends Cardiovasc Med. 2005;15:148–52.

    CAS  Google Scholar 

  • Solaro RJ. Mechanisms of the Frank-Starling law of the heart: the beat goes on. Biophys J. 2007;93:4095–6.

    CAS  Google Scholar 

  • Solaro RJ, Rosevear P, Kobayashi T. The unique functions of cardiac troponin I in the control of cardiac muscle contraction and relaxation. Biochem Biophys Res Commun. 2008;369:82–7.

    CAS  Google Scholar 

  • Solaro RJ, Henze M, Kobayashi T. Integration of troponin I phosphorylation with cardiac regulatory networks. Circ Res. 2013;112:355–66.

    CAS  Google Scholar 

  • Stehle R, Solzin J, Iorga B, Poggesi C. Insights into the kinetics of Ca2+-regulated contraction and relaxation from myofibril studies. Pflugers Arch. 2009;458:337–57.

    CAS  Google Scholar 

  • Tanaka Y, Nakamura K, Kuroiwa N, Odachi M, Mawatari K, Onimaru M, Sanada J, Arima T. Isovolumetric relaxation flow in patients with ischemic heart disease. J Am Coll Cardiol. 1993;21:1357–64.

    CAS  Google Scholar 

  • Teerlink JR, Metra M, Zaca V, Sabbah HN, Cotter G, Gheorghiade M, Cas LD. Agents with inotropic properties for the management of acute heart failure syndromes. Traditional agents and beyond. Heart Fail Rev. 2009;14:243–53.

    CAS  Google Scholar 

  • Teerlink JR, Clarke CP, Saikali KG, Lee JH, Chen MM, Escandon RD, Elliott L, Bee R, Habibzadeh MR, Goldman JH, Schiller NB, Malik FI, Wolff AA. Dose-dependent augmentation of cardiac systolic function with the selective cardiac myosin activator, omecamtiv mecarbil: a first-in-man study. Lancet. 2011;378:667–75.

    CAS  Google Scholar 

  • Thomas GD. Neural control of the circulation. Adv Physiol Educ. 2011;35:28–32.

    Google Scholar 

  • Trippodo NC, Coleman TG, Cowley AW Jr, Guyton AC. Angiotensin II antagonists in dehydrated rabbits without baroreceptor reflexes. Am J Physiol. 1977;232:H110–3.

    CAS  Google Scholar 

  • Tsai JC, Heitz JW. Oculocardiac reflex elicited during debridement of an empty orbit. J Clin Anesth. 2012;24:426–7.

    Google Scholar 

  • Tskhovrebova L, Trinick J. Roles of titin in the structure and elasticity of the sarcomere. J Biomed Biotechnol. 2010;2010:612482.

    Google Scholar 

  • van Vonderen JJ, Te Pas AB. The first breaths of life: imaging studies of the human infant during neonatal transition. Paediatr Respir Rev. 2015;16:143–6.

    Google Scholar 

  • van Vonderen JJ, Roest AA, Siew ML, Blom NA, van Lith JM, Walther FJ, Hooper SB, te Pas AB. Noninvasive measurements of hemodynamic transition directly after birth. Pediatr Res. 2014a;75:448–52.

    Google Scholar 

  • van Vonderen JJ, Roest AA, Siew ML, Walther FJ, Hooper SB, te Pas AB. Measuring physiological changes during the transition to life after birth. Neonatology. 2014b;105:230–42.

    Google Scholar 

  • Vasquez EC, Meyrelles SS, Mauad H, Cabral AM. Neural reflex regulation of arterial pressure in pathophysiological conditions: interplay among the baroreflex, the cardiopulmonary reflexes and the chemoreflex. Braz J Med Biol Res. 1997;30:521–32.

    CAS  Google Scholar 

  • Vatner SF, Zimpfer M. Bainbridge reflex in conscious, unrestrained, and tranquilized baboons. Am J Physiol. 1981;240:H164–7.

    CAS  Google Scholar 

  • Veenhuyzen GD, Simpson CS, Abdollah H. Atrial fibrillation. CMAJ. 2004;171:755–60.

    Google Scholar 

  • Vittorini S, Storti S, Parri MS, Cerillo AG, Clerico A. SERCA2a, phospholamban, sarcolipin, and ryanodine receptors gene expression in children with congenital heart defects. Mol Med. 2007;13:105–11.

    CAS  Google Scholar 

  • Vrancken SL, van Heijst AF, de Boode WP. Neonatal hemodynamics: from developmental physiology to comprehensive monitoring. Front Pediatr. 2018;6:87.

    Google Scholar 

  • Wan WH, Ang BT, Wang E. The Cushing response: a case for a review of its role as a physiological reflex. J Clin Neurosci. 2008;15:223–8.

    Google Scholar 

  • Wang Z, Yuan LJ, Cao TS, Yang Y, Duan YY, Xing CY. Simultaneous beat-by-beat investigation of the effects of the Valsalva maneuver on left and right ventricular filling and the possible mechanism. PLoS One. 2013;8:e53917.

    CAS  Google Scholar 

  • Weisbrod D, Peretz A, Ziskind A, Menaker N, Oz S, Barad L, Eliyahu S, Itskovitz-Eldor J, Dascal N, Khananshvili D, Binah O, Attali B. SK4 Ca2+ activated K+ channel is a critical player in cardiac pacemaker derived from human embryonic stem cells. Proc Natl Acad Sci U S A. 2013;110:E1685–94.

    CAS  Google Scholar 

  • Wetzel GT, Chen F, Klitzner TS. L- and T-type calcium channels in acutely isolated neonatal and adult cardiac myocytes. Pediatr Res. 1991;30:89–94.

    CAS  Google Scholar 

  • Williams GS, Smith GD, Sobie EA, Jafri MS. Models of cardiac excitation-contraction coupling in ventricular myocytes. Math Biosci. 2010;226:1–15.

    CAS  Google Scholar 

  • Wolf CM, Berul CI. Molecular mechanisms of inherited arrhythmias. Curr Genomics. 2008;9:160–8.

    CAS  Google Scholar 

  • Xie LH, Shanmugam M, Park JY, Zhao Z, Wen H, Tian B, Periasamy M, Babu GJ. Ablation of sarcolipin results in atrial remodeling. Am J Physiol Cell Physiol. 2012;302:C1762–71.

    CAS  Google Scholar 

  • Xin M, Olson EN, Bassel-Duby R. Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat Rev Mol Cell Biol. 2013;14:529–41.

    CAS  Google Scholar 

  • Yang L, Katchman A, Morrow JP, Doshi D, Marx SO. Cardiac L-type calcium channel (Cav1.2) associates with gamma subunits. FASEB J. 2011;25:928–36.

    CAS  Google Scholar 

  • Yaniv Y, Spurgeon HA, Lyashkov AE, Yang D, Ziman BD, Maltsev VA, Lakatta EG. Crosstalk between mitochondrial and sarcoplasmic reticulum Ca2+ cycling modulates cardiac pacemaker cell automaticity. PLoS One. 2012;7:e37582.

    CAS  Google Scholar 

  • Yaniv Y, Lakatta EG, Maltsev VA. From two competing oscillators to one coupled-clock pacemaker cell system. Front Physiol. 2015;6:28.

    Google Scholar 

  • Yigit M, Kowalski W, Hutchon D, Pekkan K. Transition from fetal to neonatal circulation: Modeling the effect of umbilical cord clamping. J Biomech. 2015;48:1662.

    Google Scholar 

  • Zile MR, Baicu CF, Ikonomidis JS, Stroud RE, Nietert PJ, Bradshaw AD, Slater R, Palmer BM, Van Buren P, Meyer M, Redfield MM, Bull DA, Granzier HL, LeWinter MM. Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin. Circulation. 2015;131:1247–59.

    CAS  Google Scholar 

  • Zimmer HG. Heinrich Ewald Hering and the carotid sinus reflex. Clin Cardiol. 2004;27:485–6.

    Google Scholar 

  • Zuber M, Cuculi F, Oechslin E, Erne P, Jenni R. Is transesophageal echocardiography still necessary to exclude patent foramen ovale? Scand Cardiovasc J. 2008;42:222–5.

    CAS  Google Scholar 

  • Zubrow AB, Hulman S, Kushner H, Falkner B. Determinants of blood pressure in infants admitted to neonatal intensive care units: a prospective multicenter study. Philadelphia Neonatal Blood Pressure Study Group. J Perinatol. 1995;15:470–9.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Dabbagh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dabbagh, A., Imani, A., Rajaei, S. (2023). Pediatric Cardiovascular Physiology. In: Dabbagh, A., Hernandez Conte, A., Lubin, L.N. (eds) Congenital Heart Disease in Pediatric and Adult Patients. Springer, Cham. https://doi.org/10.1007/978-3-031-10442-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10442-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10441-1

  • Online ISBN: 978-3-031-10442-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics