Skip to main content

Perioperative Coagulation Monitoring in Congenital Heart Disease Patients

  • Chapter
  • First Online:
Congenital Heart Disease in Pediatric and Adult Patients

Abstract

Bleeding after cardiac surgery is a common and severe complication leading to transfusion of multiple blood products and increased morbidity and mortality. Young age, low weight, polycythemia, profound hypothermia, and complex cardiac surgery are risk factors for severe bleeding. In addition, we need to account for the growing use of drugs that affect platelet aggregation and coagulation, which could increase the bleeding risk if not managed correctly.

Point-of-Care (POC) testing allows monitoring of one of the most problematic aspects that concern the health care providers when faced with surgical procedures, the hemostasis. POC bedside tests allow operating room or the intensive care diagnoses of coagulopathy of diverse etiology. Evidence-based algorithms integrate POC testing as one of the essential mechanisms to limit blood product transfusion, adverse events and allow goal-directed therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal HS, Barrett SS, Barry K, et al. Association of blood products administration during cardiopulmonary bypass and excessive postoperative bleeding in pediatric cardiac surgery. Pediatr Cardiol. 2015a;36:459–67.

    PubMed  Google Scholar 

  • Agarwal S, Johnson RI, Shaw M. Preoperative point-of-care platelet function testing in cardiac surgery. J Cardiothorac Vasc Anesth. 2015b;29:333–41.

    PubMed  Google Scholar 

  • American Society of Anesthesiologists Task Force on Perioperative Blood Management. Practice guidelines for perioperative blood management: an updated report by the American Society of Anesthesiologists Task Force on perioperative blood management*. Anesthesiology. 2015;122:241–75.

    Google Scholar 

  • Andrew M, Vegh P, Johnston M, Bowker J, Ofosu F, Mitchell L. Maturation of the hemostatic system during childhood. Blood. 1992;80(8):1998–2005.

    CAS  PubMed  Google Scholar 

  • Cammerer U, Dietrich W, Rampf T, et al. The predictive value of modified computerized thromboelastography and platelet function analysis for postoperative blood loss in routine cardiac surgery. Anesth Analg. 2003;96(1):51–7.

    PubMed  Google Scholar 

  • Cappabianca G, Rotunno C, de Luca Tupputi Schinosa L, et al. Protective effects of steroids in cardiac surgery: a meta-analysis of randomized double-blind trials. J Cardiothorac Vasc Anesth. 2011;25(1):156–65.

    CAS  PubMed  Google Scholar 

  • Chee YL, Crawford JC, Watson HG, Greaves M. Guidelines on the assessment of bleeding risk prior to surgery or invasive procedures. British Committee for Standards in Haematology. Br J Haematol. 2008;140(5):496–504.

    CAS  PubMed  Google Scholar 

  • Chowdhury M, Shore-Lesserson L, Mais AM, et al. Thromboelastograph with platelet mapping (TM) predicts postoperative chest tube drainage in patients undergoing coronary artery bypass grafting. J Cardiothorac Vasc Anesth. 2014;28(2):217–23.

    PubMed  Google Scholar 

  • Craft RM, Chavez JJ, Bresee SJ, et al. A novel modification of the Thromboelastograph assay, isolating platelet function, correlatos with optical platelet aggregation. J Lab Clin Med. 2004;143:3001–9.

    Google Scholar 

  • Craig J, Aguiar-Ibanez R, Bhattacharya S, et al. HTA programme: health technology assessment report 11—the clinical and cost-effectiveness of thromboelastography/thromboelastometry. NHS Quality Improvement Scotland. 2008. www.nhshealthquality.org. Accessed Aug 2015.

  • Despotis G, Avidan M, Eby C. Prediction and management of bleeding in cardiac surgery. J Thromb Haemost. 2009;7(Suppl 1):111–7.

    CAS  PubMed  Google Scholar 

  • Dirkmann D, Gorlinger K, Dusse F, et al. Early thromboelastometric variables reliably predict maximum clot firmness in patients undergoing cardiac surgery: a step towards earlier decision making. Acta Anaesthesiol Scand. 2013;57:594–603.

    CAS  PubMed  Google Scholar 

  • Dzik WH. Predicting hemorrhage using preoperative coagulation screening assays. Curr Hematol Rep. 2004;3(5):324–30.

    PubMed  Google Scholar 

  • Eaton MP, Iannoli EM. Coagulation considerations for infants and children undergoing cardiopulmonary bypass. Paediatr Anaesth. 2011;21(1):31–42.

    PubMed  Google Scholar 

  • Erdoes G, Koster A, Meesters MI, et al. The role of fibrinogen and fibrinogen concentrate in cardiac surgery: an international consensus statement from the haemostasis and transfusion scientific Subcommittee of the European Association of Cardiothoracic Anaesthesiology. Anaesthesia. 2019;74(12):1589–600.

    CAS  PubMed  Google Scholar 

  • Erdoes G, Koster A, Ortmann E, et al. A European consensus statement on the use of four-factor prothrombin complex concentrate for cardiac and non-cardiac surgical patients. Anaesthesia. 2021;76(3):381–92.

    CAS  PubMed  Google Scholar 

  • Gertler R, Hapfelmeier A, Tassani-Prell P, et al. The effect of cyanosis on perioperative platelet function as measured by multiple electrode aggregometry and postoperative blood loss in neonates and infants undergoing cardiac surgery. Eur J Cardiothorac Surg. 2014;28:ezu412.

    Google Scholar 

  • Görlinger K, Dirkmann D, Solomon C, et al. Fast interpretation of thromboelastometry in non-cardiac surgery: reliability in patients with hypo-, normo-, and hypercoagulability. Br J Anaesth. 2013a;110:222–30.

    PubMed  Google Scholar 

  • Görlinger K, Shore-Lesserson L, Dirkmann D, et al. Management of hemorrhage in cardiothoracic surgery. J Cardiothorac Vasc Anesth. 2013b;27(4 Suppl):S20–34.

    PubMed  Google Scholar 

  • Görlinger K, Pérez-Ferrer A, Dirkmann D, et al. The role of evidence-based algorithms for rotational thromboelastometry-guided bleeding management. Korean J Anesthesiol. 2019;72(4):297–322.

    PubMed  Google Scholar 

  • Haas T, Spielmann N, Mauch J, et al. Comparison of thromboelastometry (ROTEM®) with standard plasmatic coagulation testing in paediatric surgery. Br J Anaesth. 2012;108(1):36–41.

    CAS  PubMed  Google Scholar 

  • Haas T, Görlinger K, Grassetto A, et al. Thromboelastometry for guiding bleeding management of the critically ill patient: a systematic review of the literature. Minerva Anestesiol. 2014;80(12):1320–35.

    CAS  PubMed  Google Scholar 

  • Hiippala ST, Myllylä GJ, Vahtera EM. Hemostatic factors and replacement of major blood loss with plasma-poor red cell concentrates. Anesth Analg. 1995;81(2):360–5.

    CAS  PubMed  Google Scholar 

  • Hoffman M, Monroe DM 3rd. A cell-based model of hemostasis. Thromb Haemost. 2001;85:958–65.

    CAS  PubMed  Google Scholar 

  • Ichikawa J, Kodaka M, Nishiyama K, et al. Reappearance of circulating heparin in whole blood heparin concentration-based management does not correlate with postoperative bleeding after cardiac surgery. J Cardiothorac Vasc Anesth. 2014;28(4):1003–7.

    PubMed  Google Scholar 

  • Karam O, Demaret P, Shefler A, et al. Indications and effects of plasma transfusions in critically ill children. Am J Respir Crit Care Med. 2015;191(12):1395–402.

    PubMed  Google Scholar 

  • Karanjkar A, Kapoor PM, Sharan S, et al. A prospective randomized clinical trial of efficacy of algorithm-based point of care guided hemostatic therapy in cyanotic congenital heart disease surgical patients. J Card Crit Care TTS. 2020;3:8–16.

    Google Scholar 

  • Karkouti K, Callum J, Crowther MA, et al. The relationship between fibrinogen levels after cardiopulmonary bypass and large volume red cell transfusion in cardiac surgery: an observational study. Anesth Analg. 2013;117(1):14–22.

    CAS  PubMed  Google Scholar 

  • Kozek-Langenecker SA, Afshari A, et al. Management of severe perioperative bleeding: guidelines from the European Society of Anaesthesiology. Eur J Anaesthesiol. 2013;30(6):270–382.

    PubMed  Google Scholar 

  • Kozek-Langenecker SA, Ahmed AB, Afshari A, et al. Management of severe perioperative bleeding: guidelines from the European Society of Anaesthesiology: first update 2016. Eur J Anaesthesiol. 2017;34(6):332–95.

    PubMed  Google Scholar 

  • Levy JH, Tanaka KA. Anticoagulation and reversal paradigms: is too much of a good thing bad? Anesth Analg. 2009;108(3):692–4.

    PubMed  Google Scholar 

  • Mace H, Lightfoot N, McCluskey S, et al. Validity of Thromboelastometry for rapid assessment of fibrinogen levels in heparinized samples during cardiac surgery: a retrospective, single-center, observational study. J Cardiothorac Vasc Anesth. 2016;30(1):90–5.

    CAS  PubMed  Google Scholar 

  • Miller BE, Mochizuki T, Levy JH, et al. Predicting and treating coagulopathies after cardiopulmonary bypass in children. Anesth Analg. 1997a;85:1196–202.

    CAS  PubMed  Google Scholar 

  • Miller BE, Bailey JM, Mancuso TJ, Weinstein MS, Holbrook GW, Silvey EM, Tosone SR, Levy JH. Functional maturity of the coagulation system in children: an evaluation using thrombelastography. Anesth Analg. 1997b;84(4):745–8.

    CAS  PubMed  Google Scholar 

  • Mittermayr M, Velik-Salchner C, Stalzer B, et al. Detection of protamine and heparin after termination of cardiopulmonary bypass by thrombelastometry (ROTEM): results of a pilot study. Anesth Analg. 2009;108(3):743–50.

    CAS  PubMed  Google Scholar 

  • Nakayama Y, Nakajima Y, Tanaka KA, et al. Thromboelastometry-guided intraoperative haemostatic management reduces bleeding and red cell transfusion after paediatric cardiac surgery. Br J Anesth. 2015;114:91–102.

    CAS  Google Scholar 

  • National Institute for Health and Care Excellence. Detecting, managing, and monitoring hemostasis: viscoelastometric point-of-care testing (ROTEM, TEG and Sonoclot systems). 2014. https://www.nice.org.uk/guidance/dg13. Accessed Aug 2015.

  • Nuttall GA, Oliver WC, Santrach PJ, et al. Efficacy of a simple intraoperative transfusion algorithm for non-erythrocyte component utilization after cardiopulmonary bypass. Anesthesiology. 2001;94:773–81.

    CAS  PubMed  Google Scholar 

  • Perez-Ferrer A, Vicente-Sanchez J, Carceles-Baron MD, et al. Early thromboelastometry variables predict maximum clot firmness in children undergoing cardiac and non-cardiac surgery. Br J Anaesth. 2015;115(6):896–902.

    CAS  PubMed  Google Scholar 

  • Ranucci M, Bianchi P, Cotza M, et al. Fibrinogen levels and postoperative chest drain blood loss in low-weight (<10 kg) children undergoing cardiac surgery. Perfusion. 2019;34(8):629–36.

    PubMed  Google Scholar 

  • Raphael J, Mazer CD, Subramani S, et al. Society of Cardiovascular Anesthesiologists Clinical Practice Improvement Advisory for Management of Perioperative Bleeding and Hemostasis in cardiac surgery patients. Anesth Analg. 2019;129(5):1209–21.

    PubMed  Google Scholar 

  • Samkova A, Blatny J, Fiamoli V, Dulicek P, Parizkova E. Significance and causes of abnormal preoperative coagulation test results in children. Haemophilia. 2012;18(3):e297–301.

    CAS  PubMed  Google Scholar 

  • Slaughter TF, Sreeram G, Sharma AD, et al. Reversible shear-mediated platelet dysfunction during cardiac surgery as assessed by the PFA-100 platelet function analyzer. Blood Coagul Fibrinolysis. 2001;12(2):85–93.

    CAS  PubMed  Google Scholar 

  • Solomon C, Sørensen B, Hochleitner G, et al. Comparison of whole blood fibrin-based clot tests in thrombelastography and thromboelastometry. Anesth Analg. 2012;114(4):721–30.

    CAS  PubMed  Google Scholar 

  • Spahn DR, Bouillon B, Cerny V, et al. Management of bleeding and coagulopathy following major trauma: an updated European guideline. Crit Care. 2013;19(2):R76.

    Google Scholar 

  • Spiess BD, Gillies BS, Chandler W, et al. Changes in transfusion therapy and reexploration rate after institution of a blood management program in cardiac surgical patients. J Cardiothorac Vasc Anesth. 1995;9(2):168–73.

    CAS  PubMed  Google Scholar 

  • Spiezia L, Campello E, Simioni P. “Hypocoagulable” thromboelastography profiles in patients with cyanotic congenital heart disease: facts or technical artifacts? Int J Cardiol. 2013;168(3):2914.

    CAS  PubMed  Google Scholar 

  • Szekely A, Cserep Z, Sapi E, et al. Risks and predictors of blood transfusion in pediatric patients undergoing open-heart operations. Ann Thorac Surg. 2009;87:187–97.

    PubMed  Google Scholar 

  • Tanaka KA, Key NS, Levy JH. Blood coagulation: hemostasis and thrombin regulation. Anesth Analg. 2009;108(5):1433–46.

    CAS  PubMed  Google Scholar 

  • Tantry US, Bliden KP, Gurbel PA. Overestimation of platelet aspirin resistance detection by thrombelastography platelet mapping and validation by conventional aggregometry using arachidonic acid stimulation. J Am Coll Cardiol. 2005;46:1705–9.

    CAS  PubMed  Google Scholar 

  • Theusinger OM, Stein P, Levy JH. Point of care and factor concentrate-based coagulation algorithms. Transfus Med Hemother. 2015;42(2):115–21.

    PubMed  Google Scholar 

  • Venema LF, Post WJ, Hendriks HG, et al. An assessment of clinical interchangeability of TEG and RoTEM thromboelastographic variables in cardiac surgical patients. Anesth Analg. 2010;111(2):339–44.

    PubMed  Google Scholar 

  • Weber CF, Klages M, Zacharowski K. Perioperative coagulation management during cardiac surgery. Curr Opin Anaesthesiol. 2013;26(1):60–4.

    CAS  PubMed  Google Scholar 

  • Willems A, Harrington K, Lacroix J, et al. Comparison of two red-cell transfusion strategies after pediatric cardiac surgery: a subgroup analysis. Crit Care Med. 2010;38:649–56.

    PubMed  Google Scholar 

  • Williams GD, Bratton SL, Ramamoorthy C. Factors associated with blood loss and blood product transfusions: a multivariate analysis in children after open-heart surgery. Anesth Analg. 1999;89:57–64.

    CAS  PubMed  Google Scholar 

  • Wolf MJ, Maher KO, Kanter KR, et al. Early postoperative bleeding is independently associated with increased surgical mortality in infants after cardiopulmonary bypass. J Thorac Cardiovasc Surg. 2014;148:631–6.

    PubMed  Google Scholar 

  • Yamamoto T, Wolf HG, Sinzobahamvya N, et al. Prolonged activated clotting time after protamine administration does not indicate residual heparinization after cardiopulmonary bypass in Pediatric Open-Heart Surgery. Thorac Cardiovasc Surg. 2015;63(5):397–403.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Pérez Ferrer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pérez Ferrer, A., Motta, P. (2023). Perioperative Coagulation Monitoring in Congenital Heart Disease Patients. In: Dabbagh, A., Hernandez Conte, A., Lubin, L.N. (eds) Congenital Heart Disease in Pediatric and Adult Patients. Springer, Cham. https://doi.org/10.1007/978-3-031-10442-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10442-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10441-1

  • Online ISBN: 978-3-031-10442-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics