Skip to main content

Investigating Behavioural Responses of Marine Fish to Anthropogenic Noise: Use of Acoustic Telemetry

  • Living reference work entry
  • First Online:
The Effects of Noise on Aquatic Life

Abstract

Fish commonly respond to anthropogenic noise through behavioral changes. There are limitations to replicating noise and observing behavioral responses in controlled lab or cage experiments, which make observing behaviors in natural environments a preferred option. Acoustic telemetry offers advantages in providing the ability to monitor behavior of wild, individual fish in their natural environments while exposed to realistic sound from anthropogenic sources. In recent years, acoustic telemetry has been used in several studies to address questions about the behavioral responses of marine fish to various types of anthropogenic noise. Despite several benefits to the use of acoustic telemetry, there are logistical and analytical challenges to consider, and for some research questions, combining field studies using acoustic telemetry with experiments in more controlled environments may be most appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abecasis D, Steckenreuter A, Reubens J, Aarestrup K, Alós J, Badalamenti F, Bajona L et al (2018) A review of acoustic telemetry in Europe and the need for a regional aquatic telemetry network. Anim Biotelemetry 6:12

    Article  Google Scholar 

  • Alós J, Aarestrup K, Abecasis D, Afonso P, Alonso-Fernandez A, Aspillaga E, Barcelo-Serra M et al (2022) Toward a decade of ocean science for sustainable development through acoustic animal tracking. Glob Chang Biol 28:5630–5653

    Article  PubMed  PubMed Central  Google Scholar 

  • Bacheler NM, Michelot T, Cheshire RT, Shertzer KW (2019) Fine-scale movement patterns and behavioral states of gray triggerfish Balistes capriscus determined from acoustic telemetry and hidden Markov models. Fish Res 215:76–89

    Article  Google Scholar 

  • Bruce B, Bradford R, Foster S, Lee K, Lansdell M, Cooper S, Przeslawski R (2018) Quantifying fish behaviour and commercial catch rates in relation to a marine seismic survey. Mar Environ Res 140:18–30

    Article  CAS  PubMed  Google Scholar 

  • Carroll AG, Przeslawski R, Duncan A, Gunning M, Bruce B (2017) A critical review of the potential impacts of marine seismic surveys on fish & invertebrates. Mar Pollut Bull 114:9–24

    Article  CAS  PubMed  Google Scholar 

  • Clarke TM, Whitmarsh SK, Hounslow JL, Gleiss AC, Payne NL, Huveneers C (2021) Using tri-axial accelerometer loggers to identify spawning behaviours of large pelagic fish. Mov Ecol 9:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Cooke SJ, Bergman JN, Twardek WM, Piczak ML, Casselberry GA, Lutek K, Dahlmo LS et al (2022) The movement ecology of fishes. J Fish Biol 101:756–779

    Article  PubMed  Google Scholar 

  • Davidsen JG, Dong H, Linné M, Andersson MH, Piper A, Prystay TS, Hvam EB et al (2019) Effects of sound exposure from a seismic airgun on heart rate, acceleration and depth use in free-swimming Atlantic cod and saithe. Conserv Physiol 7:coz020

    Article  PubMed  PubMed Central  Google Scholar 

  • De Robertis A, Wilson CD (2011) Silent ships do not always encounter more fish (revisited): comparison of acoustic backscatter from walleye pollock recorded by a noise-reduced and a conventional research vessel in the eastern Bering Sea. ICES J Mar Sci 68:2229–2239

    Article  Google Scholar 

  • Dean MJ, Hoffman WS, Zemeckis DR, Armstrong MP (2014) Fine-scale diel and gender-based patterns in behaviour of Atlantic cod (Gadus morhua) on a spawning ground in the Western Gulf of Maine. ICES J Mar Sci 71:1474–1489

    Article  Google Scholar 

  • Duarte CM, Chapuis L, Collin SP, Costa DP, Devassy RP, Eguiluz VM, Erbe C et al (2021) The soundscape of the Anthropocene ocean. Science 371:eaba4658

    Article  CAS  PubMed  Google Scholar 

  • Duncan AJ, Lucke K, Erbe C, McCauley RD (2016) Issues associated with sound exposure experiments in tanks, Dublin, p 070008. http://asa.scitation.org/doi/abs/10.1121/2.0000280. Accessed 18 Aug 2022

  • Engås A, Løkkeborg S, Ona E, Soldal AV (1996) Effects of seismic shooting on local abundance and catch rates of cod (Gadus morhua) and haddock (Melanogrammus aeglefinus). Can J Fish Aquat Sci 53:2238–2249

    Article  Google Scholar 

  • Evans K, Rogers P, Goldsworthy S (2017) Theme 4: Ecology of iconic species and apex predators, Theme report, Great Australian bight research report series, 37. Great Australian Bight Research Program. https://linkinghub.elsevier.com/retrieve/pii/S096098229770976X. Accessed 18 Aug 2022

    Google Scholar 

  • Fernö A, Pitcher TJ, Melle W, Nøttestad L, Mackinson S, Hollingworth C, Misund OA (1998) The challenge of the herring in the Norwegian sea: Making optimal collective spatial decisions. Sarsia 83:149–167

    Article  Google Scholar 

  • Halvorsen MB, Casper BM, Matthews F, Carlson TJ, Popper AN (2012) Effects of exposure to pile-driving sounds on the lake sturgeon, Nile tilapia and hogchoker. Proc R Soc B: Biol Sci 279:4705–4714

    Article  Google Scholar 

  • Handegard NO (2007) Observing individual fish behavior in fish aggregations: Tracking in dense fish aggregations using a split-beam echosounder. J Acoust Soc Am 122:177–187

    Article  PubMed  Google Scholar 

  • Hawkins AD, Roberts L, Cheesman S (2014) Responses of free-living coastal pelagic fish to impulsive sounds. J Acoust Soc Am 135:3101–3116

    Article  PubMed  Google Scholar 

  • Hawkins AD, Johnson C, Popper AN (2020) How to set sound exposure criteria for fishes. J Acoust Soc Am 147:1762–1777

    Article  PubMed  Google Scholar 

  • Hussey NE, Kessel ST, Aarestrup K, Cooke SJ, Cowley PD, Fisk AT, Harcourt RG et al (2015) Aquatic animal telemetry: a panoramic window into the underwater world. Science 348:1255642–1255642

    Article  PubMed  Google Scholar 

  • Iafrate JD, Watwood SL, Reyier EA, Scheidt DM, Dossot GA, Crocker SE (2016) Effects of pile driving on the residency and movement of tagged reef fish. PLoS One 11:e0163638

    Article  PubMed  PubMed Central  Google Scholar 

  • Ivanova SV, Kessel ST, Espinoza M, McLean MF, O’Neill C, Landry J, Hussey NE et al (2020) Shipping alters the movement and behavior of Arctic cod (Boreogadus saida), a keystone fish in Arctic marine ecosystems. Ecol Appl 30. https://onlinelibrary.wiley.com/doi/10.1002/eap.2050. Accessed 16 May 2022

  • Kok ACM, Bruil L, Berges B, Sakinan S, Debusschere E, Reubens J, de Haan D et al (2021) An echosounder view on the potential effects of impulsive noise pollution on pelagic fish around windfarms in the North Sea. Environ Pollut 290:118063

    Article  CAS  PubMed  Google Scholar 

  • Lennox RJ, Aarestrup K, Cooke SJ, Cowley PD, Deng ZD, Fisk AT, Harcourt RG et al (2017) Envisioning the future of aquatic animal tracking: technology, science, and application. Bioscience 67:884–896

    Article  Google Scholar 

  • Lennox RJ, Junge C, Reubens J, Omar A, Skjelvan I, Vollset KW (2022) Strategic importance of the Bergen-Shetland Corridor to marine biology and oceanography of the Atlantic Ocean. Fish Oceanogr 31:471–479

    Article  Google Scholar 

  • Leos-Barajas V, Photopoulou T, Langrock R, Patterson TA, Watanabe Y, Murgatroyd M, Papastamatiou YP (2016) Analysis of animal accelerometer data using hidden Markov models. Methods Ecol Evol 13:161

    Google Scholar 

  • Løkkeborg S, Ona E, Vold A, Salthaug A (2012) Sounds from seismic air guns: gear- and species-specific effects on catch rates and fish distribution. Can J Fish Aquat Sci 69:1278–1291

    Article  Google Scholar 

  • McCauley RD, Fewtrell J, Popper AN (2003) High intensity anthropogenic sound damages fish ears. J Acoust Soc Am 113:638–642

    Article  PubMed  Google Scholar 

  • McMahan MD, Brady DC, Cowan DF, Grabowski JH, Sherwood GD (2013) Using acoustic telemetry to observe the effects of a groundfish predator (Atlantic cod, Gadus morhua) on movement of the American lobster (Homarus americanus). Can J Fish Aquat Sci 70:1625–1634

    Article  Google Scholar 

  • McQueen K, Meager JJ, Nyqvist D, Skjæraasen JE, Olsen EM, Karlsen Ø, Kvadsheim PH et al (2022) Spawning Atlantic cod (Gadus morhua L.) exposed to noise from seismic airguns do not abandon their spawning site. ICES J Mar Sci 10:2697–2708

    Article  Google Scholar 

  • McQueen K, Skjæraasen JE, Nyqvist D, Olsen EM, Karlsen Ø, Meager JJ, Kvadsheim PH, Handegard NO, Forland TN, de Jong K, Sivle LD (2023) Behavioural responses of wild, spawning Atlantic cod (Gadus morhua L.) to seismic airgun exposure. ICES Journal of Marine Science, p.fsad032. https://doi.org/10.1093/icesjms/fsad032

  • Meager JJ, Skjæraasen JE, Fernö A, Løkkeborg S (2010) Reproductive interactions between fugitive farmed and wild Atlantic cod (Gadus morhua) in the field. Can J Fish Aquat Sci 67:1221–1231

    Article  Google Scholar 

  • Meager JJ, Rodewald P, Domenici P, Fernö A, Järvi T, Skjæraasen JE, Sverdrup GK (2011) Behavioural responses of hatchery-reared and wild cod gadus morhua to mechano-acoustic predator signals. J Fish Biol 78:1437–1450

    Article  CAS  PubMed  Google Scholar 

  • Meekan MG, Speed CW, McCauley RD, Fisher R, Birt MJ, Currey-Randall LM, Semmens JM et al (2021) A large-scale experiment finds no evidence that a seismic survey impacts a demersal fish fauna. Proc Natl Acad Sci 118:e2100869118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Methratta ET (2020) Monitoring fisheries resources at offshore wind farms: BACI vs. BAG designs. ICES J Mar Sci 77:890–900

    Article  Google Scholar 

  • Methratta ET (2021) Distance-based sampling methods for assessing the ecological effects of offshore wind farms: synthesis and application to fisheries resource studies. Front Mar Sci 8:674594

    Article  Google Scholar 

  • Miller I, Cripps E (2013) Three dimensional marine seismic survey has no measurable effect on species richness or abundance of a coral reef associated fish community. Mar Pollut Bull 77:63–70

    Article  CAS  PubMed  Google Scholar 

  • Paxton AB, Taylor JC, Nowacek DP, Dale J, Cole E, Voss CM, Peterson CH (2017) Seismic survey noise disrupted fish use of a temperate reef. Mar Policy 78:68–73

    Article  Google Scholar 

  • Peña H, Handegard NO, Ona E (2013) Feeding herring schools do not react to seismic air gun surveys. ICES J Mar Sci 70:1174–1180

    Article  Google Scholar 

  • Pickett GD, Eaton DR, Seaby RMH, Arnold GP (1994) Results of bass tagging in Poole Bay during 1992. Laboratory Leaflet, 74. Ministry of Agriculture, Fisheries and Food Directorate of Fisheries Research, Lowestoft

    Google Scholar 

  • Pirotta E, Booth CG, Costa DP, Fleishman E, Kraus SD, Lusseau D, Moretti D et al (2018) Understanding the population consequences of disturbance. Ecol Evol 8:9934–9946

    Article  PubMed  PubMed Central  Google Scholar 

  • Pohle J, Langrock R, van Beest FM, Schmidt NM (2017) Selecting the number of states in hidden Markov models: pragmatic solutions illustrated using animal movement. J Agric Biol Environ Stat 22:270–293

    Article  Google Scholar 

  • Popper AN, Hawkins AD (2019) An overview of fish bioacoustics and the impacts of anthropogenic sounds on fishes. J Fish Biol 94:692–713

    Article  PubMed  PubMed Central  Google Scholar 

  • Popper AN, Smith ME, Cott PA, Hanna BW, MacGillivray AO, Austin ME, Mann DA (2005) Effects of exposure to seismic airgun use on hearing of three fish species. J Acoust Soc Am 117:3958–3971

    Article  PubMed  Google Scholar 

  • Rider MJ, Kirsebom OS, Gallagher AJ, Staaterman E, Ault JS, Sasso CR, Jackson T et al (2021) Space use patterns of sharks in relation to boat activity in an urbanized coastal waterway. Mar Environ Res 172:105489

    Article  CAS  PubMed  Google Scholar 

  • Skalski JR, Pearson WH, Malme CI (1992) Effects of sounds from a geophysical survey device on catch-per-unit-effort in a hook-and-line fishery for rockfish (Sebastes spp.). Can J Fish Aquat Sci 49:1357–1365

    Article  Google Scholar 

  • Slabbekoorn H (2016) Aiming for progress in understanding underwater noise impact on fish: complementary need for indoor and outdoor studies. In: Popper AN, Hawkins A (eds) The effects of noise on aquatic life II. Springer New York, New York, pp 1057–1065. http://link.springer.com/10.1007/978-1-4939-2981-8_131

    Chapter  Google Scholar 

  • Slabbekoorn H, Bouton N, van Opzeeland I, Coers A, ten Cate C, Popper AN (2010) A noisy spring: the impact of globally rising underwater sound levels on fish. Trends Ecol Evol 25:419–427

    Article  PubMed  Google Scholar 

  • Slabbekoorn H, Dalen J, Haan D, Winter HV, Radford C, Ainslie MA, Heaney KD et al (2019) Population-level consequences of seismic surveys on fishes: An interdisciplinary challenge. Fish Fish 20:653–685

    Article  Google Scholar 

  • Slotte A, Hansen K, Dalen J, Ona E (2004) Acoustic mapping of pelagic fish distribution and abundance in relation to a seismic shooting area off the Norwegian west coast. Fish Res 67:143–150

    Article  Google Scholar 

  • Smith ME, Accomando AW, Bowman V, Casper BM, Dahl PH, Jenkins AK, Kotecki S et al (2022) Physical effects of sound exposure from underwater explosions on Pacific mackerel (Scomber japonicus): Effects on the inner ear. J Acoust Soc Am 152:733–744

    Article  CAS  PubMed  Google Scholar 

  • Soldal AV, Løkkeborg S (1993) Seismisk aktivitet og fiskefangster: analyse av innsamlede fangstdata. Fisken og Havet, 1993-04. Havforskningsinstituttet. p. 44

    Google Scholar 

  • van der Knaap I, Reubens J, Thomas L, Ainslie MA, Winter HV, Hubert J, Martin B et al (2021) Effects of a seismic survey on movement of free-ranging Atlantic cod. Curr Biol 31:1555–1562.e4

    Article  PubMed  Google Scholar 

  • van der Knaap I, Slabbekoorn H, Moens T, Van den Eynde D, Reubens J (2022) Effects of pile driving sound on local movement of free-ranging Atlantic cod in the Belgian North Sea. Environ Pollut 300:118913

    Article  PubMed  Google Scholar 

  • Vold A, Løkkeborg S, Tenningen MM (2012) Using catch statistics to investigate effects of seismic activity on fish catch rates. In: The effects of noise on aquatic life. Springer Science & Business Media, Cork, pp 411–413

    Chapter  Google Scholar 

  • Wardle CS, Carter TJ, Urquhart GG, Johnstone ADF, Ziolkowski AM, Hampson G, Mackie D (2001) Effects of seismic air guns on marine fish. Cont Shelf Res 21:1005–1027

    Article  Google Scholar 

  • Whoriskey K, Martins EG, Auger-Méthé M, Gutowsky LFG, Lennox RJ, Cooke SJ, Power M et al (2019) Current and emerging statistical techniques for aquatic telemetry data: A guide to analysing spatially discrete animal detections. Methods Ecol Evol 10:935–948

    Article  Google Scholar 

  • Williams R, Wright AJ, Ashe E, Blight LK, Bruintjes R, Canessa R, Clark CW et al (2015) Impacts of anthropogenic noise on marine life: Publication patterns, new discoveries, and future directions in research and management. Ocean Coast Manag 115:17–24

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kate McQueen .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

McQueen, K., Sivle, L.D. (2023). Investigating Behavioural Responses of Marine Fish to Anthropogenic Noise: Use of Acoustic Telemetry. In: Popper, A.N., Sisneros, J., Hawkins, A.D., Thomsen, F. (eds) The Effects of Noise on Aquatic Life . Springer, Cham. https://doi.org/10.1007/978-3-031-10417-6_105-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10417-6_105-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10417-6

  • Online ISBN: 978-3-031-10417-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics