Skip to main content

Covid-19 and the Golden Rule of Social Distancing

  • Conference paper
  • First Online:
Economic Challenges for Europe After the Pandemic

Abstract

We derive a golden rule of social distancing when new variants of a pandemic continuously enter a country requiring permanent social distancing. The results show that high-income countries should have more social distancing while service economies should have less social distancing. Moreover, vaccination lowers the socially optimal level of social distancing. Using data on infections and death from COVID-19 we find that countries do not follow the golden rule when it comes to income and the importance of the service sector. However, consistent with our model, island economies, which have a lower rate of inflow of new infections, suffer fewer local infections and deaths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Such as Alvarez et al. (2020), Hall and Jones (2007), and Farboodi et al. (2020).

  2. 2.

    See Appendix 1.

  3. 3.

    The second-order conditions for maximum are analysed in Appendix 2.

  4. 4.

    See Appendix 3.

  5. 5.

    Ibid.

  6. 6.

    Ibid.

  7. 7.

    See Appendix 3.

  8. 8.

    Ibid.

  9. 9.

    These are Australia, Austria, Belgium, Canada, Chile, Colombia, Czechia, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Latvia, Lithuania, Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Switzerland, Turkey, the United Kingdom and the United States.

  10. 10.

    See Appendix 4 for the sources of the data.

References

  • Acemoglu, D., Chernozhukov, V., Werning, I., & Whinston, M. D. (2020). A multi-risk sir model with optimally targeted lockdown. Cemmap working paper CWP14/20.

    Google Scholar 

  • Alvarez, F. E., Argente, D., & Lippi, F. (2020). A simple planning problem for Covid-19 Lockdown. NBER Working Paper 26981.

    Google Scholar 

  • Farboodi, M., Jarosch, G., & Shimer, R. (2020). Internal and external effects of social distancing in a pandemic. Working paper no. 2020-47. Becker Friedman Institute, University of Chicago.

    Google Scholar 

  • Gestsson, M. H., & Zoega, G. (2019). The golden rule of longevity. Macroeconomic Dynamics, 23(1), 384–419.

    Article  Google Scholar 

  • Glover, A., Heathcote, J., Krueger, D., & Ríos-Rull, J.-V. (2020). Controlling a pandemic. NBER Working Paper No. 27046.

    Google Scholar 

  • Hausmann, R., & Schetter, U. (2020). Horrible trade-offs in a pandemic: Lockdowns, transfers, fiscal space, and compliance. CID Faculty Working Paper No. 382.

    Google Scholar 

  • Hall, R. E., & Jones, C. J. (2007). The value of life and the rise in health spending get access arrow. The quarterly journal of economics, 122(1), 39–72. https://doi.org/10.1162/qjec.122.1.39

  • Phelps, E. S. (1966). Golden rules of economic growth. W. W. Norton.

    Google Scholar 

  • Phelps, E. S. (1968). Models of technical progress and the golden rule of research. Review of Economic Studies, 33, 133–146.

    Article  Google Scholar 

  • Ramsey, F. (1928). A mathematical theory of saving. Economic Journal, 38, 543–559.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gylfi Zoega .

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix 1

The derivatives are (from (1), (3) and (4)):

$$ \frac{\partial {\overset{\sim }{N}}_o}{\partial s}=-\left[A-R\right]\frac{\left[1-h(m)\right]q}{{\left[1-r\left(s,v\right)\right]}^2}\frac{\partial r}{\partial s}>0\vspace*{-1.6pc} $$
$$ \frac{\partial {\overset{\sim }{N}}_o}{\partial v}=-\left[A-R\right]\frac{\left[1-h(m)\right]q}{{\left[1-r\left(s,v\right)\right]}^2}\frac{\partial r}{\partial v}>0\vspace*{-1.3pc} $$
$$ \frac{\partial {\overset{\sim }{N}}_o}{\partial m}=\left[A-R\right]\frac{q}{1-r\left(s,v\right)}\frac{\partial h}{\partial m}>0\vspace*{-1.3pc} $$
$$ \frac{\partial {\overset{\sim }{N}}_o}{\partial q}=-\left[A-R\right]\frac{1-h(m)}{1-r\left(s,v\right)}<0\vspace*{-1.3pc} $$
$$ \frac{\partial^2{\overset{\sim }{N}}_o}{\partial {s}^2}=-\left[A-R\right]\frac{\left[1-h(m)\right]q}{{\left[1-r\left(s,v\right)\right]}^2}\frac{\partial^2r}{\partial {s}^2}-2\left[A-R\right]\frac{\left[1-h(m)\right]q}{{\left[1-r\left(s,v\right)\right]}^3}{\left[\frac{\partial r}{\partial s}\right]}^2<0\vspace*{-1.3pc} $$
$$ \frac{\partial^2{\overset{\sim }{N}}_o}{\partial s\partial v}=-\left[A-R\right]\frac{\left[1-h(m)\right]q}{{\left[1-r\left(s,v\right)\right]}^2}\frac{\partial^2r}{\partial s\partial v}-2\left[A-R\right]\frac{\left[1-h(m)\right]q}{{\left[1-r\left(s,v\right)\right]}^3}\frac{\partial r}{\partial s}\frac{\partial r}{\partial v}<0 \vspace*{-1.3pc}$$
$$ \frac{\partial^2{\overset{\sim }{N}}_o}{\partial s\partial m}=\left[A-R\right]\frac{q}{{\left[1-r\left(s,v\right)\right]}^2}\frac{\partial r}{\partial s}\frac{\partial h}{\partial m}<0\vspace*{-1.3pc} $$
$$ \frac{\partial^2{\overset{\sim }{N}}_o}{\partial s\partial q}=-\left[A-R\right]\frac{1-h(m)}{{\left[1-r\left(s,v\right)\right]}^2}\frac{\partial r}{\partial s}>0 $$

1.2 Appendix 2

The first-order derivatives of the Lagrangian are (after using (4) and that N w = R):

$$ \frac{\mathrm{\partial \Gamma }}{\partial \lambda }={N}_w\left[y-\gamma G(s)-{c}_w\right]-{\overset{\sim }{N}}_o{c}_o\vspace*{-1.3pc} $$
$$ \frac{\mathrm{\partial \Gamma }}{\partial {c}_w}={N}_w\left[{u}^{\prime}\left({c}_w\right)-\lambda \right]\vspace*{-1.3pc} $$
$$ \frac{\mathrm{\partial \Gamma }}{\partial {c}_o}={\overset{\sim }{N}}_o\left[{u}^{\prime}\left({c}_o\right)-\lambda \right]\vspace*{-1.3pc} $$
$$ \frac{\mathrm{\partial \Gamma }}{\partial s}=u\left({c}_o\right)\frac{\partial {\overset{\sim }{N}}_o}{\partial s}-\lambda \left[{N}_w\gamma {G}^{\prime }(s)+{c}_o\frac{\partial {\overset{\sim }{N}}_o}{\partial s}\right] $$

and the second-order derivatives are (after evaluating those at maximum and rewriting):

$$\begin{array}{l} \frac{\partial^2\Gamma}{\partial {\lambda}^2}=0,\frac{\partial^2\Gamma}{\partial \lambda \partial {c}_w}=-{N}_w,\frac{\partial^2\Gamma}{\partial \lambda \partial {c}_o}=-{\overset{\sim }{N}}_o,\frac{\partial^2\Gamma}{\partial \lambda \partial s} =-\left[{N}_w\gamma {G}^{\prime }(s)+c\frac{\partial {\overset{\sim }{N}}_o}{\partial s}\right] \\[6pt] \qquad\ \frac{\partial^2\Gamma}{\partial {c}_w^2}={N}_w{u}^{\prime \prime }(c),\frac{\partial^2\Gamma}{\partial {c}_w\partial {c}_o}=\frac{\partial^2\Gamma}{\partial {c}_w\partial s}=0\end{array}\vspace*{-1pc} $$
$$ \frac{\partial^2\Gamma}{\partial {c}_0^2}={\overset{\sim }{N}}_o{u}^{\prime \prime }(c),\frac{\partial^2\Gamma}{\partial {c}_o\partial s}=0\vspace*{-1pc} $$
$$ \frac{\partial^2\Gamma}{\partial {s}^2}=\gamma {N}_w{u}^{\prime }(c){G}^{\prime }(s)\left[\frac{\frac{\partial^2{\overset{\sim }{N}}_o}{\partial {s}^2}}{\frac{\partial {\overset{\sim }{N}}_o}{\partial s}}-\frac{G^{\prime \prime }(s)}{G^{\prime }(s)}\right] $$

Hence, for the first-order conditions being necessary and sufficient for a maximum, the following must hold (second order conditions using the bordered Hessian matrix):

$$ -{N}_w{\overset{\sim }{N}}_o\left[{N}_w+{\overset{\sim }{N}}_o\right]{u}^{\prime \prime }(c)>0 $$

which always holds, and:

$$ -{N}_w{\overset{\sim }{N}}_o\left[\begin{array}{c}{\left[{N}_w\gamma {G}^{\prime }(s)+{c}_o\frac{\partial {\overset{\sim }{N}}_o}{\partial s}\right]}^2{\left[{u}^{\prime \prime }(c)\right]}^2\\ {}+\Phi \left[{N}_w+{\overset{\sim }{N}}_o\right]{u}^{\prime \prime }(c)\end{array}\right]<0 $$

where:

$$ \Phi \equiv \gamma {N}_w{u}^{\prime }(c){G}^{\prime }(s)\left[\frac{\frac{\partial^2{\overset{\sim }{N}}_o}{\partial {s}^2}}{\frac{\partial {\overset{\sim }{N}}_o}{\partial s}}-\frac{G^{\prime \prime }(s)}{G^{\prime }(s)}\right]\gtreqless 0 $$

For the second condition to hold it is necessary that:

$$ {\left[{N}_w\gamma {G}^{\prime }(s)+{c}_o\frac{\partial {\overset{\sim }{N}}_o}{\partial s}\right]}^2{\left[{u}^{\prime \prime }(c)\right]}^2+\Phi \left[{N}_w+{\overset{\sim }{N}}_o\right]{u}^{\prime \prime }(c)>0 $$

Since the first term is positive and \( \left[{N}_w+{\overset{\sim }{N}}_o\right]{u}^{\prime \prime }(c)<0 \), this holds for all negative Φ and positive Φ such that

$$ \Phi <-\frac{{\left[{N}_w\gamma {G}^{\prime }(s)+{c}_o\frac{\partial {\overset{\sim }{N}}_o}{\partial s}\right]}^2{u}^{\prime \prime }(c)}{N_w+{\overset{\sim }{N}}_o} $$

or iff:

$$ \gamma {N}_w{u}^{\prime }(c){G}^{\prime }(s)\left[\frac{\frac{\partial^2{\overset{\sim }{N}}_o}{\partial {s}^2}}{\frac{\partial {\overset{\sim }{N}}_o}{\partial s}}-\frac{G^{\prime \prime }(s)}{G^{\prime }(s)}\right]<-\frac{{\left[{N}_w\gamma {G}^{\prime }(s)+{c}_o\frac{\partial {\overset{\sim }{N}}_o}{\partial s}\right]}^2{u}^{\prime \prime }(c)}{N_w+{\overset{\sim }{N}}_{o.}} $$

where the right hand side of the inequality is strictly positive. Since \( \frac{\partial {\overset{\sim }{N}}_o}{\partial s}>0 \), \( \frac{\partial^2{\overset{\sim }{N}}_o}{\partial {s}^2}<0 \), γN w u ′(c)G ′(s) > 0 and G ′(s) > 0 there clearly exist G ′′(s) ⋛ 0 ensuring that the second order conditions are fulfilled. We therefore conclude that the second condition holds, which is assumed in what follows.

1.3 Appendix 3

Taking the total difference of the first order conditions in (7)–(10) (after using (11) and (4)) with respect to the endogenous variables λ, c w, c o and s and the exogenous variables/parameters y, γ, m, q and v gives the following after collecting terms and rearranging:

$$ {u}^{\prime \prime }(c)d{c}_w- d\lambda =0\vspace*{-1.6pc} $$
$$ {u}^{\prime \prime }(c)d{c}_o- d\lambda =0\vspace*{-1.6pc} $$
$$\begin{array}{l} -\left[{N}_w\gamma {G}^{\prime }(s)+c\frac{\partial {\overset{\sim }{N}}_o}{\partial s}\right] d\lambda +\Phi ds={N}_w{u}^{\prime }(c){G}^{\prime }(s) d\gamma \\[8pt] -{u}^{\prime }(c){N}_w{\gamma G}^{\prime }(s)\frac{\frac{\partial^2{\overset{\sim }{N}}_o}{\partial s\partial m}}{\frac{\partial {\overset{\sim }{N}}_o}{\partial s}} dm-{u}^{\prime }(c){N}_w{\gamma G}^{\prime }(s)\frac{\frac{\partial^2{\overset{\sim }{N}}_o}{\partial s\partial q}}{\frac{\partial {\overset{\sim }{N}}_o}{\partial s}} dq-{u}^{\prime }(c){N}_w{\gamma G}^{\prime }(s)\frac{\frac{\partial^2{\overset{\sim }{N}}_o}{\partial s\partial v}}{\frac{\partial {\overset{\sim }{N}}_o}{\partial s}} dv\end{array} $$
$$\begin{array}{l} -{N}_wd{c}_w-{\overset{\sim }{N}}_od{c}_o-\left[{N}_w\gamma {G}^{\prime }(s)+c\frac{\partial {\overset{\sim }{N}}_o}{\partial s}\right] ds \\[10pt] =-{N}_w dy+{N}_wG(s) d\gamma +c\frac{\partial {\overset{\sim }{N}}_o}{\partial m} dm+c\frac{\partial {\overset{\sim }{N}}_o}{\partial q} dq+c\frac{\partial {\overset{\sim }{N}}_o}{\partial v} dv\end{array} $$

Setting dγ = dm = dq = dv = 0 and dividing through each equation with dy gives four equations in four unknown variables, i. e. \( \frac{\partial \lambda }{\partial y} \), \( \frac{\partial {c}_w}{\partial y} \), \( \frac{\partial {c}_o}{\partial y} \) and \( \frac{\partial s}{\partial y} \):

$$ {u}^{\prime \prime }(c)\frac{\partial {c}_w}{\partial y}-\frac{\partial \lambda }{\partial y}=0\vspace*{-1pc} $$
$$ {u}^{\prime \prime }(c)\frac{\partial {c}_o}{\partial y}-\frac{\partial \lambda }{\partial y}=0\vspace*{-1pc} $$
$$ -\left[{N}_w\gamma {G}^{\prime }(s)+c\frac{\partial {\overset{\sim }{N}}_o}{\partial s}\right]\frac{\partial \lambda }{\partial y}+\Phi \frac{\partial s}{\partial y}=0\vspace*{-1pc} $$
$$ -{N}_w\frac{\partial {c}_w}{\partial y}-{\overset{\sim }{N}}_o\frac{\partial {c}_o}{\partial y}-\left[{N}_w\gamma {G}^{\prime }(s)+c\frac{\partial {\overset{\sim }{N}}_o}{\partial s}\right]\frac{\partial s}{\partial y}=-{N}_w $$

Solving for \( \frac{\partial s}{\partial y} \) gives:

$$ \frac{\partial s}{\partial y}=\frac{N_w\left[{N}_w\gamma {G}^{\prime }(s)+{c}_o\frac{\partial {\overset{\sim }{N}}_o}{\partial s}\right]{\left[{u}^{\prime \prime }(c)\right]}^2}{{\left[{N}_w\gamma {G}^{\prime }(s)+{c}_o\frac{\partial {\overset{\sim }{N}}_o}{\partial s}\right]}^2{\left[{u}^{\prime \prime }(c)\right]}^2+\Phi \left[{N}_w+{\overset{\sim }{N}}_o\right]{u}^{\prime \prime }(c)} $$

which gives (13). Similarly calculating \( \frac{\partial s}{\partial \gamma } \), \( \frac{\partial s}{\partial m} \), \( \frac{\partial s}{\partial q} \) and \( \frac{\partial s}{\partial v} \) gives (14)–(17). Note that the denominator in the derivatives:

$$ \Psi \equiv {\left[{N}_w\gamma {G}^{\prime }(s)+{c}_o\frac{\partial {\overset{\sim }{N}}_o}{\partial s}\right]}^2{\left[{u}^{\prime \prime }(c)\right]}^2+\Phi \left[{N}_w+{\overset{\sim }{N}}_o\right]{u}^{\prime \prime }(c) $$

is positive (see Appendix 2).

1.4 Appendix 4

Table 1 The data and their sources

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gestsson, M.H., Zoega, G. (2022). Covid-19 and the Golden Rule of Social Distancing. In: Paganetto, L. (eds) Economic Challenges for Europe After the Pandemic. Springer Proceedings in Business and Economics. Springer, Cham. https://doi.org/10.1007/978-3-031-10302-5_3

Download citation

Publish with us

Policies and ethics