Skip to main content

Laboratory Measurements of Multi-spectral, Polarization, and Angular Characteristics of Light Reflected from Particulate Samples

  • Chapter
  • First Online:
Springer Series in Light Scattering

Abstract

Visible and near-infrared reflectance spectroscopy is a powerful technique in remotely identifying the mineralogical and chemical compositions of planetary surface materials. Reflectance spectra measured at varied illumination and viewing conditions may also reveal the physical properties of planetary surfaces. The accurate data interpretation would require quantitative modeling as well as laboratory measurements of analog samples, in particular the granular materials. Here we describe three light scattering facilities constructed at China University of Geosciences used in spectrophotometric measurements of particulate samples. The first one is a three-colour (633, 532, and 473 nm) goniometer capable of measuring the polarized bi-directional reflectance from phase angle 2 to 130 degrees in the principal plane. The second one is a multi-angular imaging device capable of measuring reflectance in the upper hemisphere at discrete wavelengths (typical values include 458, 633, 750, and 905 nm). The third one is a bi-directional reflectance spectrometer that covers the wavelength range from 350 to 2500 nm. For each instrument, we first introduce the instrument concept and system descriptions, followed by the calibration and characterizations. Typical measurement results with applications to planetary remote sensing are then presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abe M, Takagi Y, Kitazato K, Abe S, Hiroi T, Vilas F et al (2006) Near-infrared spectral results of asteroid Itokawa from the Hayabusa spacecraft. Science 312(5778):1334–1338

    Article  ADS  Google Scholar 

  • Adams JB, Filice AL (1967) Spectral reflectance 0.4 to 2.0 microns of silicate rock powders. J Geophys Res 72(22): 5705–5715

    Google Scholar 

  • Belskaya IN, Fornasier S, Tozzi GP, Gil-Hutton R, Cellino A, Antonyuk K, Krugly YN, Dovgopol AN, Faggi S (2017) Refining the asteroid taxonomy by polarimetric observations. Icarus 284:30–42

    Article  ADS  Google Scholar 

  • Bhandari A, Hamre B, Frette Ø, Zhao L, Stamnes JJ, Kildemo M (2011) Bidirectional reflectance distribution function of Spectralon white reflectance standard illuminated by incoherent unpolarized and plane-polarized light. Appl Opt 50(16):2431–2442

    Article  ADS  Google Scholar 

  • Blewett DT, Levy CL, Chabot NL, Denevi BW, Ernst CM, Murchie SL (2014) Phase-ratio images of the surface of mercury: evidence for differences in sub-resolution texture. Icarus 242:142–148

    Article  ADS  Google Scholar 

  • Brissaud O, Schmitt B, Bonnefoy N, Doute ́S, Rabou P, Grundy W, Fily M (2004) Spectrogonio radiometer for the study of the bidirectional reflectance and polarization functions of planetary surfaces. 1. Design and tests. Appl Opt 43(9):1926–1937

    Google Scholar 

  • Bruegge C, Chrien N, Haner D (2001) A Spectralon BRF data base for MISR calibration applications. Remote Sens Environ 77(3):354–366

    Article  ADS  Google Scholar 

  • Burns RG (1993) Mineralogical applications of crystal field theory. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Clark RN, Swayze GA, WiseR, Livo KE, Hoefen1 TM, Kokaly RF, Sutley SJ (2003) USGS Digital Spectral Library splib05a. https://pubs.usgs.gov/of/2003/ofr-03-395/ofr-03-395.html

  • Coburn C, Peddle D (2006) A low-cost field and laboratory goniometer system for estimating hyperspectral bidirectional reflectance. Can J Remote Sens 32:244–253

    Article  Google Scholar 

  • Grandy WT (2005) Scattering of waves from large spheres. Cambridge University Press, Cambridge, UK

    MATH  Google Scholar 

  • Gunderson K, Thomas N, Whitby JA (2006) First measurements with the Physikalisches Institut Radiometric Experiment (PHIRE). Planet Space Sci 54(11):1046–1056

    Article  ADS  Google Scholar 

  • Gunderson K, Lüthi B, Russell P, Thomas N (2007) Visible/NIR photometric signatures of liquid water in Martian regolith simulant. Planet Space Sci 55:1272–1282

    Google Scholar 

  • Hapke BW, Nelson RM, Smyth WD (1993) The opposition effect of the moon: the contribution of coherent backscatter. Science 260(5107):509–511

    Article  ADS  Google Scholar 

  • Hapke B (1996) Are planetary regolith particles backscattering? Response to a paper by M. Mishchenko. J Quant Spectrosc Radiat Transfer 55:837–848

    Article  ADS  Google Scholar 

  • Hapke B (2012) Theory of reflectance and emittance spectroscopy. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Jiang T, Zhang H, Yang Y, Hu X, Ma P, Sun Y, Britt D et al (2019) Bi-directional reflectance and polarization measurements of pulse-laser irradiated airless body analog materials. Icarus 331:127–147

    Article  ADS  Google Scholar 

  • Jiang T, Hu XY, Zhang H, Ma P, Li C, Ren X et al (2021) In situ lunar phase curves measured by Chang’E-4 in the Von Kármán Crater, South Pole-Aitken basin. Astron Astrophys 646:A2

    Article  Google Scholar 

  • Jiang T, Zhang H, Yang YZ, Ma P, Sun YX (2022) A non-motorized spectro-goniometric system to measure the bi-directional 2 reflectance spectra of particulate surfaces in the visible and near-infrared. Rev Sci Instrum 93:024504. https://doi.org/10.1063/5.0071621

    Article  ADS  Google Scholar 

  • Jin W, Zhang H, Yuan Y, Yang Y, Shkuratov YG, Lucey PG et al (2015) In situ optical measurements of Chang’E-3 landing site in Mare Imbrium: 2. Photometric properties of the regolith. Geophys Res Lett 42(20):8312–8319

    Google Scholar 

  • Johnson JR, Shepard MK, Grundy WD, Paige DA, Foote EJ (2013) Spectrogoniometry and modelling of martian and lunar analog samples and Apollo soils. Icarus 223(1):383–406

    Article  ADS  Google Scholar 

  • Kaydash V, Shkuratov Y, Korokhin V, Videen G (2011) Photometric anomalies in the Apollo landing sites as seen from the Lunar Reconnaissance Orbiter. Icarus 211:89–96

    Article  ADS  Google Scholar 

  • Kreslavsky M, Shkuratov Y, Velikodsky Y, Kaydash V, Stankevich D, Pieters C (2000) Photometric properties of the lunar surface derived from clementine observations. J Geophys Res 105(E8):20281–20296

    Article  ADS  Google Scholar 

  • Levasseur-Regourd AC, Renard JB, Shkuratov Y, Hadamcik E (2015) Laboratory studies. In: Kolokolova L, Hough J, Levasseur-Regourd AC (eds) Polarimetry of stars and planetary systems. Cambridge University Press, pp 62–80

    Google Scholar 

  • Lucey PG, Blewett DT, Jolliff BL (2000) Lunar iron and titanium abundance algorithms based on final processing of clementine ultraviolet-visible images. J Geophys Res-Planets 105(E8):20297–20305

    Article  Google Scholar 

  • Ma P, Sun YX, Zhu MH, Yang YZ, Hu XY, Jiang T, Zhang H et al (2020) A plagioclase-rich rock measured by Yutu-2 Rover in Von Karman crater on the far side of the Moon. Icarus 350:113901

    Article  Google Scholar 

  • McCord TB (1969) Color differences on the lunar surface. J Geophys Res 74(12):3131–3142

    Article  ADS  Google Scholar 

  • McGuckin BT, Haner DA, Menzies RT, Esproles C, Brothers AM (1996) Directional reflectance characterization facility and measurement methodology. Appl Opt 35(24):4827–4834

    Article  ADS  Google Scholar 

  • McGuckin BT, Haner DA, Menzies RT (1997) Multiangle Imaging Spectroradiometer: optical characterization of the calibration panels. Appl Opt 36(27):7016–7022

    Article  ADS  Google Scholar 

  • Mishchenko MI (1994) Asymmetry parameters of the phase function for densely packed scattering grains. J Quant Spectrosc Radiat Transfer 52:95–110

    Article  ADS  Google Scholar 

  • Mishchenko MI, Travis LD, Lacis AA (2006) Multiple scattering of light by particles: radiative transfer and coherent backscattering. Cambridge University Press, Cambridge

    Google Scholar 

  • Mishchenko MI et al (2010) Polarimetric remote sensing of solar system objects. Kyiv, Akademperiodyka

    Google Scholar 

  • Muinonen K, Piironen J, Shkuratov YG, Clark BE (2002) Asteroid photometric and polarimetric phase effects. In: Bottke WF et al (eds) Asteroids III. University of Arizona Press

    Google Scholar 

  • Ovcharenko AA, Bondarenko SY, Zubko ES, Shkuratov YG, Videen G, Nelson RM, Smythe WD (2006) Particle size effect on the opposition spike and negative polarization. J Quant Spectrosc Radiat Transfer 101:394–403

    Article  ADS  Google Scholar 

  • Pieters CM (1983) Strength of mineral absorption features in the transmitted component of near-infrared reflected light: first results from RELAB. J Geophys Res: Solid Earth 88(B11):9534–9544

    Article  Google Scholar 

  • Pieters CM, Hiroi T (2004) RELAB (reflectance experiment laboratory): a NASA multiuser spectroscopy, Version 2

    Google Scholar 

  • Pommerol A, Jost B, Poch O, Yoldi Z, Brouet Y, Gracia-Berná A et al (2019) Experimenting with mixtures of water ice and dust as analogues for icy planetary material: recipes from the ice laboratory at the University of Bern. Space Sci Rev 215(5):article #37

    Google Scholar 

  • Psarev V, Ovcharenko A, Shkuratov Yu, Belskaya I, Videen G (2007) Photometry of surfaces with complicated structure at extremely small phase angles. J Quant Spectrosc Radiat Transf 106:455–463

    Google Scholar 

  • Rava B, Hapke B (1987) An analysis of the Mariner 10 color ratio map of mercury. Icarus 71(3):397–429

    Article  ADS  Google Scholar 

  • Sandmeier SR (2000) Acquisition of bidirectional reflectance factor data with field goniometers. Remote Sens Environ 73:257–269

    Article  ADS  Google Scholar 

  • Shepard MK (2001) The Bloomsburg University Goniometer (BUG) Laboratory: an integrated laboratory for measuring bidirectional reflectance functions. Lunar and Planetary Science XXXII

    Google Scholar 

  • Shkuratov Y, Bondarenko S, Ovcharenko A, Pieters C, Hiroi T, Volten H, Munoz O, Videen G (2006) Comparative studies of the reflectance and degree of linear polarization of particulate surfaces and independently scattering particles. J Quant Spectrosc Radiat Transfer 100:340–358

    Article  ADS  Google Scholar 

  • Shkuratov Y, Bondarenko S, Kaydash V, Videen G, Muñoz O, Volten H (2007) Photometry and polarimetry of particulate surfaces and aerosol particles over a wide range of phase angles. J Quant Spectrosc Radiat Transfer 106:487–508

    Google Scholar 

  • Shkuratov Y, Ovcharenko A, Psarev V, Bondarenko S (2008) Laboratory photopolarimetric measurements of particulate surfaces. In: Kokhanovsky A (eds) Light scattering reviews III. Springer-Praxis

    Google Scholar 

  • Shkuratov Y, Kaydash V, Korokhin V, Velikodsky Y, Opanasenko N, Videen G (2011) Optical measurements of the Moon as a tool to study its surface. Planet Space Sci 59:1326–1371

    Article  ADS  Google Scholar 

  • Shkuratov Y, Opanasenko N, Korokhin V, Videen G (2015) The moon. In: Kolokolova L, Hough J, Levasseur-Regourd AC (eds) Polarimetry of stars and planetary systems. Cambridge University Press, pp 303–319

    Google Scholar 

  • Schröder SE, Ye G, Pommerol A, Keller HU, Thomas N, Roush TL (2014) Laboratory observations and simulations of phase reddening. Icarus 239:201–216

    Article  ADS  Google Scholar 

  • Sibille L et al. (2006) Lunar regolith simulant materials: recommendations for standardization, production, and usage. NASA Technical Reports 2006–214605.

    Google Scholar 

  • Sun ZQ, Wu ZF, Zhao YS (2014) Semi-automatic laboratory goniospectrometer system for performing multi-angular reflectance and polarization measurements for natural surfaces. Rev Sci Instrum 85(1):014503

    Article  ADS  Google Scholar 

  • Voss KJ, Chapin AL, Monti M, Zhang H (2000) Instrument to measure the bidirectional reflectance distribution function of surfaces. Appl Opt 39:6197–6206

    Article  ADS  Google Scholar 

  • Voss KJ, Zhang H (2006) Bidirectional reflectance of dry and submerged Labsphere Spectralon plaque. Appl Opt 45:7924–7927

    Article  ADS  Google Scholar 

  • Yang Y, Li S, Milliken RE, Zhang H, Robertson K, Hiroir T (2019) Phase functions of typical lunar surface minerals derived for the Hapke model and implications for visible to near-infrared spectral unmixing. J Geophys Res-Planets 124:31–60

    ADS  Google Scholar 

  • Yang Y, Ma P, Qiao L, Zhang H, Jin W, Jiang T, Liu Y, Zou Y (2020) Phase-angle dependence of colour ratios and potential implications for lunar remote sensing. Astron Astron 644:A30

    Article  ADS  Google Scholar 

  • Yuffa AJ, Kaydash V, Korokhin V, Shkuratov Y, Zubko E, Videen G (2017) Phase-ratio imaging as applied to desert sands for tracking human presence. Appl Opt 56(3):B184–B190

    Article  Google Scholar 

  • Zhang H, Voss KJ, Reid RP (2003) Determining the influential depth for surface reflectance of sediment by BRDF measurements. Opt Express 11:2654–2665

    Article  ADS  Google Scholar 

  • Zhang H, Voss KJ (2005) Comparisons of bidirectional reflectance distribution function measurements on prepared particulate surfaces and radiative-transfer models. Appl Opt 44:597–610

    Article  ADS  Google Scholar 

  • Zhang H, Voss KJ (2006) Bidirectional reflectance study on dry, wet and submerged particulate layers: effects of pore liquid refractive index and translucent particle concentrations. Appl Opt 45:8753–8763

    Article  ADS  Google Scholar 

  • Zhang H, Voss KJ (2008) Bi-directional reflectance measurement of closely packed natural and prepared particulate layers. In: Kokhanovsky A (eds) Light scattering reviews III. Springer-Praxis

    Google Scholar 

  • Zhang H, Voss KJ (2009) Bi-directional reflectance and polarization measurements on packed surfaces of benthic sediments and spherical particles. Opt Express 17:5217–5231

    Article  ADS  Google Scholar 

  • Zhang H, Voss KJ (2011) On Hapke photometric model predictions on reflectance of closely packed particulate surfaces. Icarus 215:27–33

    Article  ADS  Google Scholar 

  • Zhang H, Jin WD, Xu WB, Wang ZW, Yang YZ, Sun H (2014) A goniometric system to measure the incomplete mueller matrices of packed layers. In: 45th Lunar and planetary science conference 2872. The Woodlands, TX

    Google Scholar 

Download references

Acknowledgements

We thank Kenneth Voss, Yuriy Shkuratov, Robert Nelson, Ralph Milliken, and Sana Kassalenen for helpful discussions. We are also indebted to CUG's Office of Laboratory and Equipment Management led by Siping Xu for generous support. Continuous support from the National Natural Science Foundation of China through grants 12073024, 11941001, 11773023, 41071229, 41276180, U1631124, and the support from the Pre-research Project on Civil Aerospace Technologies funded by Chinese National Space Administration (D 020302), are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, H., Jin, W., Jiang, T., Yang, Y., Ma, P. (2022). Laboratory Measurements of Multi-spectral, Polarization, and Angular Characteristics of Light Reflected from Particulate Samples. In: Kokhanovsky, A. (eds) Springer Series in Light Scattering. Springer Series in Light Scattering. Springer, Cham. https://doi.org/10.1007/978-3-031-10298-1_2

Download citation

Publish with us

Policies and ethics